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Abstract
In this paper, we propose a new iteration method based on the hybrid steepest
descent method and Ishikawa-type method for seeking a solution of a variational
inequality involving a Lipschitz continuous and strongly monotone mapping on the
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1 Introduction and preliminaries
Let C be a nonempty closed and convex subset of a real Hilbert space H with the inner
product and induced norm ‖ · ‖. A mapping F of C into H is said to be monotone if

〈Fx – Fy,x – y〉 ≥  (.)

for all x, y ∈ C.
The variational inequality problem with respect to F and C is to find a point z ∈ C such

that

〈Fz, y – z〉 ≥  for all y ∈ C. (.)

Variational inequalities were initially investigated by Kinderlehrer and Stampacchia in
[], and have been widely studied by many authors ever since, due to the fact that they
cover as diverse disciplines as partial differential equations, optimization, optimal control,
mathematical programming, mechanics and finance (see [–]).
We know that if F is a k-Lipschitz continuous and η-strongly monotone mapping, i.e.,

F enjoys the following properties:

‖Fx – Fy‖ ≤ k‖x – y‖ and 〈Fx – Fy,x – y〉 ≥ η‖x – y‖
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for all x, y ∈ C, where k and η are fixed positive numbers, then (.) has a unique solution.
It is well known that (.) is equivalent to the fixed point equation

z = PC
[
(I –μF)z

]
, (.)

where PC stands for the metric projection from H onto C and μ is an arbitrarily pos-
itive number. Consequently, the well-known iterative procedure, the projected gradient
method (PGM) [–], can be used to solve (.). PGM generates an iterative sequence by
the recursion

x ∈ C and xn+ = PC
[
(I –μF)xn

]
, n≥ . (.)

When F is a k-Lipschitz continuous and η-strongly monotonemapping, asμ ∈ (, ηk ), the
sequence {xn} generated by (.) converges strongly to a unique solution of (.).
The projected gradient method (.) involves the metric projection PC . In order to

reduce the complexity caused by PC , Yamada [] introduced a hybrid steepest descent
method (HSDM) for solving (.). By assuming that C =

⋂N
i= Fix(Ti) �=∅, where Fix(Ti) =

{x ∈H : x = Tix} and Ti is a nonexpansive mapping on H , i.e.,

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ H , Yamada proposed the following iterative algorithm:

x ∈H , xn+ = (I – λnμF)T[n]xn, (.)

where T[n] = TnmodN , taking values in {, , . . . ,N},μ ∈ (, ηk ) and {λn} is a sequence of real
numbers in (, ), and proved that, under the following conditions:
(L) limn→∞ λn = ,
(L)

∑∞
n= λn =∞,

(L)
∑∞

n= |λn – λn+N | < ∞, and
(L) C = Fix(TT · · ·TN–TN ) = Fix(TNT · · ·TN–TN–) = · · · = Fix(TT · · ·TNT),

the sequence {xn} generated by (.) converges strongly to a unique solution of (.). The
algorithms and convergence results of Yamada in [] have been improved and extended to
a finite or an infinite family of nonexpansive mappings; see, for example, Xu and Kim [],
Zeng [], Liu andCai [], and Iemoto andTakahashi [].However, all such improvements
and extensions are confined to a finite or an infinite family of nonexpansive mappings.
In this paper, we propose a new iterative algorithm based on a combination of the pro-

jected gradient method for variational inequalities with the Ishikawa-type method for
fixed point problems to solve (.) with C =

⋂N
i= Fix(Ti), where {Ti}Ni= is a finite family

of Li-Lipschitz continuous and quasi-pseudocontractive mappings on �, where � is a
nonempty closed and convex subset of H , while F : � → H is a k-Lipschitz continuous
and η-strongly monotone mapping.
Given a stating point x ∈ �, the iteration is generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ �,

yni = ( – αni)xn + αniTixn, i = , , . . . ,N ,

xn+ = P�[(I – λnμF)(βnxn +
∑N

i= βniTiyni)], n≥ ,

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/218


Zhou and Wang Journal of Inequalities and Applications 2014, 2014:218 Page 3 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/218

where {βni : i = , , , . . . ,N} ⊂ (a,b)⊂ (, ), {λn} ⊂ (, ) satisfy the following conditions:
(i)

∑N
i= βni = ;

(ii) limn→∞ λn = ,
∑∞

n= λn =∞;
(iii)

