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Abstract
In this paper, we define the weak P-property and the α-ψ -proximal contraction by p
in which p is a τ -distance on a metric space. Then, we prove some best proximity
point theorems in a complete metric space X with generalized distance. Also we
define two kinds of α-p-proximal contractions and prove some best proximity point
theorems.
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1 Introduction
Let us assume that A and B are two nonempty subsets of a metric space (X, d) and
T : A −→ B. Clearly T(A) ∩ A �= ∅ is a necessary condition for the existence of a fixed point
of T . The idea of the best proximity point theory is to determine an approximate solution
x such that the error of equation d(x, Tx) =  is minimum. A solution x for the equation
d(x, Tx) = d(A, B) is called a best proximity point of T . The existence and convergence
of best proximity points have been generalized by several authors [–] in many direc-
tions. Also, Akbar and Gabeleh [, ], Sadiq Basha [] and Pragadeeswarar and Marudai
[] extended the best proximity points theorems in partially ordered metric spaces (see
also [–]). On the other hand, Suzuki [] introduced the concept of τ -distance on a
metric space and proved some fixed point theorems for various contractive mappings by
τ -distance. In this paper, by using the concept of τ -distance, we prove some best proximity
point theorems.

2 Preliminaries
Let A, B be two nonempty subsets of a metric space (X, d). The following notations will
be used throughout this paper:

d(y, A) := inf
{

d(x, y) : x ∈ A
}

,

d(A, B) := inf
{

d(x, y) : x ∈ A and y ∈ B
}

,

A :=
{

x ∈ A : d(x, y) = d(A, B) for some y ∈ B
}

,

B :=
{

y ∈ B : d(x, y) = d(A, B) for some x ∈ A
}

.
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We recall that x ∈ A is a best proximity point of the mapping T : A −→ B if d(x, Tx) =
d(A, B). It can be observed that a best proximity point reduces to a fixed point if the un-
derlying mapping is a self-mapping.

Definition . ([]) Let (A, B) be a pair of nonempty subsets of a metric space X with
A �= ∅. Then the pair (A, B) is said to have the P-property if and only if

d(x, y) = d(A, B),
d(x, y) = d(A, B)

}

�⇒ d(x, x) = d(y, y),

where x, x ∈ A and y, y ∈ B.

It is clear that, for any nonempty subset A of X, the pair (A, A) has the P-property.

Definition . ([]) A is said to be approximately compact with respect to B if every se-
quence {xn} of A, satisfying the condition that d(y, xn) −→ d(y, A) for some y in B, has a
convergent subsequence.

Remark . ([]) Every set is approximately compact with respect to itself.

Samet et al. [] introduced a class of contractive mappings called α-ψ-contractive map-
pings. Let � be the family of nondecreasing functions ψ : [,∞) −→ [,∞) such that
∑∞

n= ψn(t) < ∞ for all t > , where ψn(t) is the nth iterate of ψ .

Lemma . ([]) For every function ψ : [,∞) −→ [,∞), the following holds:
if ψ is nondecreasing, then, for each t > , limn→∞ ψn(t) =  implies ψ(t) < t.

Definition . ([]) Let T : A −→ B and α : A×A −→ [,∞). We say that T is α-proximal
admissible if

α(x, x) ≥ ,
d(u, Tx) = d(A, B),
d(u, Tx) = d(A, B)

⎫
⎪⎬

⎪⎭
�⇒ α(u, u) ≥ 

for all x, x, u, u ∈ A.

Remark . Let ‘�’ be a partially ordered relation on A and α : A × A −→ [,∞) be de-
fined by

α(x, y) =

{
, x � y,
, otherwise.

