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Abstract
In this paper, a new class of generalized of nonconvex multitime multiobjective
variational problems is considered. We prove the sufficient optimality conditions for
efficiency and proper efficiency in the considered multitime multiobjective
variational problems with univex functionals. Further, for such vector variational
problems, various duality results in the sense of Mond-Weir and in the sense of Wolfe
are established under univexity. The results established in the paper extend and
generalize results existing in the literature for such vector variational problems.
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1 Introduction
Multiobjective variational problems are very prominent amongst constrained optimiza-
tion models because of their occurrences in a variety of popular contexts, notably, eco-
nomic planning, advertising investment, production and inventory, epidemic, control of
a rocket, etc.; for an excellent survey, see [] Chinchuluun and Pardalos.
Several classes of functions have been defined for the purpose of weakening the limita-

tions of convexity in mathematical programming, and also for multiobjective variational
problems. Several authors have contributed in this direction: [] Aghezzaf and Khazafi,
[] Ahmad and Sharma, [] Arana-Jiménez et al., [] Bector and Husain, [] Bhatia and
Mehra, [] Hachimi and Aghezzaf, [] Mishra and Mukherjee, [–] Nahak and Nanda,
and others.
One class of suchmultiobjective optimization problems is the class of vector PDI&PDE-

constrained optimization problems in which partial differential inequalities or/and equa-
tions represent a multitude of natural phenomena of some applications in science and
engineering. The areas of researchwhich stronglymotivate the PDI&PDE-constrained op-
timization include: shape optimization in fluid mechanics and medicine, optimal control
of processes, structural optimization, material inversion - in geophysics, data assimilation
in regional weather prediction modeling, etc. PDI&PDE-constrained optimization prob-
lems are generally infinite dimensional in nature, large and complex, [] Chinchuluun
et al.
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The basic optimization problems of path-independent curvilinear integrals with PDE
constraints or with isoperimetric constraints, expressed by the multiple integrals or path-
independent curvilinear integrals, were stated for the first time by Udrişte and Ţevy in
[]. Later, optimality and duality results for PDI&PDE-constrained optimization prob-
lems were established by Pitea et al. in [] and [].
Recently, nonconvex optimization problems with the so-called class of univex functions

have been the object of increasing interest, both theoretical and applicative, and there ex-
ists nowadays a wide literature. This class of generalized convex functions was introduced
in nonlinear scalar optimization problems by Bector et al. [] as a generalization of the
definition of an invex function introduced by Hanson []. Later, Antczak [] used the
introduced η-approximation approach for nonlinear multiobjective programming prob-
lems with univex functions to obtain new sufficient optimality conditions for such a class
of nonconvex vector optimization problems. In [], Popa and Popa defined the concept
of ρ-univexity as a generalization univexity and ρ-invexity. Mishra et al. [] established
some sufficiency results for multiobjective programming problems using Lagrange multi-
plier conditions, and under various types of generalized V -univexity type-I requirements,
they proved weak, strong and converse duality theorems. In [], Khazafi and Rueda es-
tablished sufficient optimality conditions andmixed type duality results under generalized
V -univexity type I conditions for multiobjective variational programming problems.
In this paper, we study a new class of nonconvex multitime multiobjective variational

problems of minimizing a vector-valued functional of curvilinear integral type. In order
to prove the main results in the paper, we introduce the definition of univexity for a vec-
torial functional of curvilinear integral type. Thus, we establish the sufficient optimality
conditions for a proper efficiency in the multitime multiobjective variational problem un-
der univexity assumptions imposed on the functionals constituting such vector variational
problems. Further, we define the multiobjective variational dual problems in the sense of
Mond-Weir and in the sense of Wolfe, and we prove several dual theorems under suitable
univex assumptions. The results are established for a multitimemultiobjective variational
problem, in which involved functions are univex with respect to the same function �, but
not necessarily with respect to the same function b.

2 Preliminaries and definitions
The following convention for equalities and inequalities will be used in the paper.
For any x = (x,x, . . . ,xn)T , y = (y, y, . . . , yn)T , we define:
(i) x = y if and only if xi = yi for all i = , , . . . ,n;
(ii) x > y if and only if xi > yi for all i = , , . . . ,n;
(iii) x� y if and only if xi � yi for all i = , , . . . ,n;
(iv) x ≥ y if and only if x� y and x �= y.
Let (T ;h) and (M; g) be Riemannian manifolds of dimensions p and n, respectively. The

local coordinates on T and M will be written t = (tα), α = , . . . ,p and x = (xi), i = , . . . ,n,
respectively.
Further, let J(T ,M) be the first order jet bundle associated to T andM.
Using the product order relation on R

p, the hyperparallelepiped �t,t in R
p, with diag-

onal opposite points t = (t, . . . , t
p
) and t = (t , . . . , t

p
 ), can be written as being the interval

[t, t]. Assume that γt,t is a piecewise C-class curve joining the points t and t.
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By C∞(�t,t ,M) we denote the space of all functions x : �t,t → M of C∞-class with
the norm

‖x‖ = ‖x‖∞ +
p∑

α=

‖xα‖∞.

Now, we introduce the closed Lagrange -form density of C∞-class as follows:

fα =
(
f iα

)
: J(T ,M) → R

r , i = , . . . , r,α = , . . . ,p,

which determines the following path-independent curvilinear functionals:

Fi(x(·)) = ∫
γt,t

f iα
(
πx(t)

)
dtα , i = , . . . , r,

where πx(t) = (t,x(t),xγ (t)) and xγ (t) = ∂x
∂tγ (t), γ = , . . . ,p, are partial velocities.

The closedness conditions (complete integrability conditions) are Dβ f iα = Dαf iβ and
Dαf iβ =Dβ f iα , α,β = , . . . ,p, α �= β , i = , . . . , r, where Dβ is the total derivative.
The following result is useful to prove the main results in the paper.

Lemma . ([]) A total divergence is equal to a total derivative.