∑N
i= βni ≤min{αni : i = , , . . . ,N} ≤max{αni : i = , } ≤ α < √

+L+
, ∀n≥ ,

where L :=max{Li : i = , , . . . ,N}, while μ is a fixed constant satisfying μ ∈ (, ηk ).
By virtue of new analysis techniques, we prove that the sequence generated by (.) con-

verges strongly to a unique solution of (.) with C =
⋂N

i= Fix(Ti).
In order to reach our goal, we need the following conceptions and facts.
Let D be a nonempty subset of a real Hilbert space H . A mapping T : D → H is called

κ-strictly pseudocontractive if and only if there exists a constant κ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥∥(I – T)x – (I – T)y

∥∥ (.)

for all x, y ∈ D. When κ = , T is said to be pseudocontractive.
T is said to be quasi-pseudocontractive if and only if Fix(T) �=∅ and

‖Tx – y‖ ≤ ‖x – y‖ + ∥∥(I – T)x
∥∥ (.)

for all x ∈D but y ∈ Fix(T).
We remark that inequalities (.) and (.) are equivalent to the inequalities

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – κ


∥∥(I – T)x – (I – T)y

∥∥ for all x, y ∈D (.)

and

〈Tx – y,x – y〉 ≤ ‖x – y‖ (.)

for all x ∈D but y ∈ Fix(T), respectively.
We note that if T is κ-strictly pseudocontractive, then it is Lipschitz continuous and

pseudocontractive; if T is a pseudocontraction with a fixed point, then T is a quasi-
pseudocontraction; however, the converse may be not true.
Recall that themetric (nearest point) projection fromH onto a nonempty closed convex

subset E ofH is defined as follows: for each point x ∈H , there exists a unique point PEx ∈ E
with the property

‖x – PEx‖ ≤ ‖x – y‖ for all y ∈ E,

that is, for any point x ∈ H , x = PEx if and only if x ∈ E and ‖x – x‖ = inf{‖x – y‖ : y ∈ E}.

Lemma . [, ] Let PE : H → E be a metric projection from H on a nonempty closed
convex subset E of H . Then the following conclusions hold true:

(p) Given x ∈H and z ∈ E. Then z = PEx if and only if there holds the inequality

〈x – z, y – z〉 ≤ , ∀y ∈ E. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/218
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(p)

〈PEx – PEy,x – y〉 ≥ ‖PEx – PEy‖, ∀x, y ∈H , (.)

in particular, one has

‖PEx – PEy‖ ≤ ‖x – y‖, ∀x, y ∈H . (.)

Lemma . [, ]
(i) ‖x± y‖ = ‖x‖ ± 〈x, y〉 + ‖y‖ for all x, y ∈H ;
(ii) ‖( – t)x + ty‖ = ( – t)‖x‖ + t‖y‖ – t( – t)‖x – y‖ for all x, y ∈H and t ∈R;
(iii) for all xi ∈H and αi ∈ [, ] (i = , , . . . ,n) such that

∑n
i= αi = , the following

equality holds:

∥∥∥∥∥
n∑
i=

αixi

∥∥∥∥∥


=
n∑
i=

αi‖xi‖ –
∑

≤i<j≤n

αiαj‖xi – xj‖.

Lemma . [] Let � be a nonempty subset of H and F : � → H be a k-Lipschitz con-
tinuous and η-strongly monotone mapping. For each λ ∈ (, ] and μ ∈ (, ηk ), write
Tλ := (I – λμF) and τ :=  –

√
 –μ(η –μk) ∈ (, ). Then we have

∥∥Tλx – Tλy
∥∥ ≤ ( – λτ )‖x – y‖

for all x, y ∈ �.

Lemma . [] Let E be a nonempty closed convex subset of a real Hilbert space H and T :
E → E be L-Lipschitz continuous and quasi-pseudocontractive. Then Fix(T) is a nonempty
closed convex subset of E, and therefore PFix(T)x is well defined for each x ∈H .

Lemma . [] Let E be a nonempty closed convex subset of a real Hilbert space H and
T : E → E be a demicontinuous pseudocontraction from E into itself.Then Fix(T) is a closed
convex subset of E and I – T is demiclosed at zero.

