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Abstract
This paper considers the following semilinear pseudo-parabolic equation with a
nonlocal source:

ut –�ut –�u = up(x, t)
∫

�

k(x, y)up+1(y, t)dy,

and it explores the characters of blow-up time for solutions, obtaining a lower bound
as well as an upper bound for the blow-up time under different conditions,
respectively. Also, we investigate a nonblow-up criterion and compute an exact
exponential decay.
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1 Introduction
In this paper, we deal with the blow-up problem for the following equation:

⎧⎪⎨
⎪⎩

ut – �ut – �u = up(x, t)
∫
�

k(x, y)up+(y, t) dy in [, T] × �,
u(, x) = u(x) in �,
u(t, x) =  on [, T] × ∂�,

(.)

where � ⊂ R
n (n ≥ ) is a bounded domain with smooth boundary, u(x) ∈ H

(�), T ∈
(,∞], and p satisfies

 < p ≤ 
n – 

, (.)

k(x, y) is an integrable, real valued function satisfying

k(x, y) = k(y, x),
∫

�

∫
�

k(x, y) dx dy < ∞,
∫

�

∫
�

k(x, y)up+(x, t)up+(y, t) dx dy > . (.)
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The blow-up phenomena for problems similar to (.) have been extensively researched
(see [–]). For instance,

⎧⎪⎨
⎪⎩

ut – �u = up in [, T] × �,
u(, x) = u(x) in �,
u(t, x) =  on [, T] × ∂�,

and bounds for the blow-up time have been explored [, ].
Recently, authors have begun to consider

ut – �ut – �u = f (u). (.)

When f (u) = up in (.), many results have been studied in [, , –] and the ref-
erences therein, among which Xu [] proved finite time blow up for solutions through
the so-called potential well method, first introduced in []. The method has played an
important role in dealing with parabolic and hyperbolic problems since it was discov-
ered. Later on, confirmed by the same conditions as [] that guarantee the occurrence
of blow up, Luo [] established a lower bound for the blow-up time. Furthermore, when
f (u) = up(x, t)

∫
�

k(x, y)up+(y, t) dy with  < p ≤ 
n– in (.), which is a new problem and

has not been considered, by means of the potential well method, Yang [] not only ob-
tained the global existence and asymptotic behavior of solutions with deducing exponen-
tial decay, but also got the existence of solutions that blow up in finite time in H

(�)-norm
with energy J(u) ≤ d.

In the last several decades, an increasing number of researchers focused on exploring
the upper bounds for the blow-up time. However, the authors have trouble getting lower
bounds for the blow-up time, and therefore they received little attention. In this paper,
we use the means of a differential inequality technique and present some results on the
bounds for the blow-up time to problem (.) since little attention is paid to the bounds
before we study. Our paper is organized as follows. In Section , we come up with the
main results: First of all, a blow-up criterion and an upper bound for the blow-up time are
determined. Second, we investigate the nonblow-up case. Finally, a lower bound for the
blow-up time is obtained.

Before stating our principal theorem, we note that the Fréchet derivative fu of the non-
linear function f (u) = up(x, t)

∫
�

k(x, y)up+(y, t) dy is

fu · h(x, t) = pup–(x, t)h(x, t)
∫

�

k(x, y)up+(y, t) dy

+ (p + )up(x, t)
∫

�

k(x, y)up(y, t)h(y, t) dy, ∀u ∈ H
(�).

