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1 Introduction
In this paper, we consider the A-harmonic equation

d∗A(x, du) = 0, (1:1)

where mapping A : Ω × Λl (ℝn) ® Λl (ℝn) satisfies the following assumptions for

fixed 0 <a ≤ b < ∞:

(1) A satisfies the Carathéodory measurability condition;

(2) for a.e.x Î Ω and all ξ Î Λl (ℝn)

〈A(x, ξ), ξ〉 ≥ α|ξ |p, |A(x, ξ)| ≤ β|ξ |p−1 (1:2)

(3) for a.e.x Î Ω and all ξ Î Λl (ℝn), l Î ℝ

A(x,λξ) = λ|λ|p−2A(x, ξ)

Here, 1 <p < ∞ is a fixed exponent associated with (1.1).

Remark: The notions and basic theory of exterior calculus used in this paper can be

found in [1] and [2], we do not mention them here.

Definition 1.1 [2]A solution u to (1.1), called A-harmonic tensor, is an element of the

Sobolev space W1,p
loc (�,�l−1) such that∫

�

〈A(x, du), dφ〉dx = 0

for all j Î W 1,p (Ω, Λl - 1) with compact support.

In particular, we impose the growth condition

A(x, ξ) · ξ ≈ |ξ |p
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then Equation (1.1) simplifies to the p-harmonic equation

d∗(|du|p−2du) = 0

The existence of the exact form du Î Lp(Ω, Λl) is established by variational princi-

ples, and the uniqueness of du is verified by a monotonicity property of the mapping

A(x, ξ) = |ξ|p-2 · ξ.

We consider the following definition with exponents different from p.

Definition 1.2 [3]A very weak solution u to (1.1) (also called weakly A-harmonic ten-

sor) is an element of the Sobolev space W1,r
loc (�,�l−1) with max{1, p - 1} ≤ r <p such

that ∫
�

〈A(x, du), dφ〉dx = 0

for all φ ∈ W
1, r
r−p+1 (�,�l−1)with compact support.

Compared with Definition 1.1, the Sobolev integrability exponent r of u in Definition

1.2 can be less than the natural Sobolev integrability exponent p of the weak solution.

In this case, the class of admissible test forms is considerably restricted, and it is quite

difficult to derive a priori estimates. So, how to choose the test forms is especially

important.

2 Main results
In this paper, we will present two results. The first is the weak reverse Hölder inequal-

ity for weakly A-harmonic sensors, and the second result is to establish the Hölder

continuity of A-harmonic sensors.

2.1 Weak reverse Hölder inequality of weakly A-harmonic sensors

The reverse Hölder inequality that serves as powerful tools in mathematical analysis

has many applications in the estimates of solutions. The original study of the reverse

Hölder inequality can be traced back in Muckenhoupt’s work in [4]. During recent

years, various versions of the weak reverse Hölder inequality have been established.

The weak reverse Hölder inequality for differential forms satisfying some versions of

the A-harmonic equation (weighted or non-weighted) was developed by Agarwal, Ding

and Nolder in [2]. In [5], there is a weak reverse Hölder inequality for very weak solu-

tions of some classes of equations obtained by Stroffolin. And a weak reverse Hölder

inequality for differential forms of the class weak WT2 was proved by Gao and Wang

in [3].

In this section, we establish a weak reverse Hölder inequality for weakly A-harmonic

sensors. The point is to choose the appropriate test form, and the key tools in our

proof are the Hodge decomposition in [6] and the Poincaré-type inequality for differ-

ential forms in [5].

Lemma 2.1 [5]Let Q be a cube or a ball, and u Î Lr (Q, Λl) with du Î Lr (Q, Λl + 1),

1 <r < ∞. Then,

1
diam(Q)

(∫
Q
|u − uQ|r

) 1
r

≤ c(n, r)

(∫
Q
|du|

nr
n+r−1

) n+r− 1
nr
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where
∫
Qdenotes the integral mean over Q, that is

∫
Q
=

1
|Q|

∫
Q

where |Q| denotes the Lebesgue measure of Q.

Lemma 2.2 [6]For ω Î Lr(1+ε) (Ω, Λl), r ≥ 7
4 and ε > − 1

2, consider the Hodge decom-

position

|ω|εω = dα + d∗β with dα, d∗β ∈ Lr(�,∧l).

If ω is closed (i.e. dω = 0), then

||d∗β||r ≤ c(n)r|ε|||ω||1+ε
r(1+ε) .

If ω is closed (i.e. d* ω = 0), then

||dα||r ≤ c(n)r|ε|||ω||1+ε
r(1+ε) .

Our main result is the following theorem.

Theorem 2.3 Suppose that u ∈ W1,r
loc (�,�l−1) is a weakly A-harmonic tensor, then

there exists ε0 > 0 such that for |p - r| <ε0 and any cubes Q ⊂ 2Q ⊂ Ω we have

∫
Q
|du|rdx ≤ θ

∫
2Q

|du|rdx + c

(∫
2Q

|du|
nr

n+r−1

) n+r−1
n

where 0 ≤ θ < 1, c = c (n, p, a, b) < ∞.