If T is α-proximal admissible, then T is said to be proximally increasing. In other words,
T is proximally increasing if it satisfies the condition that

x � x,
d(u, Tx) = d(A, B),
d(u, Tx) = d(A, B)

⎫
⎪⎬

⎪⎭
�⇒ u � u

for all x, x, u, u ∈ A.
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Definition . ([]) Let X be a metric space with metric d. A function p : X × X −→
[,∞) is called τ -distance on X if there exists a function η : X × [,∞) −→ [,∞) such
that the following are satisfied:

(τ) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X ;
(τ) η(x, ) =  and η(x, t) ≥ t for all x ∈ X and t ∈ [,∞), and η is concave and continuous

in its second variable;
(τ) limn xn = x and limn sup{η(zn, (zn, xm)) : m ≥ n} =  imply p(w, x) ≤ lim infn p(w, xn) for

all w ∈ X ;
(τ) limn sup{p(xn, ym) : m ≥ n} =  and limn η(xn, tn) =  imply limn η(yn, tn) = 
(τ) limn η(zn, p(zn, xn)) =  and limn η(zn, p(zn, yn)) =  imply limn d(xn, yn) = .

Remark . (τ) can be replaced by the following (τ)′.

(τ)′ inf{η(x, t) : t > } =  for all x ∈ X , and η is nondecreasing in its second variable.

Remark . If (X, d) is a metric space, then the metric d is a τ -distance on X.

In the following examples, we define η : X × [,∞) −→ [,∞) by η(x, t) = t for all x ∈ X,
t ∈ [,∞). It is easy to see that p is a τ -distance on a metric space X.

Example . Let (X, d) be a metric space and c be a positive real number. Then p : X ×
X −→ [,∞) by p(x, y) = c for x, y ∈ X is a τ -distance on X.

Example . Let (X,‖ · ‖) be a normed space. p : X × X −→ [,∞) by p(x, y) = ‖x‖ + ‖y‖
for x, y ∈ X is a τ -distance on X.

Example . Let (X,‖ · ‖) be a normed space. p : X × X −→ [,∞) by p(x, y) = ‖y‖ for
x, y ∈ X is a τ -distance on X.

Definition . Let (X, d) be a metric space and p be a τ -distance on X. A sequence {xn}
in X is called p-Cauchy if there exists a function η : X × [,∞) −→ [,∞) satisfying (τ)-
(τ) and a sequence zn in X such that limn sup{η(zn, (zn, xm)) : m ≥ n} = .

The following lemmas are essential for the next sections.

Lemma . ([]) Let (X, d) be a metric space and p be a τ -distance on X. If {xn} is a
p-Cauchy sequence, then it is a Cauchy sequence. Moreover, if {yn} is a sequence satisfying
limn sup{p(xn, ym) : m ≥ n = }, then {yn} is also a p-Cauchy sequence and limn d(xn, yn) = .

Lemma . ([]) Let (X, d) be a metric space and p be a τ -distance on X. If {xn} in X
satisfies limn p(z, xn) =  for some z ∈ X, then {xn} is a p-Cauchy sequence. Moreover, if
{yn} in X also satisfies limn p(z, yn) = , then limn d(xn, yn) = . In particular, for x, y, z ∈ X,
p(z, x) =  and p(z, y) =  imply x = y.

Lemma . ([]) Let (X, d) be a metric space and p be a τ -distance on X. If a sequence
{xn} in X satisfies limn sup{p(xn, xm) : m ≥ n} = , then {xn} is a p-Cauchy sequence. More-
over, if {yn} in X satisfies limn p(xn, yn) = , then {yn} is also a p-Cauchy sequence and
limn d(xn, yn) = .
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The next result is an immediate consequence of Lemma . and Lemma ..

Corollary . Let (X, d) be a metric space and p be a τ -distance on X. If a sequence {xn}
in X satisfies limn sup{p(xn, xm) : m ≥ n} = , then {xn} is a Cauchy sequence.

3 Some best proximity point theorems
Now, we define the weak P-property with respect to a τ -distance as follows.

Definition . Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with A �=
∅. Also let p be a τ -distance on X. Then the pair (A, B) is said to have the weak P-property
with respect to p if and only if

d(x, y) = d(A, B),
d(x, y) = d(A, B)

}

�⇒ p(x, x) ≤ p(y, y),

where x, x ∈ A and y, y ∈ B.