Clearly fu is symmetric and bounded, so the potential F exists and is given by

F(u) =
∫ 



(
f (ρu), u

)
dρ

=
∫ 



∫
�

ρpup(x, t)
(∫

�

k(x, y)ρp+up+(y, t) dy
)

u(x, t) dx dρ

=


p + 

∫
�

∫
�

k(x, y)up+(x, t)up+(y, t) dx dy. (.)
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Differentiating (.) with respect to t, it follows that

d
dt

F(u) =


p + 
d
dt

∫
�

∫
�

k(x, y)up+(x, t)up+(y, t) dx dy

=



∫
�

∫
�

k(x, y)up(x, t)up+(y, t)ut(x, t) dx dy

+



∫
�

∫
�

k(x, y)up(y, t)up+(x, t)ut(y, t) dx dy

=
∫

�

∫
�

k(x, y)up(x, t)up+(y, t)ut(x, t) dx dy =
(
f (u), ut

)
, (.)

where we have used the symmetry of k(x, y).
To obtain the main results, we introduce the functionals

J(u) =


‖∇u‖

 –


p + 

∫
�

∫
�

k(x, y)up+(x, t)up+(y, t) dx dy (.)

and

I(u) = ‖∇u‖
 –

∫
�

∫
�

k(x, y)up+(x, t)up+(y, t) dx dy. (.)

We set out to establish local existence and uniqueness for (.).

Theorem . Assume (.) holds. Then for any u ∈ H
(�), there exists a T >  for which

(.) has a unique local solution u(t) ∈ L∞([, T); H
(�)) with ut(t) ∈ L([, T); H

(�)), sat-
isfying

(ut , v) + (∇ut ,∇v) + (∇u,∇v) =
(

up(x, t)
∫

�

k(x, y)up+(y, t) dy, v
)

(.)

for all v ∈ H
(�).

Proof Choose {ωj(x)} as the basis functions of H
(�). Construct the approximate solutions

um(x, t) of the problem (.)

um(x, t) =
m∑
j=

gj(t)ωj(x), m = , , . . .

which satisfy

(umt ,ωs) + (∇umt ,∇ωs) + (∇um,∇ωs)

=
(

up
m(x, t)

∫
�

k(x, y)up+
m (y, t) dy,ωs

)
, s = , , . . . , m, (.)

um(x, ) =
m∑
j=

ajωj(x) → u(x) in H
(�). (.)
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Multiplying (.) by g ′
s(t), summing over s, and integrating with respect to t from  to t,

we obtain

∫ t



[‖umτ‖
 + ‖∇umτ‖


]

dτ + J
(
um(t)

)
= J

(
um()

) ≤ C. (.)

In fact

J(u) =


‖∇u‖

 –


p + 

∫
�

∫
�

k(x, y)up+
 (x, t)up+

 (y, t) dx dy

≤ 

‖∇u‖

 ≤ C,

where we have used condition (.) and u ∈ H
(�). Thus for sufficiently large m, we get

(.). Hence, by (.) and

J(um) =


‖∇um‖

 –


p + 

∫
�

∫
�

k(x, y)up+
m (x, t)up+

m (y, t) dx dy

we obtain

∫ t



[‖umτ‖
 + ‖∇umτ‖


]

dτ +


‖um‖

H


≤ C +


p + 

∫
�

∫
�

k(x, y)up+
m (x, t)up+

m (y, t) dx dy. (.)

We estimate the last term in the right-hand side using the Hölder and Sobolev inequalities
(recall um ∈ C([, T], H

(�))):

∫
�

∫
�

k(x, y)up+
m (x, t)up+

m (y, t) dx dy

≤
∫

�

up+
m (x, t)

(∫
�

k(x, y) dy
) 


(∫

�

up+
m (y, t) dy

) 


dx

= ‖um‖p+
p+

∫
�

up+
m (x, t)

(∫
�

k(x, y) dy
) 


dx

≤ ‖um‖p+
p+

(∫
�

up+
m (x, t) dx

) 

(∫

�

∫
�

k(x, y) dy dx
) 



= ‖um‖p+
p+

(∫
�

∫
�

k(x, y) dy dx
) 



= κ‖um‖p+
p+ ≤ κCp+

∗ ‖um‖p+
H


≤ CT , (.)