We also accept that the Lagrange matrix density

g =
(
gja

)
: J(�t,t ,M) →R

ms, a = , . . . , s, j = , . . . ,m,m < n,

of C∞-class defines the partial differential inequalities (PDI) (of evolution)

g
(
πx(t)

)
� , t ∈ �t,t ,

and the Lagrange matrix density

h =
(
hla

)
: J(�t,t ,M) →R

ks, a = , . . . , s, l = , . . . ,k,k < n,

defines the partial differential equalities (PDE) (of evolution)

h
(
πx(t)

)
= , t ∈ �t,t .

In the paper, consider the vector of path-independent curvilinear functionals defined by

F
(
x(·)) = ∫

γt,t

fα
(
πx(t)

)
dtα =

(
F(x(·)), . . . ,Fr(x(·))).

Denote by

�(�t,t ) =
{
x(t) ∈ C∞(�t,t ,M) : t ∈ �t,t ,x(t) = x,x(t) = x,

g
(
πx(t)

)
� ,h

(
πx(t)

)
= 

}
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the set all feasible solutions of problem (MVP), multitimemultiobjective variational prob-
lem, introduced right now:

⎧⎨
⎩minF(x(·))
subject to x(·) ∈ �(�t,t ).

(MVP)

Multiobjective programming is the search for a solution that best manages trade-offs
criteria that conflict and that cannot be converted to a common measure. An optimal
solution to a multiobjective programming problem is ordinarily chosen from the set of
all efficient solutions (Pareto optimal solutions) to it. Therefore, for multiobjective pro-
gramming problemsminimizationmeans, in general, obtaining efficient solutions (Pareto
optimal solutions) in the following sense.

Definition. A feasible solution x(·) ∈ �(�t,t ) is called an efficient solution for problem
(MVP) if there is no other feasible solution x(·) ∈ �(�t,t ) such that

F
(
x(·)) ≤ F

(
x(·)).

In other words, a feasible solution x(·) ∈ �(�t,t ) is called an efficient solution for problem
(MVP) if there is no other feasible solution x(·) ∈ �(�t,t ) such that

∫
γt,t

f iα
(
πx(t)

)
dtα �

∫
γt,t

f iα
(
πx(t)

)
dtα , i = , . . . , r

and ∫
γt,t

f i
∗

α

(
πx(t)

)
dtα <

∫
γt,t

f i
∗

α

(
πx(t)

)
dtα for some i∗ ∈ {, . . . , r}.

By normal efficient solution we understand an efficient solution to the constraint prob-
lemwhich is not efficient for the corresponding programwithout taking into consideration
the constraints.
Geoffrion [] introduced the definition of properly efficient solution in order to elimi-

nate the efficient solutions causing unbounded trade-offs between objective functions.

Definition . A feasible solution x(·) ∈ �(�t,t ) is called a properly efficient solution for
problem (MVP) if it is efficient for (MVP) and if there exists a positive scalarM such that
for all i = , . . . , r,

∫
γt,t

f iα
(
πx(t)

)
dtα –

∫
γt,t

f iα
(
πx(t)

)
dtα

�M
(∫

γt,t

f jα
(
πx(t)

)
dtα –

∫
γt,t

f jα
(
πx(t)

)
dtα

)
,

for some j such that

∫
γt,t

f jα
(
πx(t)

)
dtα >

∫
γt,t

f jα
(
πx(t)

)
dtα ,
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whenever x(·) ∈ �(�t,t ) and∫
γt,t

f iα
(
πx(t)

)
dtα <

∫
γt,t

f iα
(
πx(t)

)
dtα .

The following conditions established by Pitea et al. [] are necessary for a feasible so-
lution x(·) ∈ �(�t,t ) to be efficient in problem (MVP).

Theorem . Let x(·) ∈ �(�t,t ) be a normal efficient solution in the multitime multiob-
jective variational problem (MVP). Then there exist two vectors λ ∈ R

r and the smooth
matrix functions μ(t) = (μα(t)) : �t,t →R

msp, ξ (t) = (ξα(t)) :�t,t →R
ksp such that

〈
λ,

∂fα
∂x

(
πx(t)

)〉
+

〈
μα(t),

∂g
∂x

(
πx(t)

)〉
+

〈
ξα(t),

∂h
∂x

(
πx(t)

)〉

–Dγ

(〈
λ,

∂fα
∂xγ

(
πx(t)

)〉
+

〈
μα(t),

∂g
∂xγ

(
πx(t)

)〉
+

〈
ξα(t),

∂h
∂xγ

(
πx(t)

)〉)

= , t ∈ �t,t ,α = , . . . ,p (Euler-Lagrange PDEs), ()〈
μα(t), g

(
πx(t)

)〉
= , t ∈ �t,t ,α = , . . . ,p, ()

λ ≥ , 〈λ, e〉 = , μα(t)� , t ∈ �t,t ,α = , . . . ,p, ()

where e = (, . . . , ) ∈R
r .

We remark that relations () and () and the last relation in () hold true also for an
efficient solution.

3 Proper efficiency results
Let A : J(�t,t ,M) × J(�t,t ,M) × R

n → R
r be a path-independent curvilinear vector

functional

A
(
x(·)) = ∫

γt,t

aα

(
πx(t)

)
dtα .

We shall introduce a definition of univexity of the above functional, which will be useful
to state the results established in the paper.
Let S be a nonempty subset of C∞(�t,t ,M), x(·) ∈ S be given, b := (b, . . . ,br) be a

vector function such that bi : C∞(�t,t ,M) × C∞(�t,t ,M) → [,∞), i = , . . . , r, and
η : J(�t,t ,M)× J(�t,t ,M) → R

n be an n-dimensional vector-valued function, vanish-
ing at the point (πx(t),πx(t)), and � :R →R.

