Skip to main content

On Opial-Type Integral Inequalities

Abstract

We establish some new Opial-type inequalities involving functions of two and many independent variables. Our results in special cases yield some of the recent results on Opial's inequality and also provide new estimates on inequalities of this type.

[12345678910111213141516171819202122]

References

  1. 1.

    Opial Z: Sur une inégalité. Annales Polonici Mathematici 1960, 8: 29–32.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Agarwal RP, Pang PYH: Opial Inequalities with Applications in Differential and Difference Equations, Mathematics and Its Applications. Volume 320. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1995:x+393.

    Google Scholar 

  3. 3.

    Agarwal RP, Lakshmikantham V: Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, Series in Real Analysis. Volume 6. World Scientific, River Edge, NJ, USA; 1993:xii+312.

    Google Scholar 

  4. 4.

    Baĭnov D, Simeonov P: Integral Inequalities and Applications, Mathematics and Its Applications (East European Series). Volume 57. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1992:xii+245.

    Google Scholar 

  5. 5.

    Li JD: Opial-type integral inequalities involving several higher order derivatives. Journal of Mathematical Analysis and Applications 1992,167(1):98–110. 10.1016/0022-247X(92)90238-9

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and Its Applications (East European Series). Volume 53. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1991:xvi+587.

    Google Scholar 

  7. 7.

    Cheung W-S: On Opial-type inequalities in two variables. Aequationes Mathematicae 1989,38(2–3):236–244. 10.1007/BF01840008

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Cheung W-S: Some new Opial-type inequalities. Mathematika 1990,37(1):136–142. 10.1112/S0025579300012869

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Cheung W-S: Some generalized Opial-type inequalities. Journal of Mathematical Analysis and Applications 1991,162(2):317–321. 10.1016/0022-247X(91)90152-P

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Cheung W-S: Opial-type inequalities withfunctions invariables. Mathematika 1992,39(2):319–326. 10.1112/S0025579300015047

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Cheung W-S, Dandan Z, Pečarić JE: Opial-type inequalities for differential operators. Nonlinear Analysis: Theory, Methods & Applications 2007,66(9):2028–2039. 10.1016/j.na.2006.02.040

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Godunova EK, Levin VI: An inequality of Maroni. Matematicheskie Zametki 1967, 2: 221–224.

    MathSciNet  Google Scholar 

  13. 13.

    Mitrinović DS: Analytic Inequalities, Die Grundlehren der mathematischen Wisenschaften. Volume 1965. Springer, New York, NY, USA; 1970:xii+400.

    Google Scholar 

  14. 14.

    Pachpatte BG: On integral inequalities similar to Opial's inequality. Demonstratio Mathematica 1989,22(1):21–27.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Pachpatte BG: On inequalities of the Opial type. Demonstratio Mathematica 1992, 25: 35–45.

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Pachpatte BG: Some inequalities similar to Opial's inequality. Demonstratio Mathematica 1993,26(3–4):643–647.

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Pachpatte BG: A note on generalized Opial-type inequalities. Tamkang Journal of Mathematics 1993,24(2):229–235.

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Pečarić JE: An integral inequality. In Analysis, Geometry and Groups: A Riemann Legacy Volume—Part II, Hadronic Press Collect. Orig. Artic.. Edited by: Srivastava HM, Rassias ThM. Hadronic Press, Palm Harbor, Fla, USA; 1993:471–478.

    Google Scholar 

  19. 19.

    Pečarić JE, Brnetić I: Note on generalization of Godunova-Levin-Opial inequality. Demonstratio Mathematica 1997,30(3):545–549.

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Pečarić JE, Brnetić I: Note on the generalization of the Godunova-Levin-Opial inequality in several independent variables. Journal of Mathematical Analysis and Applications 1997,215(1):274–282. 10.1006/jmaa.1997.5529

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Rozanova GI: Integral inequalities with derivatives and with arbitrary convex functions. Moskovskiĭ Gosudarstvennyĭ Pedagogicheskiĭ Institut imeni V. I. Lenina. Uchenye Zapiski 1972, 460: 58–65.

    MathSciNet  Google Scholar 

  22. 22.

    Yang GS: Inequality of Opial-type in two variables. Tamkang Journal of Mathematics 1982,13(2):255–259.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wing-Sum Cheung.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Cheung, WS., Zhao, CJ. On Opial-Type Integral Inequalities. J Inequal Appl 2007, 038347 (2007). https://doi.org/10.1155/2007/38347

Download citation

Keywords

  • Recent Result
  • Integral Inequality
\