It is clear that, for any nonempty subset A of X, the pair (A, A) has the weak P-property
with respect to p.

Remark . ([]) If p = d, then (A, B) is said to have the weak P-property where A �= ∅.

It is easy to see that if (A, B) has the P-property, then (A, B) has the weak P-property.

Example . Let X = R with the usual metric and p, p be two τ -distances defined in
Example . and Example ., respectively. Consider the following:

A =
{

(a, b) ∈ R | a = ,  ≤ b ≤ 
}

,

B =
{

(a, b) ∈ R | a = , b ≤ 
} ∪ {

(a, b) ∈ R | a = , b ≥ 
}

.

Then (A, B) has the weak P-property with respect to p but has not the weak P-property
with respect to p.

By the definition of A and B, we obtain

d
(
(, ), (, )

)
= d

(
(, ), (, )

)
= d(A, B) =

√
,

where (, ), (, ) ∈ A and (, ), (, ) ∈ B. We have

p
(
(, ), (, )

)
=  and p

(
(, ), (, )

)
=

√
 +

√
,

p
(
(, ), (, )

)
=  and p

(
(, ), (, )

)
=

√
 +

√
.

Therefore (A, B) has the weak P-property with respect to p. On the other hand, we have

p
(
(, ), (, )

)
=  and p

(
(, ), (, )

)
=

√
.

This implies that (A, B) has not the weak P-property with respect to p.
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Definition . Let (X, d) be a metric space and let p be a τ -distance on X. A mapping
T : A −→ B is said to be an α-ψ-proximal contraction with respect to p if

α(x, y)p(Tx, Ty) ≤ ψ
(
p(x, y)

)
for all x, y ∈ A,

where α : A × A −→ [,∞) and ψ ∈ � .

Remark . ([]) If p = d, then T is said to be an α-ψ-proximal contraction.

Example . Let (X, d) be a metric space and A, B be two subsets of X. Let p be the τ -
distance defined in Example .. Consider the following:

ψ(t) =
t


for all t ≥ ,

α(x, y) = k, where k ∈ R,  ≤ k ≤ 


,

α(x, y) = k, where k ∈ R, k >



.

Then T : A −→ B is an α-ψ-proximal contraction with respect to p, but it is not an α-
ψ-proximal contraction with respect to p.

Definition . g : A −→ A is said to be a τ -distance preserving with respect to p if

p(gx, gx) = p(x, x)

for all x and x in A.

We first prove the following lemma. Then we state our results.

Lemma . Let A and B be nonempty, closed subsets of a metric space (X, d) such that A

is nonempty. Let p be a τ -distance on X and α : A × A −→ [,∞). Suppose that T : A −→ B
and g : A −→ A satisfy the following conditions:

(a) T is α-proximal admissible.
(b) g is a τ -distance preserving with respect to p.
(c) α(gu, gv) ≥  implies that α(u, v) ≥  for all u, v ∈ A.
(d) T(A) ⊆ B and A ⊆ g(A).
(e) There exist x, x ∈ A such that

d(gx, Tx) = d(A, B) and α(x, x) ≥ .

Then there exists a sequence {xn} in A such that

d(gxn+, Txn) = d(A, B) and α(xn, xn+) ≥  for all n ∈ N ∪ {}.

Proof By condition (e) there exist x, x ∈ A such that

d(gx, Tx) = d(A, B) and α(x, x) ≥ . ()
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Since Tx ∈ T(A) ⊆ B and A ⊆ g(A), there exists x ∈ A such that

d(gx, Tx) = d(A, B). ()

T is α-proximal admissible, therefore by () and () we have

α(gx, gx) ≥ .

By condition (c) we obtain

α(x, x) ≥ .

Continuing this process, we can find a sequence {xn} in A such that

d(gxn+, Txn) = d(A, B) and α(xn, xn+) ≥  for all n ∈ N ∪ {}. ()

This completes the proof of the lemma. �

The following result is a special case of Lemma . obtained by setting α defined in
Remark ..