Definition . The vectorial functional A is called (strictly) univex at the point x(·) on S
with respect to �, η and b if, for each i = , . . . , r, the following inequality

bi
(
x(·),x(·))�(

Ai(x(·)) –Ai(x(·)))(>)� ∫
γt,t

{〈
η
(
πx(t),πx(t)

)
,
∂aiα
∂x

(
πx(t)

)〉

+
〈
Dγ η

(
πx(·),πx(t)

)
,
∂aiα
∂xγ

(
πx(t)

)〉}
dtα ()

holds for all x(·) with x(·) �= x(·).
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Example . In the following, x, x̄,u : [, ]→R are functions of C∞-class on [, ].
Let a(x) = –x(t). The functional A(x(t)) =

∫ 
 a(πx(t))dt is called invex at x̄(t) with re-

spect to η if

A
(
x(t)

)
–A

(
x̄(t)

) ≥
∫ 


η
(
πx(t),πx̄(t)

)∂a
∂x

(
x̄(t)

)
dt.

A is univex at x̄(t) with respect to φ, η and b if

b
(
x(t), x̄(t)

)
φ
(
A

(
x(t)

)
–A

(
x̄(t)

)) ≥
∫ 


η
(
πx(t),πx̄(t)

)∂a
∂x

(
x̄(t)

)
dt.

Clearly, any invex function is univex.
We consider b = .
The functional A(x(t)) =

∫ 
 a(x(t))dt is not invex at x̄(t) = t with respect to

η
(
πx(t),πu(t)

)
=

⎧⎨
⎩u(t) – x(t), if x(t) < u(t),

, otherwise.

Indeed, consider x(t) = 
 t. We get

A
(
x(t)

)
–A

(
x̄(t)

)
=

∫ 



(
t –



t

)
dt = –




;

∫ 


η
(
πx(t),πx̄(t)

)∂a
∂x

(
x̄(t)

)
dt = ,

so the invexity condition is not satisfied.
If we take φ(t) = t, we obtain that A is univex with respect to φ, η, and b = , as follows:

φ
(
A

(
x(t)

)
–A

(
x̄(t)

))
=

(
A

(
x(t)

)
–A

(
x̄(t)

)) ≥ ;∫ 


η
(
πx(t),πx̄(t)

)∂a
∂x

(
x̄(t)

)
dt =

∫ 


η
(
πx(t),πx̄(t)

)(
–x̄(t)

)
dt,

which is always negative since η(πx(t),πx̄(t)) ≥ .
Following this idea, non-invex functions for which the right-hand part of the invexity

condition is negative become univex functions with the preservation of the same func-
tion η. The preservation of function η is important when we deal with several functionals
which have to be univex with respect to the same η.

Now, we prove the sufficiency of efficiency for the feasible solution x(·) ∈ �(�t,t ) in
problem (MVP) at which the above necessary optimality conditions are fulfilled. In order
to prove this result, we use the concept of univexity defined above for a vectorial func-
tional.

Theorem . Let x(·) ∈ �(�t,t ) be a feasible solution in the considered multitime multi-
objective variational problem (MVP), and let the necessary optimality conditions ()-() be
satisfied at x(·). Further, assume that the following hypotheses are fulfilled:
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(a) Fi(x(·)), i = , . . . , r, is strictly univex at the point x(·) on �(�t,t ) with respect to �Fi ,
η and bFi ,

(b) 〈μαj(·), gj(x(·))〉, j = , . . . ,m, is univex at the point x(·) on �(�t,t ) with respect to
�gj , η and bgj ,

(c) 〈ξαl(·),hl(x(·))〉, l = , . . . ,k, is univex at the point x(·) on �(�t,t ) with respect to �hl ,
η and bhl ,

(d) a <  �⇒ �Fi (a) < , i = , . . . , r, and �Fi () = ,
(e) a�  �⇒ �gj (a)� , j = , . . . ,m,
(f ) a�  �⇒ �hl (a)� , l = , . . . ,k,
(g) bFi (x(·),x(·)) > , i = , . . . , r; bgj (x(·),x(·))� , j = , . . . ,m; bhl (x(·),x(·))� ,

l = , . . . ,k.
Then x(·) is efficient in problem (MVP).

Proof Suppose, contrary to the result, that x(·) is not efficient in problem (MVP). Then
there exists x̃(·) ∈ �(�t,t ) such that

F
(̃
x(·)) ≤ F

(
x(·)).

Thus, for every i = , . . . , r,

Fi(̃x(·))� Fi(x(·)), ()

but for at least one i∗,

Fi∗ (̃x(·)) < Fi∗(x(·)). ()

Since hypotheses (a)-(e) are fulfilled, therefore, by Definition ., the following inequali-
ties

bFi
(
x(·),x(·))�Fi

(
Fi(x(·)) – Fi(x(·)))

>
∫

γt,t

{〈
η
(
πx(t),πx(t)

)
,
∂f iα
∂x

(
πx(t)

)〉

+
〈
Dγ η

(
πx(t),πx(t)

)
,
∂f iα
∂xγ

(
πx(t)

)〉}
dtα , ()

and

bgj
(
x(·),x(·))�gj

(〈
μαj(·), gj

(
x(·))〉 – 〈

μαj(·), gj
(
x(·))〉)

�
∫

γt,t

{〈
η
(
πx(t),πx(t)

)
,
〈
μαj(t),

∂gj

∂x
(
πx(t)

)〉〉

+
〈
Dγ η

(
πx(t),πx(t)

)
,
〈
μαj(t),

∂gj

∂xγ

(
πx(t)

)〉〉}
dtα , ()
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and

bhl
(
x(·),x(·))�hl

(〈
ξαl(·),hl

(
πx(·)

)〉
–

〈
ξαl(·),hl

(
πx(t)

)〉)
�

∫
γt,t

{〈
η
(
πx(t),πx(t)

)
,
〈
ξαl(t),

∂hl

∂x
(
πx(t)

)〉〉

+
〈
Dγ η

(
πx(t),πx(t)

)
,
〈
ξαl(t),

∂hαl

∂xγ

(
πx(t)

)〉〉}
dtα ()

are satisfied for all x(·) ∈ �(�t,t ). Hence, they are also satisfied for x(·) = x̃(·).
Using hypotheses (d) and (f ) together with () and (), we get, for every i = , . . . , r,

bFi
(̃
x(·),x(·))�Fi

(
Fi(̃x(·)) – Fi(x(·)))�  ()

but for at least one i∗,

bFi
(̃
x(·),x(·))�Fi

(
Fi∗ (̃x(·)) – Fi∗(x(·))) < . ()

