Skip to main content

On the Precise Asymptotics of the Constant in Friedrich's Inequality for Functions Vanishing on the Part of the Boundary with Microinhomogeneous Structure

Abstract

We construct the asymptotics of the sharp constant in the Friedrich-type inequality for functions, which vanish on the small part of the boundary. It is assumed that consists of pieces with diameter of order. In addition, and as.

[12345678910111213141516171819]

References

  1. 1.

    Kufner A, Persson L-E: Weighted Inequalities of Hardy Type. World Scientific, River Edge, NJ, USA; 2003:xviii+357.

    Google Scholar 

  2. 2.

    Kufner A, Maligranda L, Persson L-E: The Hardy Inequality. About Its History and Related Results. Vydavetelsky Servis, Pilsen, Germany; 2007.

    Google Scholar 

  3. 3.

    Opic B, Kufner A: Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series. Volume 219. Longman Scientific & Technical, Harlow, UK; 1990:xii+333.

    Google Scholar 

  4. 4.

    Chechkin GA: Averaging of boundary value problems with singular perturbation of the boundary conditions. Russian Academy of Sciences. Sbornik. Mathematics 1994,79(1):191–222. translation in Matematicheskiĭ Sbornik, vol. 184, no. 6, pp. 99–150, 1993 translation in Matematicheskiĭ Sbornik, vol. 184, no. 6, pp. 99–150, 1993 10.1070/SM1994v079n01ABEH003608

    MathSciNet  Article  Google Scholar 

  5. 5.

    Maz'ya VG: Prostranstva S. L. Soboleva. Leningrad University, Leningrad, Russia; 1985:416.

    Google Scholar 

  6. 6.

    Chechkin GA, Piatnitski AL, Shamaev AS: Homogenization: Methods and Applications, Translations of Mathematical Monographs. Volume 234. American Mathematical Society, Providence, RI, USA; 2007:x+234.

    Google Scholar 

  7. 7.

    Vladimirov VS: The Equations of Mathematical Physics. 3rd edition. Nauka, Moscow, Russia; 1976:527.

    Google Scholar 

  8. 8.

    Chechkin GA: On the estimation of solutions of boundary-value problems in domains with concentrated masses periodically distributed along the boundary. The case of "light" masses. Mathematical Notes 2004,76(6):865–879. translation in Matematicheskie Zametki, vol. 76, no. 6, pp. 928–944, 2004 translation in Matematicheskie Zametki, vol. 76, no. 6, pp. 928–944, 2004

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Oleĭnik OA, Shamaev AS, Yosifian GA: Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and Its Applications. Volume 26. North-Holland, Amsterdam, The Netherlands; 1992:xiv+398.

    Google Scholar 

  10. 10.

    Iosif'yan GA, Oleĭnik OA, Shamaev AS: On the limit behavior of the spectrum of a sequence of operators defined in different Hilbert spaces. Russian Mathematical Surveys 1989,44(3):195–196. translation in Uspekhi Matematicheskikh Nauk, vol. 44, no. 3(267), pp. 157–158, 1989 translation in Uspekhi Matematicheskikh Nauk, vol. 44, no. 3(267), pp. 157–158, 1989 10.1070/RM1989v044n03ABEH002116

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Gadyl'shin RR, Chechkin GA: A boundary value problem for the Laplacian with rapidly changing type of boundary conditions in a multi-dimensional domain. Siberian Mathematical Journal 1999,40(2):229–244. translation in Sibirskiĭ Matematicheskiĭ Zhurnal, vol. 40, no. 2, pp. 271–287, 1999 translation in Sibirskiĭ Matematicheskiĭ Zhurnal, vol. 40, no. 2, pp. 271–287, 1999

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Belyaev AG, Chechkin GA, Gadyl'shin RR: Effective membrane permeability: estimates and low concentration asymptotics. SIAM Journal on Applied Mathematics 2000,60(1):84–108.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Landkof NS: Foundations of Modern Potential Theory. Springer, New York, NY, USA; 1972:x+424.

    Google Scholar 

  14. 14.

    Pólya G, Szegö G: Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27. Princeton University Press, Princeton, NJ, USA; 1951:xvi+279.

    Google Scholar 

  15. 15.

    Gadyl'shin RR: On the asymptotics of eigenvalues for a periodically fixed membrane. St. Petersburg Mathematical Journal 1999,10(1):1–14. translation in Algebra I Analiz, vol. 10, no. 1, pp. 3–19, 1998 translation in Algebra I Analiz, vol. 10, no. 1, pp. 3–19, 1998

    MathSciNet  Google Scholar 

  16. 16.

    Gadyl'shin RR: A boundary value problem for the Laplacian with rapidly oscillating boundary conditions. Doklady Mathematics 1998,58(2):293–296. translation in Doklady Akademii Nauk, vol. 362, no. 4, pp. 456–459, 1998 translation in Doklady Akademii Nauk, vol. 362, no. 4, pp. 456–459, 1998

    Google Scholar 

  17. 17.

    Borisov DI: Two-parametrical asymptotics for the eigenevalues of the laplacian with frequent alternation of boundary conditions. Journal of Young Scientists. Applied Mathematics and Mechanics 2002, 1: 36–52.

    Google Scholar 

  18. 18.

    Borisov DI: Two-parameter asymptotics in a boundary value problem for the Laplacian. Mathematical Notes 2001,70(3–4):471–485. translation in Matematicheskie Zametki, vol. 70, no. 4, pp. 520–534, 2001 translation in Matematicheskie Zametki, vol. 70, no. 4, pp. 520–534, 2001

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Borisov DI: Asymptotics and estimates for the eigenelements of the Laplacian with frequent nonperiod change of boundary conditions. Izvestiya. Seriya Matematicheskaya 2003,67(6):1101–1148. translation in Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, vol. 67, no. 6, pp. 23–70, 2003 translation in Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, vol. 67, no. 6, pp. 23–70, 2003 10.1070/IM2003v067n06ABEH000459

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to GA Chechkin.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Chechkin, G., Koroleva, Y.O. & Persson, LE. On the Precise Asymptotics of the Constant in Friedrich's Inequality for Functions Vanishing on the Part of the Boundary with Microinhomogeneous Structure. J Inequal Appl 2007, 034138 (2008). https://doi.org/10.1155/2007/34138

Download citation

Keywords

  • Sharp Constant
  • Microinhomogeneous Structure
\