Corollary . Let A and B be nonempty, closed subsets of a metric space (X, d) such that
A is nonempty. Let ‘�’ be a partially ordered relation on A and p be a τ -distance on X.
Suppose that T : A −→ B and g : A −→ A satisfy the following conditions:

(a) T is proximally increasing.
(b) g is a τ -distance preserving with respect to p.
(c) gu � gv implies that u � v for all u, v ∈ A.
(d) T(A) ⊆ B and A ⊆ g(A).
(e) There exist x, x ∈ A such that

d(gx, Tx) = d(A, B) and x � x.

Then there exists a sequence {xn} in A such that

d(gxn+, Txn) = d(A, B) and xn � xn+ for all n ∈ N ∪ {}.

The following result is a spacial case of Lemma . if g is the identity map.

Corollary . Let A and B be nonempty, closed subsets of a metric space (X, d) such that
A is nonempty and α : A × A −→ [,∞). Suppose that T : A −→ B satisfies the following
conditions:

(a) T is α-proximal admissible.
(b) T(A) ⊆ B.
(c) There exist x, x ∈ A such that

d(x, Tx) = d(A, B) and α(x, x) ≥ .
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Then there exists a sequence {xn} in A such that

d(xn+, Txn) = d(A, B) and α(xn, xn+) ≥  for all n ∈ N ∪ {}.

Theorem . Let A and B be nonempty, closed subsets of a complete metric space (X, d)
such that A is nonempty. Let α : A × A −→ [,∞) and ψ ∈ � . Also suppose that p is a
τ -distance on X and T : A −→ B satisfies the following conditions:

(a) T(A) ⊆ B and (A, B) has the weak P-property with respect to p.
(b) T is α-proximal admissible.
(c) There exist x, x ∈ A such that

d(x, Tx) = d(A, B) and α(x, x) ≥ .

(d) T is a continuous α-ψ-proximal contraction with respect to p.
Then T has a best proximity point in A.

Proof By Corollary . there exists a sequence {xn} in A such that

d(xn+, Txn) = d(A, B) and α(xn, xn+) ≥  for all n ∈ N ∪ {}. ()

(A, B) satisfies the weak P-property with respect to p, therefore by () we obtain that

p(xn, xn+) ≤ p(Txn–, Txn) for all n ∈ N. ()

Also, by the definition of T , we have

α(xn–, xn)p(Txn–, Txn) ≤ ψ
(
p(xn–, xn)

)
for all n ∈ N.

On the other hand, we have α(xn–, xn) ≥  for all n ∈ N, which implies that

p(Txn–, Txn) ≤ ψ
(
p(xn–, xn)

)
for all n ∈ N. ()

From () and (), we get that

p(xn, xn+) ≤ ψ
(
p(xn–, xn)

)
for all n ∈ N. ()

If there exists n ∈ N such that p(xn , xn–) = , then, by the definition of ψ , we obtain
that ψ(p(xn–, xn )) = . Therefore by () we have p(xn, xn+) =  for all n > n. Thus by
Lemma . the sequence {xn} is Cauchy.

Now, let p(xn–, xn) �=  for all n ∈ N. By the monotony of ψ and using induction in (),
we obtain

p(xn, xn+) ≤ ψn(p(x, x)
)

for all n ∈ N. ()

By the definition of ψ , we have
∑∞

k= ψk(p(x, x)) < ∞. So, for all ε > , there exists some
positive integer h = h(ε) such that

∞∑

k≥h

ψk(p(x, x)
)

< ε.
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Now let m > n > h. By the triangle inequality and (), we have

p(xn, xm) ≤
m–∑

k=n

p(xk , xk+) ≤
m–∑

k=n

ψk(p(x, x)
) ≤

∑

k≥h

ψk(p(x, x)
)

< ε.

This implies that

lim
n

sup
{

p(xn, xm) : m ≥ n
}

= .