Combining relation () for x(·) = x̃(·) together with () and (), we obtain, for every
i = , . . . , r,

∫
γt,t

{〈
η
(
π̃x(t),πx(t)

)
,
∂f iα
∂x

(
πx(t)

)〉
+

〈
Dγ η

(
π̃x(t),πx(t)

)
,
∂f iα
∂xγ

(
πx(t)

)〉}
dtα < . ()

Multiplying each inequality above by λi, i = , . . . , r, and then adding both sides of the
obtained inequalities, we get

∫
γt,t

{〈
η
(
π̃x(t),πx(t)

)
,
〈
λ,

∂fα
∂x

(
πx(t)

)〉〉

+
〈
Dγ η

(
π̃x(t),πx(t)

)
,
〈
λ,

∂fα
∂xγ

(
πx(t)

)〉〉}
dtα

< . ()

Using x̃(·) ∈ �(�t,t ) together with the necessary optimality conditions () and (), we
get, for every j = , . . . ,m,

〈
μαj(t), gj

(
π̃x(t)

)〉
–

〈
μαj(t), gj

(
πx(t)

)〉
� .

By assumption, we have

�gj
(〈
μαj(t), gj

(
π̃x(t)

)〉
–

〈
μαj(t), gj

(
πx(t)

)〉)
� .

Since bgj (x(·),x(·))� , j = , . . . ,m, then

bgj
(̃
x(·),x(·))�gj

(〈
μαj(·), gj

(
π̃x(·)

)〉
–

〈
μαj(·), gj

(
πx(·)

)〉)
� . ()
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Combining () for x(·) = x̃(·) and (), we have, for every j = , . . . ,m,
∫

γt,t

{
η

〈(
π̃x(t),πx(t)

)
,
〈
μαj(t),

∂gj

∂x
(
πx(t)

)〉〉

+
〈
Dγ η

(
π̃x(t),πx(t)

)
,
〈
μαj(t),

∂gj

∂xγ

(
πx(t)

)〉〉}
dtα

� .

Adding both sides of the inequalities above, we obtain
∫

γt,t

{
η

〈(
π̃x(t),πx(t)

)
,
〈
μα(t),

∂g
∂x

(
πx(t)

)〉〉

+
〈
Dγ η

(
π̃x(t),πx(t)

)
,
〈
μα(t),

∂g
∂xγ

(
πx(t)

)〉〉}
dtα

� . ()

Using x̃(·) ∈ �(�t,t ) and x(·) ∈ �(�t,t ) together with hypothesis (f ) and having inmind
that bhl (x(·),x(·))� , l = , . . . ,k, we get

bhl
(̃
x(t),x(t)

)
�hl

(〈
ξαj(t),hl

(
π̃x(t)

)〉
–

〈
ξαj(t),hl

(
πx(t)

)〉)
� . ()

Combining () with x(·) = x̃(·) and (), we have, for every l = , . . . ,k,

∫
γt,t

{〈
η
(
π̃x(t),πx(t)

)
,
〈
ξαl(t),

∂hl

∂x
(
πx(t)

)〉〉

+
〈
Dγ η

(
π̃x(t),πx(t)

)
,
〈
ξαl(t),

∂hαl

∂xγ

(
πx(t)

)〉〉}
dtα

� .

Adding both sides of the inequalities above, we obtain
∫

γt,t

{〈
η
(
π̃x(t),πx(t)

)
,
〈
ξα(t),

∂h
∂x

(
πx(t)

)〉〉

+
〈
Dγ η

(
π̃x(t),πx(t)

)
,
〈
ξα(t),

∂hα

∂xγ

(
πx(t)

)〉〉}
dtα

� . ()

Adding both sides of inequalities (), (), (), we get
∫

γt,t

{〈
η
(
π̃x(t),πx(t)

)
,
〈
λ,

∂fα
∂x

(
πx(t)

)〉
+

〈
μα(t),

∂g
∂x

(
πx(t)

)〉

+
〈
ξα(t),

∂h
∂x

(
πx(t)

)〉〉
+

〈
Dγ η

(
π̃x(t),πx(t)

)
,
〈
λ,

∂fα
∂xγ

(
πx(t)

)〉

+
〈
μα(t),

∂g
∂xγ

(
πx(t)

)〉
+

〈
ξα(t),

∂hα

∂xγ

(
πx(t)

)〉〉}
dtα

< . ()
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We denote

Wα

(
πx(t),λ,μα(t), ξα(t)

)
=

〈
λ,

∂fα
∂x

(
πx(t)

)〉

+
〈
μα(t),

∂g
∂x

(
πx(t)

)〉
+

〈
ξα(t),

∂h
∂xγ

(
πx(t)

)〉
. ()

Hence, () yields

∫
γt,t

{〈
η
(
π̃x(t),πx(t)

)
,
∂W
∂x

(
πx(t),λ,μα(t), ξα(t)

)〉

+
〈
Dγ η

(
π̃x(t),πx(t)

)
,
∂W
∂xγ

(
πx(t),λ,μα(t), ξα(t)

)〉}
dtα

< . ()

Using the following relation

〈
Dγ η

(
π̃x(t),πx(t)

)
,
∂W
∂xγ

(
πx(t),λ,μα(t), ξα(t)

)〉

=Dγ

〈
η
(
π̃x(t),πx(t)

)
,
∂W
∂xγ

(
πx(t),λ,μα(t), ξα(t)

)〉

–
〈
η
(
π̃x(t),πx(t)

)
,Dγ

(
∂W
∂xγ

)(
πx(t),λ,μα(t), ξα(t)

)〉

in inequality (), we get

∫
γt,t

{〈
η
(
πx(t),πx(t)

)
,
∂W
∂xα

(
πx(t),λ,μα(t), ξα(t)

)〉

+Dγ

〈
η
(
πx(t),πx(t)

)
,
∂W
∂xγ

(
πx(t),λ,μα(t), ξα(t)

)〉

–
〈
η
(
πx(t),πx(t)