Lemma. [] Let {an} be a sequence of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+ for all i ∈ N. Then there exists a nondecreasing sequence
{mk} ⊂N such that mk → ∞ and the following properties are fulfilled:

amk ≤ amk+ and ak ≤ amk+

for all sufficiently large numbers k ∈ N.

Lemma . [] Let {sn} be a sequence of nonnegative real numbers satisfying the following
relation:

sn+ ≤ ( – tn)sn + tnσn, n≥ n,

where {tn} ⊂ (, ) and {σn} ⊂ R satisfy the following conditions: limn→∞ tn = ,
∑∞

n= tn =
∞, and limn→∞σn ≤ . Then sn →  as n→ ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/218
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2 Main results
Theorem . Let � be a nonempty, closed and convex subset of a real Hilbert space H .
Let T,T, . . . ,TN : � → � be Li-Lipschitz continuous and quasi-pseudocontractive with
Lipschitz constants L,L, . . . ,LN , respectively. Let F : � → H be a k-Lipschitz continuous
and η-strongly monotone mapping. Assume thatF =

⋂N
i= Fix(Ti) �=∅ and I –Ti are demi-

closed at zero for i = , , . . . ,N . Let {xn} be defined by (.). Then {xn} converges strongly to
a unique solution x∗ of (.), where x∗ = PF (I –μF)x∗.

Proof First of all, we show that PFx is well defined for each x ∈ H . Indeed, in view of
Lemma ., we know that Fix(Ti) are closed convex for i = , , . . . ,N , and hence F is also
nonempty, closed and convex; consequently, PFx is well defined for any x ∈ H . Secondly,
we show that there exists a unique x∗ ∈F such that

x∗ = PF (I –μF)x∗. (.)

Indeed, in view of Lemma ., we know that I – μF : � → H is a contraction, and hence
PF (I –μF) :� → � is also a contraction on �. Then we use the Banach contraction map-
ping principle to deduce (.).
Write un = βnxn +

∑N
i= βniTiyni. Then, ∀p ∈ F , by virtue of Lemma ., (.) and (.),

we have that

‖yni – p‖

=
∥∥( – αni)(xn – p) + αni(Tixn – p)

∥∥

= ( – αni)‖xn – p‖ + αni‖Tixn – p‖ – αni( – αni)‖xn – Tixn‖

≤ ( – αni)‖xn – p‖ + αni
[‖xn – p‖ + ‖xn – Tixn‖

]
– αni( – αni)‖xn – Tixn‖

= ‖xn – p‖ + α
ni‖xn – Tixn‖ (.)

for i = , , . . . ,N and all n≥ .
Furthermore, from (.) and Lemma ., we get that

‖yni – Tiyni‖

=
∥∥( – αni)(xn – Tiyni) + αni(Tixn – Tiyni)

∥∥

= ( – αni)‖xn – Tiyni‖ + αni‖Tixn – Tiyni‖ – αni( – αni)‖xn – Tixn‖

≤ ( – αni)‖xn – Tiyni‖ + αniL‖xn – yni‖ – αni( – αni)‖xn – Tixn‖

= ( – αni)‖xn – Tiyni‖ + α
niL

‖xn – Tixn‖ – αni( – αni)‖xn – Tixn‖

= ( – αni)‖xn – Tiyni‖ – αni
(
 – αni – Lα

ni
)‖xn – Tixn‖ (.)

for i = , , . . . ,N and all n≥ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/218
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At this point, we can estimate ‖un – p‖. In fact, from Lemma ., (.), (.) and con-
ditions (i) and (iii) in (.), we have

‖un – p‖

=

∥∥∥∥∥βn(xn – p) +
N∑
i=

βni(Tiyni – p)

∥∥∥∥∥


= βn‖xn – p‖ +
N∑
i=

βni
∥∥(Tiyni – p)

∥∥ –
N∑
i=

βnβni‖xn – Tiyni‖

–
∑

≤i<j≤N

βniβnj‖Tiyni – Tjynj‖

≤ βn‖xn – p‖ +
N∑
i=

βni
[‖yni – p‖ + ‖yni – Tiyni‖

]