By Corollary . {xn} is a Cauchy sequence in A. Since X is a complete metric space and
A is a closed subset of X, there exists x ∈ A such that limn→∞ xn = x.

T is continuous, therefore, by letting n −→ ∞ in (), we obtain

d(x, Tx) = d(A, B).

This completes the proof of the theorem. �

The following result is the special case of Theorem . obtained by setting p = d.

Corollary . ([]) Let A and B be nonempty closed subsets of a complete metric space
(X, d) such that A is nonempty. Let α : A × A −→ [,∞) and ψ ∈ � . Suppose that T :
A −→ B is a nonself mapping satisfying the following conditions:

(a) T(A) ⊆ B and (A, B) has the P-property.
(b) T is α-proximal admissible.
(c) There exist x, x ∈ A such that

d(x, Tx) = d(A, B) and α(x, x) ≥ .

(d) T is a continuous α-ψ-proximal contraction.
Then there exists an element x∗ ∈ A such that

d
(
x∗, Tx∗) = d(A, B).

Theorem . Let A and B be nonempty, closed subsets of a complete metric space (X, d)
such that A is nonempty. Also suppose that p is a τ -distance on X and T : A −→ B satisfies
the following conditions:

(a) T(A) ⊆ B and (A, B) has the weak P-property with respect to p.
(b) There exists r ∈ [, ) such that

p(Tx, Ty) ≤ rp(x, y), ∀x, y ∈ A.

(c) T is continuous.
Then T has a best proximity point in A. Moreover, if d(x, Tx) = d(x∗, Tx∗) = d(A, B) for some
x, x∗ ∈ A, then p(x, x∗) = .
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Proof Define α : A × A −→ [,∞) and ψ : [,∞) −→ [,∞) by α(x, y) =  for all x, y ∈ A
and ψ(t) = t for all t ≥ . Therefore by Theorem ., T has a best proximity point in A.
Now let x, x∗ be best proximity points in A. Therefore we have

d(x, Tx) = d
(
x∗, Tx∗) = d(A, B).

The pair (A, B) has the weak P-property with respect to p, hence by the definition of T we
obtain that

p
(
x, x∗) ≤ p

(
Tx, Tx∗) ≤ rp

(
x, x∗).

Hence p(x, x∗) =  and this completes the proof of the theorem. �

The next result is an immediate consequence of Theorem . by taking A = B and p = d.

Corollary . (Banach’s contraction principle) Let (X, d) be a complete metric space and
A be a nonempty closed subset of X. Let T : A −→ A be a contractive self-map. Then T has
a unique fixed point x∗ in A.

4 α-p-Proximal contractions
Definition . Let A, B be subsets of a metric space (X, d) and p be a τ -distance on X.
A mapping T : A −→ B is said to be an α-p-proximal contraction of the first kind if there
exists r ∈ [, ) such that

α(x, x) ≥ ,
d(u, Tx) = d(A, B),
d(u, Tx) = d(A, B)

⎫
⎪⎬

⎪⎭
�⇒ p(u, u) ≤ rp(x, x),

where α : A × A −→ [,∞) and u, u, x, x ∈ A.
Also if T is an α-p-proximal contraction of the first kind, then
(i) T is said to be an ordered p-proximal contraction of the first kind if ‘�’ is a partially

ordered relation on A and α is defined in Remark ..
(ii) T is said to be p-proximal contraction of the first kind if α(x, y) =  for all x, y ∈ A.

Remark . ([]) If T is an ordered p-proximal contraction of the first kind and p = d,
then T is said to be an ordered proximal contraction of the first kind.

Remark . If T is a p-proximal contraction of the first kind and p = d, then T is said to
be a proximal contraction of the first kind (see []).