)
,Dγ

(
∂W
∂xγ

)(
πx(t),λ,μα(t), ξα(t)

)〉}
dtα

< . ()

By Euler-Lagrange PDE (), it follows that

∫
γt,t

Dγ

〈
η
(
π̃x(t),πx(t)

)
,
∂W
∂xγ

(
πx(t),λ,μα(t), ξα(t)

)〉
dtα < . ()

For α = , . . . ,p, γ = , . . . ,p, we denote

Qγ
α (t) =

〈
η
(
πx(t),πx(t)

)
,
∂W
∂xγ

(
πx(t),λ,μα(t), ξα(t)

)〉
, ()

and

I =
∫

γt,t

DγQγ
α (t)dt

α . ()
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Combining (), () and (), we get

I =
∫

γt,t

DγQγ
α (t)dt

α < . ()

According to Lemma ., it follows that there existsQ(t) withQ(t) =  andQ(t) =  such
that

DγQγ
α (t) =DαQ(t). ()

Therefore, by () and (), we have

I =
∫

γt,t

DαQ(t)dtα =Q(t) –Q(t) = , ()

contradicting (). This means that x(·) is efficient in problem (MVP), and this completes
the proof of the theorem. �

Theorem . Let x(·) ∈ �(�t,t ) be a feasible solution in the considered multitime mul-
tiobjective variational problem (MVP), and let the necessary optimality conditions ()-()
be satisfied at x(·). Further, assume that hypotheses (a)-(g) in Theorem . are fulfilled.
If λ > , then x(·) is properly efficient in problem (MVP).

Proof The proof follows in a manner similar to that of Theorem .. �

4 Mond-Weir type duality
In this section, consider the vector of path-independent curvilinear functionals defined
by

F
(
y(·)) = ∫

γt,t

fα
(
πy(t)

)
dtα =

(
F(y(·)), . . . ,Fr(y(·))),

and define the following multiobjective dual problem in the sense of Mond-Weir for the
considered multitime multiobjective variational problem (MVP):

minF
(
y(·)), subject to〈

λ,
∂fα
∂x

(
πy(t)

)〉
+

〈
μα(t),

∂g
∂x

(
πy(t)

)〉
+

〈
ξα(t),

∂h
∂x

(
πy(t)

)〉

–Dγ

(〈
λ,

∂fα
∂xγ

(
πy(t)

)〉
+

〈
μα(t),

∂g
∂xγ

(
πy(t)

)〉
+

〈
ξα(t),

∂h
∂xγ

(
πy(t)

)〉)

= ,〈
μα(t), g(πy(t)

〉
+

〈
ξα(t),h

(
πy(t)

)〉
� , t ∈ �t,t ,α = , . . . ,p,

y(t) = y, y(t) = y,

λ ≥ , 〈λ, e〉 = , μα(t)� , t ∈ �t,t ,α = , . . . ,p,

(MWDP)

where e = (, . . . , ) ∈R
r and yγ (t) = ∂y

∂tγ (t), γ = , . . . ,p, are partial velocities.
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Let �MW (�t,t ) be the set of all feasible solutions (y(·), yγ (·),λ,μ(·), ξ (·)) in the Mond-
Weir type dual problem (MWDP), that is,

�MW (�t,t ) =
{(
y(t),λ,μ(t), ξ (t)

)
: t ∈ �t,t , y(t) ∈ C∞(�t,t ,M),λ ∈ R

r ,

μ(t) : �t,t →R
msp, ξ (t) :�t,t →R

msp

verifying the constraints of (MWDP)
}
.

Let Y = {y(t) ∈ C∞(�t,t ,M) : (y(t),λ,μ(t), ξ (t)) ∈ �MW (�t,t )}.

Theorem . (Weak duality) Consider x(·) to be a feasible solution of problem (MVP) and
(y(·),λ,μ(·), ξ (·)) to be a feasible solution of problem (MWDP).
Suppose that the following conditions are satisfied:
(a) Fi(y(·)), i = , . . . , r, is univex at y(·) on �(�t,t )∪ Y with respect to �Fi , η, and bFi ;
(b) 〈μα(·), g(πy(·))〉 + 〈ξα(·),h(πy(·))〉 is univex at y(·) on �(�t,t )∪ Y with respect to �,

η, and b;
(c) a <  �⇒ �Fi (a) < , i = , . . . , r, and �Fi () = ;
(d) a�  �⇒ �(a)� ;
(e) bFi (x(·), y(·)) > , i = , . . . , r.
Then the inequality F(x(·)) < F(y(·)) is false.

Proof Suppose Fi(x(·))≤ Fi(y(·)) for all i = , . . . , r. We obtain

�Fi
(
Fi(x(·)) – Fi(y(·))) < , i = , . . . , r, ()

and using hypothesis (a) and Definition ., we get

bFi
(
x(t), y(t)

)
�Fi

(
Fi(x(·)) – Fi(y(·))) > ∫

γt,t

{〈
η
(
πx(t),πy(t)

)
,
∂f iα
∂x

(
πy(t)

)〉

+
〈
Dγ η

(
πx(t),πy(t)

)
,
∂f iα
∂xγ

(
πy(t)

)〉}
dtα . ()

We multiply () by λi and make the sum from i =  to i = r, obtaining

r∑
i=

λibFi
(
x(t), y(t)

)
�Fi

(
Fi(x(·)) – Fi(y(·)))

�
∫

γt,t

{〈
η
(
πx(t),πy(t)

)
,
〈
λ,

∂fα
∂x

(
πy(t)

)〉〉

+
〈
Dγ η

(
πx(t),πy(t)

)
,
〈
λ,

∂fα
∂xγ

(
πy(t)

)〉〉}
dtα . ()

According to hypothesis (c), () and () imply

 >
∫

γt,t

{〈
η
(
πx(t),πy(t)

)
,
〈
λ,

∂fα
∂x

(
πy(t)

)〉〉

+
〈
Dγ η

(
πx(t),πy(t)

)
,
〈
λ,

∂fα
∂xγ

(
πy(t)

)〉〉}
dtα . ()
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From the feasibility of x(·) in the considered multitime multiobjective variational prob-
lem (MVP), it follows that

〈
μα(t), g

(
πx(t)

)〉
+

〈
ξα(t),h

(
πx(t)

)〉
� , ()

while the feasibility of (y(·), yγ (·),λ,μ(·), ξ (·)) in the considered multitime multiobjective
variational problem (MWDP) gives

〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉
� . ()

Combining () and (), we obtain

〈
μα(t), g

(
πx(t)

)〉
+

〈
ξα(t),h

(
πx(t)

)〉
–

[〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉]
� . ()

According to hypothesis (d), () implies

�
(〈
μα(t), g

(
πx(t)

)〉
+

〈
ξα(t),h

(
πx(t)

)〉
–

[〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉])
� .