–
N∑
i=

βnβni‖xn – Tiyni‖ –
∑

≤i<j≤N

βniβnj‖Tiyni – Tjynj‖

≤ βn‖xn – p‖ +
N∑
i=

βni‖xn – p‖ +
N∑
i=

βni( – αni)‖xn – Tiyni‖

–
N∑
i=

βniαni
(
 – αni – Lα

ni
)‖xn – Tixn‖ –

N∑
i=

βnβni‖xn – Tiyni‖

= ‖xn – p‖ –
N∑
i=

βniαni
(
 – αni – Lα

ni
)‖xn – Tixn‖

+
N∑
i=

βni( – αni – βn)‖xn – Tiyni‖

≤ ‖xn – p‖ –
N∑
i=

βniαni
(
 – αni – Lα

ni
)‖xn – Tixn‖

≤ ‖xn – p‖ –
( N∑

i=

βni

)(
 – α – Lα)‖xn – Tixn‖

≤ ‖xn – p‖ – (Na)
(
 – α – Lα)‖xn – Tixn‖ (.)

for all i = , , . . . ,N and all n ≥ .
Note that  – α – Lα > , it follows from (.) that

‖un – p‖ ≤ ‖xn – p‖ for all n ≥ . (.)

In particular, for x∗ = PF (I –μF)x∗ ∈F , we have

∥∥un – x∗∥∥ ≤ ∥∥xn – x∗∥∥ for all n≥ . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/218
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From Lemmas ., . and (.), we can prove that {xn} is bounded. Indeed, we have
∥∥xn+ – x∗∥∥ =

∥∥P�

[
(I – λnμF)un

]
– x∗∥∥ =

∥∥P�

[
(I – λnμF)un

]
– P�x∗∥∥

≤ ∥∥(I – λnμF)un – x∗∥∥
=

∥∥(I – λnμF)un – (I – λnμF)x∗ – λnμFx∗∥∥
=

∥∥(I – λnμF)un – (I – λnμF)x∗∥∥ + λnμ
∥∥Fx∗∥∥

≤ ( – τλn)
∥∥un – x∗∥∥ +μλn

∥∥Fx∗∥∥
≤ ( – τλn)

∥∥un – x∗∥∥ + τλn
μ‖Fx∗‖

τ

≤ ( – τλn)
∥∥xn – x∗∥∥ + τλn

μ‖Fx∗‖
τ

≤max

{∥∥x – x∗∥∥, μ‖Fx∗‖
τ

}
:=M

for all n ≥ , and therefore {xn} is bounded; consequently, {yni}, {un} and {Fun} are all
bounded.
We next show that xn → x∗ (n→ ∞).
By virtue of Lemmas .-., (.) and (.), we have that

∥∥xn+ – x∗∥∥ =
∥∥P�

[
(I – λnμF)un

]
– x∗∥∥ ≤ ∥∥(I – λnμF)un – x∗∥∥

=
∥∥(I – λnμF)un – (I – λnμF)x∗ – λnμFx∗∥∥

=
∥∥(I – λnμF)un – (I – λnμF)x∗∥∥ + λ

nμ
∥∥Fx∗∥∥

+ μλn
〈
Fx∗, (I – λnμF)un – (I – λnμF)x∗〉

≤ ( – τλn)
∥∥un – x∗∥∥ + λ

nμ
∥∥Fx∗∥∥

+ μλn
〈
Fx∗,x∗ – un

〉
+ μλ

n
〈
Fx∗,Fun – Fx∗〉

= ( – τλn)
[∥∥xn – x∗∥∥ – (Na)

(
 – α – Lα)‖xn – Tixn‖

]
+ μλn

〈
Fx∗,x∗ – un

〉
+ μλ

n
〈
Fx∗,Fun

〉
– λ

nμ
∥∥Fx∗∥∥

≤ ( – τλn)
∥∥xn – x∗∥∥ – ( – τλn)C‖xn – Tixn‖

+ μλn
〈
Fx∗,x∗ – un

〉
+ μ∥∥Fx∗∥∥λ

n‖Fun‖
≤ ( – τλn)

∥∥xn – x∗∥∥ – ( – τλn)C‖xn – Tixn‖

+ μλn
〈
Fx∗,x∗ – un

〉
+Cλ


n (.)

for i = , , . . . ,N and all n ≥ , where C = (Na)( – α – Lα) and C = μ‖Fx∗‖×
sup{‖Fun‖ : n≥ } are fixed positive constants.
Set sn = ‖xn – x∗‖. Then (.) reduces to

sn+ – sn + τλnsn + ( – τλn)C‖xn – Tixn‖ ≤ μλn
〈
Fx∗,x∗ – un

〉
+Cλ


n (.)

for i = , , . . . ,N and all n≥ .
Now we consider two possible cases.

http://www.journalofinequalitiesandapplications.com/content/2014/1/218
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Case . {sn} is decreasing eventually, that is, there exists some integer n ≥  such that

sn+ ≤ sn for all n ≥ n.