here κ = (
∫
�

∫
�

k(x, y) dx dy) 
 < ∞, and C∗ is the embedding constant for H

(�) ↪→
Lp+(�). From (.) and (.) we obtain

∫ T



[‖umτ‖
 + ‖∇umτ‖


]

dτ +


‖um‖

H

≤ CT . (.)
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On the other hand, by using the Hölder and Sobolev inequalities, here q = p+
p+ , we have

∫
�

[
up

m(x, t)
∫

�

k(x, y)up+
m (y, t) dy

]q

dx

≤
∫

�

∣∣um(x, t)
∣∣pq

(∫
�

∣∣k(x, y)
∣∣ dy

) q

(∫

�

∣∣um(y, t)
∣∣p+ dy

) q


dx

≤ ‖um‖q(p+)
p+

[∫
�

∣∣um(x, t)
∣∣pq· p+

p dx
] p

p+
[∫

�

(∫
�

∣∣k(x, y)
∣∣ dy

) q
 · p+

p+
dx

] p+
p+

≤ ‖um‖p+
p+

[∫
�

∫
�

∣∣k(x, y)
∣∣ dy dx

] p+
p+

= ‖um‖p+
p+κ

p+
p+ ≤ Cp+

∗ ‖um‖p+
H


κ

p+
p+ . (.)

By (.) and (.), for sufficiently large m, we get

‖um‖
H


≤ CT , (.)

∫ T



[‖umτ‖
 + ‖∇umτ‖


]

dτ < CT , (.)

∥∥∥∥up
m

∫
�

k(x, y)up+
m (y, t) dy

∥∥∥∥
q

q
≤ Cp+

∗ (CT )p+κ
p+
p+ . (.)

Therefore, by these uniform estimates from (.)-(.), there exist u and a subsequence
still denoted by {um} such that, as m → ∞,

um → u in L∞(
[, T], H

(�)
)

weakly star and a.e. in � × [, T],

umt → ut in L([, T], H
(�)

)
weakly star,

up
m

∫
�

k(x, y)up+
m (y, t) dy → up

∫
�

k(x, y)up+(y, t) dy

in L∞(
[, T], Lq(�)

)
weakly star.

Thus in (.), for s fixed, letting m → ∞, one has

(ut ,ωs) + (∇ut ,∇ωs) + (∇u,∇ωs) =
(

up(x, t)
∫

�

k(x, y)up+(y, t) dy,ωs

)
, ∀s

and

(ut , v) + (∇ut ,∇v) + (∇u,∇v) =
(

up(x, t)
∫

�

k(x, y)up+(y, t) dy, v
)

,

∀v ∈ H
(�), t ∈ [, T].

Moreover, (.) gives u(x, ) = u(x) in H
(�). The existence of u solving (.) and satis-

fying (.) is so proved. �
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2 Main results
I. Upper bound for blow-up time

Here, a condition to ensure blow-up at some finite time as well as an upper bound for
the blow-up time is considered.

J(u) is defined in (.) and we introduce

α(t) =
∥∥u(x, t)

∥∥
H


=

∫
�

u dx +
∫

�

|∇u| dx. (.)

A straightforward computation shows that
∫

�

uut dx +
∫

�

∇u · ∇ut dx +
∫

�

|∇u| dx =
∫

�

∫
�

k(x, y)up+(x, t)up+(y, t) dy dx. (.)

Combining (.) with (.), we obtain

α′(t) = –
∫

�

|∇u| dx + 
∫

�

∫
�

k(x, y)up+(x, t)up+(y, t) dy dx ≥ β(t), (.)

where

β(t) = –(p + )J(u) = –(p + )‖∇u‖
 + 

∫
�

∫
�

k(x, y)up+(x, t)up+(y, t) dx dy, (.)

for any p > . We obtain the following by multiplying ut(x, t) on both sides of (.) and
integrating by parts:

∫
�

|ut| dx +
∫

�

|∇ut| dx = –
∫

�

∇u · ∇ut dx

+
∫

�

∫
�

k(x, y)up(x, t)up+(y, t)ut(x, t) dy dx. (.)