But b(x(t), y(t))� , by consequence, the inequality above gives

b
(
x(t), y(t)

)
�

(〈
μα(t), g

(
πx(t)

)〉
+

〈
ξα(t),h

(
πx(t)

)〉
–

[〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉])
� . ()

Using hypothesis (b) together with Definition . and (), we get that the inequality

∫
γt,t

{〈
η
(
πx(t),πy(t)

)
,
〈
μα(t),

∂g
∂y

(
πy(t)

)〉
+

〈
ξα(t),

∂h
∂y

(
πy(t)

)〉〉

+
〈
Dγ η

(
πx(t),πy(t)

)
,
〈
μα(t),

∂g
∂yγ

(
πy(t)

)〉
+

〈
ξα(t),

∂hα

∂yγ

(
πy(t)

)〉〉}
dtα

�  ()

holds. For each α = , . . . ,p, we introduce

Vα

(
πy(t),λ,μ(t), ξ (t)

)
=

〈
λ, fα

(
πy(t)

)〉
+

〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉
. ()

Adding both sides of () and () and taking into account (), we obtain

∫
γt,t

{〈
η
(
πx(t),πy(t)

)
,
∂Vα

∂y
(
πy(t),λ,μ(t), ξ (t)

)〉

+
〈
Dγ η

(
πx(t),πy(t)

)
,
∂Vα

∂yγ

(
πy(t),λ,μ(t), ξ (t)

)〉}
dtα

< . ()
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Using the relation

〈
Dγ η

(
πx(t),πy(t)

)
,
∂Vα

∂yγ

(
πy(t),λ,μ(t), ξ (t)

)〉

=Dγ

〈
η
(
πx(t),πy(t)

)
,
∂Vα

∂yγ

(
πy(t),λ,μ(t), ξ (t)

)〉

–
〈
η
(
πx(t),πy(t)

)
,Dγ

(
∂Vα

∂yγ

)(
πy(t),λ,μ(t), ξ (t)

)〉
()

together with the constraints of (MWDP), we obtain from () that the inequality

∫
γt,t

Dγ

〈
η
(
πx(t),πy(t)

)
,
∂Vα

∂yγ

(
πy(t),λ,μ(t), ξ (t)

)〉
dtα <  ()

holds. According to Lemma ., we obtain that the above integral is equal to , contradict-
ing (). This means that the inequality F(x(·)) < F(y(·)) is false and completes the proof
of the theorem. �

If we impose some stronger assumption on the objective function, then we can prove a
stronger result.

Theorem . (Strong duality) Let x(·) be a normal efficient solution of (MVP). Then there
exist a vector λ in R

r and smooth matrix functions μ(t) = (μα(t)) : �t,t → R
msp and

ξ (t) = (ξα(t)) : �t,t → R
ksp such that (x(·),λ,μ(·), ξ (·)) is feasible in the Mond-Weir mul-

titime multiobjective variational problem (MWDP) and the objective functions of (MVP)
and (MWDP) are equal at these points. If also all the hypotheses of Theorem . are satis-
fied, and λ > , then (x(·),λ,μ(·), ξ (·)) is a properly efficient solution in (MWDP).

Proof Let x(·) be a normal efficient solution in the considered multitime multiobjective
variational problem (MVP). Then, by Theorem ., there exist the vector λ ∈ R

r and the
smooth matrix functions μ(t) = (μα(t)) : �t,t → R

msp, ξ (t) = (ξα(t)) : �t,t → R
ksp such

that conditions ()-() are fulfilled. Therefore, (x(·),λ,μ(·), ξ (·)) is feasible in (MWDP).
Thus, by weak duality, it follows that (x(·),λ,μ(·), ξ (·)) is an efficient solution in (MWDP).
We shall prove that (x(·),λ,μ(·), ξ (·)) is a properly efficient solution in (MWDP) by

the method of contradiction. Suppose that (x(·),λ,μ(·), ξ (·)) is not so. Then there exists
(̃y(·), λ̃, μ̃(·), ξ̃ (·)) feasible in (MWDP) satisfying

∫
γt,t

f iα
(
πx(t)

)
dtα >

∫
γt,t

f iα
(
π̃y(t)

)
dtα

for some i such that the following inequality

∫
γt,t

f iα
(
πx(t)

)
dtα –

∫
γt,t

f iα
(
π̃y(t)

)
dtα

>M
(∫

γt,t

f jα
(
π̃y(t)

)
dtα –

∫
γt,t

f jα
(
πx(t)

)
dtα

)
()
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holds for every scalarM >  and for each j �= i satisfying
∫

γt,t

f jα
(
π̃y(t)

)
dtα >

∫
γt,t

f jα
(
πx(t)

)
dtα . ()

Assume that r � , and then we set

M = (r – )max
i,j

λj

λi
, i �= j, i, j = , . . . , r. ()

Combining () and (), we get that, for each j �= i,
∫

γt,t

f iα
(
πx(t)

)
dtα –

∫
γt,t

f iα
(
π̃y(t)

)
dtα

> (r – )max
i,j

λj

λi

(∫
γt,t

f jα
(
π̃y(t)

)
dtα –

∫
γt,t

f jα
(
πx(t)

)
dtα

)
.

Thus, () gives

λi

r – 

∫
γt,t

f iα
(
πx(t)

)
dtα –

∫
γt,t

f iα
(
π̃y(t)

)
dtα

> λj

(∫
γt,t

f jα
(
π̃y(t)

)
dtα –

∫
γt,t

f jα
(
πx(t)

)
dtα

)
.