In this case, we have limn→∞ sn exists.
Taking the limit in (.), noting that λn →  as n→ ∞, we get that

xn – Tixn →  as n→ ∞ (.)

for i = , , . . . ,N . It follows from (.) that

xn – yni →  as n→ ∞ (.)

for i = , , . . . ,N . Since Ti is Li-Lipschitz continuous, we have that

‖Tixn – Tiyni‖ ≤ Li‖xn – yni‖ (.)

for i = , , . . . ,N . Consequently, from (.)∼(.) we get that

‖un – xn‖ =
∥∥∥∥∥

N∑
i=

βni(xn – Tiyni)

∥∥∥∥∥
≤

N∑
i=

βni‖xn – Tiyni‖

≤
N∑
i=

βni‖xn – Tixn‖ +
N∑
i=

βni‖Tixn – Tiyni‖

≤ b
N∑
i=

‖xn – Tixn‖ + Lb
N∑
i=

‖xn – yni‖ → 

as n→ ∞, which derives that

lim
n→∞

〈
Fx∗,x∗ – un

〉
= lim

n→∞
〈
Fx∗,x∗ – xn

〉
. (.)

Assume that

lim
n→∞

〈
Fx∗,x∗ – xn

〉
= lim

k→∞
〈
Fx∗,x∗ – xnk

〉
. (.)

Without loss of generality, we can assume that xnk → x̂ weakly as k → ∞; then x̂ = Tix̂
for i = , , . . . ,N , by virtue of (.) and our assumption, and hence x̂ ∈ F . It follows from
(.) and (.) that

lim
n→∞

〈
Fx∗,x∗ – un

〉
=

〈
Fx∗,x∗ – x̂

〉 ≤ . (.)

Set tn = τλn and σn = μ
τ

〈Fx∗,x∗ – un〉 + C
τ

λn. Then (.) reduces to

sn+ ≤ ( – tn)sn + tnσn,

where limn→∞σn ≤ . Now Lemma . can be used to deduce sn →  as n→ ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/218
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Case . {sn} is not decreasing eventually, that is, there exists a subsequence {ni} of {n}
such that sni ≤ sni+ for all i ∈ N. By virtue of Lemma ., we know that there exists a
nondecreasing sequence {mk} ⊂ N such that mk → ∞, smk ≤ smk+ and sk ≤ smk+ for all
sufficiently large k ∈ N. In this case, we have smk+ – smk ≥  for large enough k ∈ N. It
follows from (.) that

lim
k→∞

(smk+ – smk ) = , (.)

lim
k→∞

(xmk – Tixmk ) =  for i = , , . . . ,N , (.)

and

lim
k→∞

smk ≤ μ lim
k→∞

〈
Fx∗,x∗ – umk

〉
. (.)

By using a reasoning similar to case , we can obtain that limk→∞〈Fx∗,x∗ – umk 〉 ≤ ,
and hence limk→∞smk ≤  by (.), i.e., smk →  as k → ∞, which derives smk+ → 
as k → ∞; consequently, sk →  as k → ∞, since sk ≤ smk+ for sufficiently large k ∈ N.
This completes the proof. �

Remark . When � =H , P� in (.) can be dropped.

Corollary . Let � be a nonempty, closed and convex subset of a real Hilbert space H .
Let T,T, . . . ,TN : � → � be N Li-Lipschitz continuous and strongly pseudocontractive
with Lipschitz constants L,L, . . . ,LN , respectively. Let F , F and {xn} be the same as in
Theorem ..Then {xn} converges strongly to a unique solution x∗ of (.),where x∗ = PF (I–
μF)x∗.

Proof By virtue of Lemma ., we know that Fix(Ti) are closed convex for i = , , . . . ,N
and hence F =

⋂N
i= Fix(Ti) is nonempty, closed and convex. Lemma . also ensures that

I – Ti are demiclosed at zero for i = , , . . . ,N and hence the conclusion of Corollary .
follows exactly from Theorem .. �

Corollary . Let � be a nonempty, closed and convex subset of a real Hilbert space H .
Let T,T, . . . ,TN : � → � be N strict pseudocontractions, respectively. Let F , F and {xn}
be the same as in Theorem .. Then {xn} converges strongly to a unique solution x∗ of (.),
where x∗ = PF (I –μF)x∗.