Definition . Let A, B be subsets of a metric space (X, d) and p be a τ -distance on X.
A mapping T : A −→ B is said to be an α-p-proximal contraction of the second kind if
there exists r ∈ [, ) such that

α(x, x) ≥ ,
d(u, Tx) = d(A, B),
d(u, Tx) = d(A, B)

⎫
⎪⎬

⎪⎭
�⇒ p(Tu, Tu) ≤ rp(Tx, Tx),

where α : A × A −→ [,∞) and u, u, x, x ∈ A.
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Also if T is an α-p-proximal contraction of the second kind, then
(i) T is said to be an ordered p-proximal contraction of the second kind if ‘�’ is a

partially ordered relation on A and α is defined in Remark ..
(ii) T is said to be a p-proximal contraction of the second kind if α(x, y) =  for all

x, y ∈ A.

Remark . If T is an ordered p-proximal contraction of the second kind and p = d, then
T is said to be an ordered proximal contraction of the second kind.

Remark . If T is a p-proximal contraction of the second kind and p = d, then T is said
to be a proximal contraction of the second kind.

Example . Let X = R with the usual metric and p be the τ -distance defined in Exam-
ple .. Given A = [–, –] ∪ [, ], B = [–, ] and T : A −→ B by

T(x) =

{
x + , – ≤ x ≤ –,
x – ,  ≤ x ≤ ,

then T is a p-proximal contraction of the first and second kind.

It is easy to see that

d
(
–, T(–)

)
= d

(
, T()

)
= d(A, B) = .

If r ∈ [ 
 , ), then we have

p(–, ) ≤ rp(–, ),

p(, –) ≤ rp(, –).

Hence T is a p-proximal contraction of the first kind. Also,

p
(
T(–), T()

) ≤ rp
(
T(–), T()

)
,

p
(
T(), T(–)

) ≤ rp
(
T(), T(–)

)

for all r ∈ [, ). This implies that T is a p-proximal contraction of the second kind.

Example . Let X = R with the usual metric and p be the τ -distance defined in Ex-
ample .. Let ‘�’ be the usual partially ordered relation in R. Given A = {–} ∪ [, ],
B = [–, ] and T : A −→ B by

T(x) =

{
–, x = –,
x – ,  ≤ x ≤ ,

then T is an ordered p-proximal contraction of the first and second kind, but it is not a
p-proximal contraction of the first and second kind.
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It is easy to see that

d
(
–, T(–)

)
= d

(
, T()

)
= d(A, B) =  and – � .

If r ∈ [ 
 , ), then we have

p(–, ) ≤ rp(–, ).

p(, –) � rp(, –), but it is not necessary because  � –. Hence T is an ordered p-
proximal contraction of the first kind. But T is not a p-proximal contraction of the first
kind because p(, –) � rp(, –) for all r ∈ [, ). Also,

p
(
T(–), T()

) ≤ rp
(
T(–), T()

)

for all r ∈ [, ). Notice that p(T(), T(–)) � rp(T(), T(–)), but it is not necessary be-
cause  � –. This implies that T is an ordered p-proximal contraction of the second
kind. But T is not a p-proximal contraction of the second kind because p(T(), T(–)) �
rp(T(), T(–)) for all r ∈ [, ).

Theorem . Let A and B be nonempty, closed subsets of a complete metric space (X, d)
such that A is nonempty. Let p be a w-distance on X and α : A × A −→ [,∞). Suppose
that T : A −→ B and g : A −→ A satisfy the following conditions:

(a) T is an α-proximal admissible and continuous α-p-proximal contraction of the first
kind.

(b) g is a continuous τ -distance preserving with respect to p.
(c) α(gu, gv) ≥  implies that α(u, v) ≥  for all u, v ∈ A.
(d) T(A) ⊆ B and A ⊆ g(A).
(e) There exist x, x ∈ A such that

d(gx, Tx) = d(A, B) and α(x, x) ≥ .

Then there exists an element x ∈ A such that

d(gx, Tx) = d(A, B).

Proof By Lemma . there exists a sequence {xn} in A such that

d(gxn+, Txn) = d(A, B) and α(xn, xn+) ≥  for all n ∈ N ∪ {}. ()

We will prove the convergence of a sequence {xn} in A. T is an α-p-proximal contraction
of the first kind and () holds, hence, for any positive integer n, we have

p(gxn, gxn+) ≤ rp(xn, xn–).