Adding both sides of the inequalities above with respect to j and taking into account that
j �= i, we obtain

λi

(∫
γt,t

f iα
(
πx(t)

)
dtα –

∫
γt,t

f iα
(
π̃y(t)

)
dtα

)

>
∑
j �=i

λj

(∫
γt,t

f jα
(
π̃y(t)

)
dtα –

∫
γt,t

f jα
(
πx(t)

)
dtα

)
.

Thus, () implies that the following inequality

λi

∫
γt,t

f iα
(
πx(t)

)
dtα +

∑
j �=i

∫
γt,t

f jα
(
π̃y(t)

)
dtα

> λi

∫
γt,t

f iα
(
π̃y(t)

)
dtα +

∑
j �=i

λj

∫
γt,t

f jα
(
π̃y(t)

)
dtα

holds, which is a contradiction to the efficiency of x(·) in problem (MVP). This means that
(x(·),λ,μ(·), ξ (·)) is a properly efficient solution in problem (MWDP). Hence, the proof of
the theorem is complete. �

Proposition. Let (y(·),λ,μ(·), ξ (·)) be a feasible solution in problem (MWDP)with λ > 
and y(·) ∈ �(�t,t ). Assume that hypotheses (a)-(d) of Theorem . are satisfied and that
condition (e) holds true for each x(·) ∈ �(�t,t ).
Then y(·) is a properly efficient solution in the considered multitime multiobjective vari-

ational problem (MVP).
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Proof The efficiency of y(·) in problem (MVP) follows from theweak duality theorem. The
proof of proper efficiency of y(·) in (MVP) is similar to that of Theorem .. �

Theorem . Let (y(·),λ,μ(·), ξ (·)) be a properly efficient solution in problem (MWDP)
and y(·) ∈ �(�t,t ). Assume that hypotheses (a)-(d) of Theorem . are satisfied and that
condition (e) holds true for each x(·) ∈ �(�t,t ).
Then y(·) is a properly efficient solution in the considered multitime multiobjective vari-

ational problem (MVP).

Proof Proof follows directly from Proposition .. �

5 Wolfe type duality
In this section, consider the functional

ϕ
(
y(·),μ(·), ξ (·)) = ∫

γt,t

{
fα

(
πy(t)

)
+

[〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉]
e
}
dtα

and the associated multitime multiobjective variational dual problem of (MVP) in the
sense of Wolfe, designated by (WDP):

minϕ
(
y(·),μ(·), ξ (·))

subject to〈
λ,

∂fα
∂y

(
πy(t)

)〉
+

〈
μα(t),

∂g
∂y

(
πy(t)

)〉
+

〈
ξα(t),

∂h
∂y

(
πy(t)

)〉

–Dγ

(〈
λ,

∂fα
∂yγ

(
πy(t)

)〉
+

〈
μα(t),

∂g
∂yγ

(
πy(t)

)〉
+

〈
ξα(t),

∂h
∂yγ

(
πy(t)

)〉)

= , t ∈ �t,t ,

y(t) = y, y(t) = y,

λ ≥ , 〈λ, e〉 = , μα(t)� , t ∈ �t,t ,α = , . . . ,p,

(WDP)

where e = (, . . . , )T ∈R
r and yγ (t) = ∂y

∂tγ (t), γ = , . . . ,p, are partial velocities.
Let�W (�t,t ) be the set of all feasible solutions (y(·), yγ (·),λ,μ(·), ξ (·)) in theWolfe type

dual problem (WDP), that is,

�W (�t,t ) =
{(
y(t),λ,μ(t), ξ (t)

)
: t ∈ �t,t , y(t) ∈ C∞(�t,t ,M),λ ∈R

r ,

μ(t) :�t,t →R
msp, ξ (t) :�t,t →R

msp

verifying the constraints of (WDP)
}
.

Consider YW = {y(t) ∈ C∞(�t,t ,M) : (y(t),λ,μ(t), ξ (t)) ∈ �W (�t,t )}.

Theorem. (Weak duality) Let x(·) and (y(·),λ,μ(·), ξ (·)) be feasible solutions in problem
(MVP) and its multitime multiobjective variational Wolfe dual problem (WDP), respec-
tively. Suppose that the following hypotheses are satisfied:
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(a)
∫
γt,t

{〈λ, fα(πy(t))〉 + 〈μα(t), g(πy(t))〉 + 〈ξα(t),h(πy(t))〉}dtα is strictly univex at point
y(·) on �(�t,t )∪ YW with respect to �, η and b,

(b) a < �⇒ �(a) <  and �() = ,
(c) b(x(·), y(·)) > .
Then the inequality F(x(·))≤ ϕ(y(·),μ(·), ξ (·)) is false.

Proof Let x(·) and (y(·), yγ (·),λ,μ(·), ξ (·)) be feasible solutions in the considered multitime
multiobjective variational problem (MVP) and themultitime variationalWolfe dual prob-
lem (WDP), respectively. Suppose, contrary to the result, that the inequality

F
(
x(·)) ≤ ϕ

(
y(·),μ(·), ξ (·)) ()

holds. Thus, by the definition of ϕ, we have

Fi(x(·))� ∫
γt,t

{
f iα

(
πy(t)

)
+

〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉}
dtα ()

for i = , . . . , r and

Fi∗(x(·)) < ∫
γt,t

{
f i

∗
α

(
πy(t)

)
+

〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉}
dtα ()

for some i∗ ∈ {, . . . , r}.
Multiplying () by λi, i = , . . . , r, and () by λi∗ , we obtain, respectively,

λiFi(x(·))� ∫
γt,t

{
λif iα

(
πy(t)

)
+ λi

[〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉]}
dtα ()

for i = , . . . , r and

λi∗Fi∗(x(·)) < ∫
γt,t

{
λi∗ f i

∗
α

(
πy(t)

)
+ λi∗

[〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉]}
dtα ()

for some i∗ ∈ {, . . . , r}.
Using the feasibility of x(·) in problem (MVP) together with the constraint of (WDP)