Proof Since every strictly pseudocontractive mapping is Lipschitz continuous and pseu-
docontractive, we have the desired conclusion. �

Corollary . Let � be a nonempty, closed and convex subset of a real Hilbert space H .
Let T,T, . . . ,TN :� → � be N nonexpansive mappings, respectively. Let F ,F and {xn} be
the same as in Theorem .. Then {xn} converges strongly to a unique solution x∗ of (.),
where x∗ = PF (I –μF)x∗.

Proof Since any nonexpansive mapping is -Lipschitz continuous and pseudocontractive,
we have the desired conclusion by Corollary .. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/218
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Table 1 The results of the algorithm in [20]

n 0 500 1,000 5,000 10,000 12,000 14,000 17,000

x1 2 1.8602 1.8441 1.8074 1.7919 1.7878 1.7843 1.7800
x2 3 2.7902 2.7662 2.7112 2.6878 2.6817 2.6765 2.6700

Table 2 The results of algorithm (1.6)

n 0 500 1,000 5,000 10,000 12,000 14,000 17,000

x1 2 1.4957 1.4490 1.3332 1.2878 1.2761 1.2663 1.2541
x2 3 2.2435 2.1673 1.9998 1.9317 1.9142 1.8995 1.8812

Remark . When F = I , we have the following strong convergence theorem.

Corollary . Let � be a nonempty, closed and convex subset of a real Hilbert space H .
Let T,T, . . . ,TN :� → � be N Li-Lipschitz continuous and quasi-pseudocontractive with
Lipschitz constants L,L, . . . ,LN , respectively. Let F and I – Ti be the same as in The-
orem .. Let {xn} be defined by (.) with F = I . Then {xn} converges strongly to the
minimum-norm fixed point of the family {Ti}Ni=.

3 Numerical example
Example . [] Consider the following optimization problem: find an element

x∗ ∈ C : ϕ
(
x∗) =min

x∈C ϕ(x), (.)

where ϕ(x) = 
‖x‖, x = (x,x) ∈ R

, a Euclid space, and C = C ∩C, defined by

C =
{
(x,x) ∈R

 : x – x +  ≤ 
}
,

C =
{
(x,x) ∈ R

 : x – x – ≥ 
}

(.) has a unique solution x∗ = (, ) and F = ∇ϕ = I is -Lipschitz continuous and 
 -

strongly monotone. Starting with the point x = (x,x) = (, ), μ = 
 ∈ (, ) and λn =


n+ , set αni = 

 +


n+ , βn = βn =

αni, βn = –αni for i = , , Table  shows the results

of algorithm in [], we obtained the results of algorithm (.) in Table . Obviously, the
results in Table  are better.

Example . [] LetH =Rwith absolute value norm. Let� = [–, ] and T,T : � → �

be defined by

Tx =

⎧⎨
⎩x + x, x ∈ [–, ],

x, x ∈ (, ],

and

Tx :=

⎧⎨
⎩x, x ∈ [–,  ],

x – (x – 
 )

, x ∈ (  , ].

http://www.journalofinequalitiesandapplications.com/content/2014/1/218
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Table 3 Values of {xn} with initial values x0 = –1 and x0 = 0.8

n 0 500 1,000 5,000 10,000 12,000 14,000 17,000

xn –1 –0.0739 –0.0447 –0.0127 –0.0071 –0.0060 –0.0053 –0.0045
xn 0.8 0.1130 0.0803 0.0361 0.0255 0.0233 0.0216 0.0196

ThenF = Fix(T)∩Fix(T) = [, ]∩ [–,  ] = [,  ], T :� → � is -Lipschitz continuous
and pseudocontractive andT : � → � is -Lipschitz continuous and pseudocontractive.
We find the point x∗ ∈F with the minimum-norm. To do so, set F = I .
Now, taking λn = 

n+ , αni = 
 +


n+ , βn = βn =


αni, βn = –αni for i = , , and μ =


 ∈ (, ηk ) = (, ), we see that the conditions of Corollary . are fulfilled and algorithm
(.) provides the data in Table . Our result is better.
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