From (.), we have

β ′(t) = (p + )
(

–
∫

�

∇u · ∇ut dx

+


p + 

∫
�

∫
�

k(x, y)(p + )up(x, t)up+(y, t)ut(x, t) dy dx

+


p + 

∫
�

∫
�

k(x, y)(p + )up(y, t)up+(x, t)ut(y, t) dy dx
)

= (p + )
(

–
∫

�

∇u · ∇ut dx +
∫

�

∫
�

k(x, y)up(x, t)up+(y, t)ut(x, t) dy dx
)

= (p + )
(∫

�

|ut| dx +
∫

�

|∇ut| dx
)

, (.)

where we have used the symmetry property of k(x, y) in the second step in (.).
By (.) and (.), one sees

α(t)β ′(t) = (p + )
(∫

�

u dx +
∫

�

|∇u| dx
)(∫

�

|ut| dx +
∫

�

|∇ut| dx
)

≥ (p + )
(∫

�

uut dx +
∫

�

∇u · ∇ut dx
)

= (p + )
[
α′(t)

]. (.)
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In addition, it is indicated from (.) and (.) that β(t) is a nondecreasing function of t.
So if we assume J(u) < , then β(t) >  for all t ≥ . And with (.), we have

α(t)β ′(t) ≥ (p + )α′(t)β(t),

which becomes

β ′(t)
β(t)

≥ (p + )
α′(t)
α(t)

. (.)

By (.), we have

α′(t)
[α(t)]p+ ≥ β()

[α()]p+ . (.)

Then


[α(t)]p ≤ 

[α()]p – p
β()

[α()]p+ t. (.)

It is obvious that (.) implies u blows up at some finite time T . T is given by

T ≤ 
p

α()
β()

=
‖u‖

H


–p(p + )J(u)
. (.)

The above result is presented in the following theorem.

Theorem . For any p > , u ∈ H
(�) ∩ Lp+(�), J(u) < , then the solution u(x, t) of

(.) blows up in finite time, and T is bounded by (.).

II. Nonblow-up case
In this section, we not only give a criterion which guarantees nonblow up, but also we

deduce the exponential decay of u(·, t) in H
(�)-norm when u(x) satisfies some condi-

tions.
α(t) is defined in (.).
By a similar calculation to (.), we have

∫
�

∫
�

k(x, y)up+(x, t)up+(y, t) dx dy ≤ κ‖u‖p+
p+. (.)

By a straightforward computation, we have

α′(t) ≤ –
∫

�

|∇u| dx + κ‖u‖p+
p+

≤ –
∫

�

|∇u| dx + κCp+
∗ ‖∇u‖p+



≤ –
∫

�

|∇u| dx + κCp+
∗

[
ϕ(t)

]p+. (.)
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The Poincaré inequality gives ‖∇u‖
 ≥ λ‖u‖

 where λ is the first eigenvalue of the prob-
lem

⎧⎪⎨
⎪⎩

�ω + λω =  in �,
ω =  on ∂�,
ω >  in �.

(.)

Then

‖∇u‖
 ≥ λ

 + λ
‖u‖

H

. (.)

From (.) and (.), we know that

α′(t) ≤ –
λ

 + λ
‖u‖

H


+ κCp+
∗

[
α(t)

]p+

= –
λ

 + λ
α(t) + κCp+

∗
[
α(t)

]p+

≤ –
 + λ

α(t)
(
λ – κ( + λ)Cp+

∗
[
α(t)

]p). (.)

Let

M =
(

λ

κ( + λ)Cp+
∗

) 
p

.

If α() < M, then we show that α(t) < M.
In fact, if α(t) ≥ M, we know that there exists t such that α(t) = M and α(t) < M for

 ≤ t < t. From (.), we have α′(t) <  for  ≤ t < t, from which we deduce α() ≥
α(t) = M. It leads to a contradiction. This shows α′(t) < , and blow up cannot occur in
finite time.