Also g is a τ -distance preserving with respect to p, so we get that

p(xn, xn+) ≤ rp(xn, xn–) ≤ · · · ≤ rnp(x, x)
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for every n ∈ N. Hence, if m > n,

p(xn, xm) ≤ p(xn, xn+) + · · · + p(xm–, xm)

≤ rnp(x, x) + · · · + rm–p(x, x)

≤ rn

 – r
p(x, x).

This implies that

lim
n

sup
{

p(xn, xm) : m ≥ n
}

= .

By Corollary ., {xn} is a Cauchy sequence in A. Since X is a complete metric space and
A is a closed subset of X, there exists x ∈ A such that limn→∞ xn = x.

T and g are continuous, therefore by letting n −→ ∞ in (), we obtain

d(gx, Tx) = d(A, B).

This completes the proof of the theorem. �

The next result is an immediate consequence of Theorem . by setting α defined in
Remark ..

Corollary . Let A and B be nonempty, closed subsets of a complete metric space (X, d)
such that A is nonempty. Let ‘�’ be a partially ordered relation on A and p be a τ -distance
on X. Suppose that T : A −→ B and g : A −→ A satisfy the following conditions:

(a) T is a proximally increasing and continuous ordered p-proximal contraction of the
first kind.

(b) g is a continuous τ -distance preserving with respect to p.
(c) gu � gv implies that u � v for all u, v ∈ A.
(d) T(A) ⊆ B and A ⊆ g(A).
(e) There exist x, x ∈ A such that

d(gx, Tx) = d(A, B) and x � x.

Then there exists an element x ∈ A such that

d(gx, Tx) = d(A, B).

Theorem . Let A and B be nonempty, closed subsets of a complete metric space (X, d)
such that A is nonempty. Let p be a τ -distance on X. Suppose that T : A −→ B and g :
A −→ A satisfy the following conditions:

(a) T is a continuous p-proximal contraction of the first kind.
(b) g is a continuous τ -distance preserving with respect to p.
(c) T(A) ⊆ B and A ⊆ g(A).

Then there exists an element x ∈ A such that

d(gx, Tx) = d(A, B).

Moreover, if d(gx, Tx) = d(gx∗, Tx∗) = d(A, B) for some x, x∗ ∈ A, then p(x, x∗) = .



Omidvari et al. Journal of Inequalities and Applications  (2015) 2015:27 Page 13 of 17

Proof By Theorem . there exists an element x ∈ A such that

d(gx, Tx) = d(A, B).

Now let x∗ be in A such that

d
(
gx∗, Tx∗) = d(A, B).

T is a p-proximal contraction of the first kind and g is a τ -distance preserving with respect
to p, therefore

p
(
x, x∗) ≤ rp

(
x, x∗).

Hence p(x, x∗) =  and this completes the proof of the theorem. �

The next result is obtained by taking p = d in Theorem ..

Corollary . ([]) Let X be a complete metric space. Let A and B be nonempty, closed
subsets of X. Further, suppose that A and B are nonempty. Let T : A −→ B and g : A −→ A
satisfy the following conditions:

(a) T is a continuous proximal contraction of the first kind.
(b) g is an isometry.
(c) T(A) ⊆ B.
(d) A ⊆ g(A).

Then there exists a unique element x ∈ A such that

d(gx, Tx) = d(A, B).

The following result is a best proximity point theorem for nonself α-p-proximal con-
traction of the second kind.

Theorem . Let A and B be nonempty, closed subsets of a complete metric space (X, d)
such that A is approximately compact with respect to B and A is nonempty. Let p be a
τ -distance on X and α : A × A −→ [,∞). Suppose that T : A −→ B satisfies the following
conditions:

(a) T is an α-proximal admissible and continuous α-p-proximal contraction of the
second kind.

(b) T(A) ⊆ B.
(c) There exist x, x ∈ A such that

d(x, Tx) = d(A, B) and α(x, x) ≥ .

