Skip to main content

On the-Boundedness of Nonisotropic Spherical Riesz Potentials

Abstract

We introduced the concept of nonisotropic spherical Riesz potential operators generated by the-distance of variable order on-sphere and its-boundedness were investigated.

[12345678910111213]

References

  1. 1.

    Besov OV, Il'in VP, Lizorkin PI: The-estimates of a certain class of non-isotropically singular integrals. Doklady Akademii Nauk SSSR 1966, 169: 1250–1253.

    MathSciNet  Google Scholar 

  2. 2.

    Çınar İ: The Hardy-Littlewood-Sobolev inequality for non-isotropic Riesz potentials. Turkish Journal of Mathematics 1997,21(2):153–157.

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Çınar İ, Duru H: The Hardy-Littlewood-Sobolev inequality for -distance Riesz potentials. Applied Mathematics and Computation 2004,153(3):757–762. 10.1016/S0096-3003(03)00671-4

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Gadjiev AD, Dogru O: On combination of Riesz potentials with non-isotropic kernels. Indian Journal of Pure and Applied Mathematics 1999,30(6):545–556.

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Sarikaya MZ, Yıldırım H: The restriction and the continuity properties of potentials depending on -distance. Turkish Journal of Mathematics 2006,30(3):263–275.

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Sarikaya MZ, Yıldırım H: On the-spherical Riesz potential generated by the-distance. International Journal of Contemporary Mathematical Sciences 2006,1(2):85–89.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Sarikaya MZ, Yıldırım H: On the non-isotropic fractional integrals generated by the -distance. Selçuk Journal of Applied Mathematics 2006,7(1):17–23.

    MATH  Google Scholar 

  8. 8.

    Sarikaya MZ, Yıldırım H: On the Hardy type inequality with non-isotropic kernels. Lobachevskii Journal of Mathematics 2006, 22: 47–57.

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Sarikaya MZ, Yıldırım H, Ozkan UM: Norm inequalities with non-isotropic kernels. International Journal of Pure and Applied Mathematics 2006,31(3):337–344.

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Stein EM: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, no. 30. Princeton University Press, Princeton, NJ, USA; 1970:xiv+290.

    Google Scholar 

  11. 11.

    Zhou Z, Hong Y, Zhou CZ: The-boundedness of Riesz potential operators of variable order on a sphere. Journal of South China Normal University 1999, (2):20–24.

    Google Scholar 

  12. 12.

    Yıldırım H: On generalization of the quasi homogeneous Riesz potential. Turkish Journal of Mathematics 2005,29(4):381–387.

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Sadosky C: Interpolation of Operators and Singular Integrals, Monographs and Textbooks in Pure and Applied Math.. Volume 53. Marcel Dekker, New York, NY, USA; 1979:xii+375.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to MehmetZeki Sarikaya.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Sarikaya, M., Yildirim, H. On the-Boundedness of Nonisotropic Spherical Riesz Potentials. J Inequal Appl 2007, 036503 (2007). https://doi.org/10.1155/2007/36503

Download citation

Keywords

  • Variable Order
  • Potential Operator
  • Riesz Potential
  • Riesz Potential Operator