Thus (.) becomes

α′(t)
α(t)(λ – κ( + λ)Cp+

∗ [α(t)]p)
≤ –

 + λ
, (.)

then

∫ α(t)

α()

dγ

γ (λ – κ( + λ)Cp+
∗ γ p)

≤ –
 + λ

t, (.)

through variable substitution η = γ p, (.) turns to

∫ [α(t)]p

[α()]p

dη

pη(λ – κ( + λ)Cp+
∗ η)

≤ –
 + λ

t (.)

and

∥∥u(x, t)
∥∥

H


= α(t) ≤
( λ‖u‖p

H


λ – κ( + λ)Cp+
∗ ‖u‖p

H


) 
p

e– λ
+λ .
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We state this result in the following theorem.

Theorem . If  < p ≤ 
n– , ‖u‖

H


< M, then the solution of (.) cannot blow up in finite
time in H

(�)-norm, and we have the exponential decay estimate

∥∥u(x, t)
∥∥

H

≤

( λ‖u‖p
H



λ – κ( + λ)Cp+
∗ ‖u‖p

H


) 
p

e– λ
+λ .

III. Lower bounds for blow-up time
This section is devoted to establishing a lower bound for T if the solution u(x, t) blows

up at t = T under some conditions.
Let

d =
p

(p + )κ

p

(
λ

C∗( + λ)

)+ 
p

. (.)

For the problem (.) Yang [] has proved Theorem ..

Theorem . (Blow up for J(u) < d) ([]) Let p satisfy (.), u ∈ H
(�). Assume that

J(u) < d, I(u) < . Then the weak solution u(t) of problem (.) blows up in finite time.

In view of Theorem ., we see that when J(u) < d and I(u) < , the solution u(x, t)
of problem (.) blows up in finite time T . To continue our study and estimate the lower
bound for the blow-up time T , we assume J(u) < d, I(u) <  in this section.

We introduce α(t) in (.) and, calculating as (.), we have

α′(t) = –
∫

�

|∇u| dx + 
∫

�

∫
�

k(x, y)up+(x, t)up+(y, t) dy dx

≤ κCp+
∗

[
α(t)

]p+. (.)

Here, we claim α(t) > . In fact, if there exists t ∈ [, T) such that α(t) = , then α(T) = .
It leads to a contradiction with the fact that u(x, t) blows up at T in H

(�)-norm. Thus

α′(t)
(α(t))p+ ≤ κCp+

∗ (.)

and

(
α()

)–p –
(
α(t)

)–p ≤ pκCp+
∗ t. (.)

Letting t → T in (.), one obtains

T ≥
‖u‖–p

H


pκCp+
∗

. (.)

We summarize this result in the following theorem.
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Theorem . If  < p ≤ 
n– , u ∈ H

(�), J(u) < d, I(u) < , then the solution u(x, t) of
(.) blows up in finite time T in H

(�)-norm, and T is bounded below by (.).

Remark . We mention that the lower bound
‖u‖–p

H


pκCp+∗
is smaller than the upper bound

‖u‖
H


–p(p+)J(u) under the conditions in Theorem . and Theorem ..

In fact,

J(u) ≥
∫

�

|∇u| dx –


p + 
κ‖u‖p+

p+ ≥ –


p + 
κCp+

∗ ‖u‖p+
H


,

thus

‖u‖–p
H



pκCp+
∗

≤
‖u‖

H


–p(p + )J(u)
.

Remark . Suppose p ∈ (, 
n– ], u ∈ H

(�), J(u) < d, then it is well known through
the results in [] that problem (.) has a sharp condition: the case of I(u) >  admits a
global weak solution and the case of I(u) <  does not admit any global weak solution.
However, a more powerful condition J(u) <  is required in Theorem . and we can
deduce I(u) <  from J(u) < . More importantly, we obtain the precise upper bound

‖u‖
H


–p(p+)J(u) for the blow-up time.
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