Then there exists an element x ∈ A such that

d(x, Tx) = d(A, B).
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Proof By Corollary . there exists a sequence {xn} in A such that

d(xn+, Txn) = d(A, B) and α(xn, xn+) ≥  for all n ∈ N ∪ {}. ()

We will prove the convergence of a sequence {xn} in A. T is an α-p-proximal contraction
of the second kind and () holds, hence, for any positive integer n, we have

p(Txn, Txn+) ≤ rp(Txn–, Txn) ≤ · · · ≤ rnp(Tx, Tx)

for every n ∈ N. Hence, if m > n,

p(Txn, Txm) ≤ p(Txn, Txn+) + · · · + p(Txm–, Txm)

≤ rnp(Tx, Tx) + · · · + rm–p(Tx, Tx)

≤ rn

 – r
p(Tx, Tx).

This implies that

lim
n

sup
{

p(Txn, Txm) : m ≥ n
}

= .

By Corollary ., {Txn} is a Cauchy sequence in B. Since X is a complete metric space
and B is a closed subset of X, there exists y ∈ B such that limn→∞ Txn = y. By the triangle
inequality, we have

d(y, A) ≤ d(y, xn)

≤ d(y, Txn–) + d(Txn–, xn)

= d(y, Txn–) + d(A, B)

≤ (y, Txn–) + d(y, A).

Letting n −→ ∞ in the above inequality, we obtain

lim
n→∞ d(y, xn) = d(y, A).

Since A is approximately compact with respect to B, there exists a subsequence {xnk } of
{xn} converging to some x ∈ A. Therefore

d(x, y) = lim
k→∞

d(xnk , Txnk –) = d(A, B).

This implies that x ∈ A. T is continuous and {Txn} is convergent to y, therefore

lim
nk→∞ Txnk = Tx = y.

Thus, it follows that

d(x, Tx) = lim
nk→∞ d(xnk , Txnk –) = d(A, B).

This completes the proof of the theorem. �
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The next result is an immediate consequence of Theorem . by setting α defined in
Remark ..

Corollary . Let A and B be nonempty, closed subsets of a complete metric space (X, d)
such that A is approximately compact with respect to B and A is nonempty. Let ‘�’ be
a partially ordered relation on A and p be a τ -distance on X. Suppose that T : A −→ B
satisfies the following conditions:

(a) T is a proximally increasing and continuous ordered p-proximal contraction of the
second kind.

(b) T(A) ⊆ B.
(c) There exist x, x ∈ A such that

d(x, Tx) = d(A, B) and x � x.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A, B).

Theorem . Let A and B be nonempty, closed subsets of a complete metric space (X, d)
such that A is approximately compact with respect to B, and let p be a τ -distance on X.
Further, suppose that A is nonempty. Let T : A −→ B satisfy the following conditions:

(a) T is a continuous p-proximal contraction of the second kind.
(b) T(A) ⊆ B.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A, B).

Moreover, if d(x, Tx) = d(x∗, Tx∗) = d(A, B) for some x, x∗ ∈ A, then p(Tx, Tx∗) = .

Proof By Theorem . there exists an element x ∈ A such that

d(x, Tx) = d(A, B).

Now let x∗ be an element in A such that

d
(
x∗, Tx∗) = d(A, B).

We will show that p(Tx, Tx∗) = . T is a p-proximal contraction of the second kind, there-
fore

p
(
Tx, Tx∗) ≤ rp

(
Tx, Tx∗).

Hence p(Tx, Tx∗) =  and this completes the proof of the theorem. �

The following result is obtained by taking p = d in Theorem ..
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Corollary . ([]) Let A and B be nonempty, closed subsets of a complete metric space
such that A is approximately compact with respect to B. Further, suppose that A and B

are nonempty. Let T : A −→ B satisfy the following conditions:
(a) T is a continuous proximal contraction of the second kind.
(b) T(A) is contained in B.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A, B).

Moreover, if x∗ is another best proximity point of T , then Tx and Tx∗ are identical.
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