μα(t)� , we get

〈
μα(t), g

(
πx(t)

)〉
+

〈
ξα(t),h

(
πx(t)

)〉
� . ()

By (), () and (), it follows that

∫
γt,t

{
λif iα

(
πx(t)

)
+ λi

[〈
μα(t), g

(
πx(t)

)〉
+

〈
ξα(t),h

(
πx(t)

)〉]}
dtα

�
∫

γt,t

{
λif iα

(
πy(t)

)
+ λi

[〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉]}
dtα ()
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for i = , . . . , r and
∫

γt,t

{
λi∗ f i

∗
α

(
πx(t)

)
+ λi∗

[〈
μα(t), g

(
πx(t)

)〉
+

〈
ξα(t),h

(
πx(t)

)〉]}
dtα

<
∫

γt,t

{
λi∗ fα

(
πy(t)

)
+ λi∗

[〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉]}
dtα ()

for some i∗ ∈ {, . . . , r}.
Adding both sides of () and () and taking into account the constraint of (WDP)

〈λ, e〉 = , we obtain

∫
γt,t

〈
λ, fα

(
πx(t)

)〉
+

〈
μα(t), g

(
πx(t)

)〉
+

〈
ξα(t),h

(
πx(t)

)〉
dtα

<
∫

γt,t

{〈
λ, fα

(
πy(t)

)〉
+

〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉}
dtα . ()

By hypotheses (b) and (c), () implies

b
(
x(·), y(·))�(∫

γt,t

〈
λ, fα

(
πx(t)

)〉
+

〈
μα(t), g

(
πx(t)

)〉
+

〈
ξα(t),h

(
πx(t)

)〉
dtα

–
∫

γt,t

{〈
λ, fα

(
πy(t)

)〉
+

〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉}
dtα

)

< . ()

By Definition ., it follows

∫
γt,t

{〈
η
(
πx(t),πy(t)

)
,
〈
λ,

∂fα
∂y

(
πy(t)

)〉
+

〈
μα(t),

∂g
∂y

(
πy(t)

)〉

+
〈
ξα(t),

∂h
∂y

(
πy(t)

)〉〉
+

〈
Dγ η

(
πx(t),πy(t)

)
,
〈
λ,

∂fα
∂yγ

(
πy(t)

)〉

+
〈
μα(t),

∂g
∂yγ

(
πy(t)

)〉
+

〈
ξα(t),

∂hα

∂yγ

(
πy(t)

)〉〉}
dtα

< . ()

For each α = , . . . ,p, we introduce

Vα

(
πy(t),λ,μ(t), ξ (t)

)
=

〈
λ, fα

(
πy(t)

)〉
+

〈
μα(t), g

(
πy(t)

)〉
+

〈
ξα(t),h

(
πy(t)

)〉
. ()

Combining () and (), we obtain

∫
γt,t

{〈
η
(
πx(t),πy(t)

)
,
∂Vα

∂y
(
πy(t),λ,μ(t), ξ (t)

)〉

+
〈
Dγ η

(
πx(t),πy(t)

)
,
∂Vα

∂yγ

(
πy(t),λ,μ(t), ξ (t)

)〉}
dtα

< . ()
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The last part of the proof is similar to the proof of Theorem.. Thus, in a similarmanner
as in the proof of Theorem ., that is, by Lemma . we get a contradiction. Hence, the
inequality F(x(·)) < ϕ(y(·),λ,μ(·), ξ (·)) is false. �

Theorem . (Strong duality) Let x(·) be a normal efficient solution of (MVP). Then there
exist the vector λ ∈ R

r and the smooth matrix functions μ(t) = (μα(t)) : �t,t → R
msp and

ξ (t) = (ξα(t)) :�t,t →R
ksp such that (x(·),λ,μ(·), ξ (·)) is feasible in theWolfe dual problem

(WDP) and the objective functions of (MVP) and (WDP) are equal at these points. If also
all the hypotheses of Theorem . are satisfied, then (x(·),λ,μ(·), ξ (·)) is a properly efficient
solution in (WDP).

Proof Proof is similar to the proof of Theorem .. �

Proposition . Let (y(·),λ,μ(·), ξ (·)) be feasible in the Wolfe multitime multiobjective
variational problem (MWDP) and y(·) ∈ �(�t,t ). Further, assume that the following hy-
potheses are satisfied:
(a)

∫
γt,t

{〈λ, fα(πy(t))〉 + 〈μα(t), g(πy(t))〉 + 〈ξα(t),h(πy(t))〉}dtα is strictly univex at the
point y(·) on �(�t,t )∪ YW with respect to �, η and b,

(b) a < �⇒ �(a) <  and �() = ,
(c) b(x(·), y(·)) > .
Then y(·) is a properly efficient solution in problem (MVP).

Theorem . (Converse duality) Let (y(·),λ,μ(·), ξ (·)) be a properly efficient solution in
the Wolfe dual problem (WDP) and y(·) ∈ �(�t,t ). Further, assume that the following hy-
potheses are satisfied:
(a)

∫
γt,t

{〈λ, fα(πy(t))〉 + 〈μα(t), g(πy(t))〉 + 〈ξα(t),h(πy(t))〉}dtα is univex at the point y(·)
on �(�t,t )∪ YW with respect to �, η and b,

(b) a < �⇒ �(a) <  and �() = ,
(c) b(x(·), y(·)) > .
Then y(·) is a properly efficient solution in the considered multitime multiobjective vari-

ational problem (MVP).

6 Concluding remarks
In this research paper, a new class of nonconvex multitime variational problems has been
considered. We have defined the concept of univexity for a path-independent curvilinear
vector functional as a generalization of a vector-valued univex function. The so-called uni-
vex functions unify many various classes of generalized convex concepts in optimization
theory. Therefore, the sufficient optimality conditions for proper efficiency and several
duality theorems in the sense of Mond-Weir and in the sense of Wolfe, which have been
established in the paper, for a new class of nonconvexmultitimemultiobjective variational
problems extend adequate results already existing in optimization theory.
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