Proof: Let η(x) ∈ C∞
0 (2Q) be a cutoff function such that 0 ≤ h ≤ 1, h ≡ 1 on Q, and

|∇h| ≤ c (n)/diamQ. Put

v = η(u − u2Q)

then there exists ε1 > 0 such that for |p - r| <ε1 the conditions of the Hodge decom-

position are satisfied. So, from Lemma 2.2, we get

|dv|r−pdv = dφ + h

where φ ∈ W
1, r
r−p+1 (�,�l−1), h ∈ L

r
r−p+1 (�,�l), and

||h|| r
r−p+1

≤ c(n)|p − r|||dv||r−p+1
r (2:3)

Write

X = dv = dη ∧ (u − u2Q) + ηdu

Y = ηdu

E = |X|r−pX − |Y|r−pY

then by an elementary inequality in [7]

||X|−εX − |Y|−εY| ≤ 2ε 1 + ε

1 − ε
|X − Y|1−ε , 0 ≤ ε < 1 (2:4)

Wang and Bao Journal of Inequalities and Applications 2011, 2011:99
http://www.journalofinequalitiesandapplications.com/content/2011/1/99

Page 3 of 10



which also holds for differential forms, and by choosing ε = p - r in (2.4), we have

that

|E| ≤ 2p−r 1 + p − r

1 − p + r
|dη ∧ (u − u2Q)|1−p+r (2:5)

We can use dj = |dv|r-p dv - h as a test form for the equation (1.1) to get∫
�

〈A(x, du), |dv|r−pdv − h〉dx = 0

then we obtain∫
�

〈A(x, du), |dv|r−pdv〉dx =
∫
�

〈A(x, du), h〉dx

Therefore,∫
�

〈A(x, du), |ηdu|r−pηdu〉dx =
∫
2Q

〈A(x, du), |dv|r−pdv − E〉dx

= −
∫
2Q

〈A(x, du),E〉dx +
∫
2Q

〈A(x, du), |dv|r−pdv〉dx

= −
∫
2Q

〈A(x, du),E〉dx +
∫
2Q

〈A(x, du), h〉dx

� I1 + I2

(2:6)

By the (1.2), the left-hand side of this equality has the estimate∫
�

〈A(x, du), |ηdu|r−pηdu〉dx =
∫
2Q

ηr−p+1|du|r−p〈A(x, du), du〉dx

≥
∫
2Q

ηr−p+1|du|r−p · α|du|pdx

= α

∫
2Q

ηr−p+1|du|rdx

≥ α

∫
Q

|du|rdx

(2:7)

Now we estimate |I1| and |I2|. It follows from (1.2), (2.5) and Hölder inequality that

|I1| = | −
∫
2Q

〈A(x, du),E〉dx|

≤ 2p−r 1 + p − r
1 − p + r

· β

∫
2Q

|du|p−1|∇η|1−p+r|u − u2Q|1−p+rdx

≤ 2p−r 1 + p − r
1 − p + r

· β · c(n)

(diamQ)1−p+r

∫
2Q

|du|p−1|u − u2Q|1−p+rdx

≤ 2p−r 1 + p − r
1 − p + r

· β · c(n)

(diamQ)1−p+r

⎛
⎜⎝∫
2Q

|du|rdx

⎞
⎟⎠

p−1
r

·

⎛
⎜⎝∫
2Q

|u − u2Q|rdx

⎞
⎟⎠

r−p+1
r
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Lemma 2.1 implies

⎛
⎜⎝∫
2Q

|u − u2Q|rdx

⎞
⎟⎠

1
r

≤ c(n, r) · (diamQ)
1
r

⎛
⎜⎝∫
2Q

|du|
nr

n+r−1 dx

⎞
⎟⎠

n+r−1
nr

(2:8)

together with the above inequality and Young’s inequality

ab ≤ εap + c(ε, p)bp
′
, 1p + 1

p′ = 1, a > 0, b > 0, ε > 0 we get the estimate of |I1|:

|I1| ≤ c(n, p, r)(diamQ)−
(r−1)(r−p+1)

r

⎛
⎜⎝∫
2Q

|du|rdx

⎞
⎟⎠

p−1
r

·

⎛
⎜⎝∫
2Q

|du| nr
n+r−1dx

⎞
⎟⎠ (n+r−1)(r−p+1)

nr

≤ ε

∫
2Q

|du|rdx + c(n, p, r, ε)(diamQ)−(r−1)

⎛
⎜⎝∫
2Q

|du|
nr

n+r−1 dx

⎞
⎟⎠

n+r−1
n

= ε||du||rr;2Q + c(n, p, r, ε)(diamQ)−(r−1) ||du||r nr
n+r−1 ;2Q

(2:9)

Combined with (1.2), (2.3) and Hölder inequality yield

|I2| = |
∫
2Q

〈A(x, du), h〉dx| ≤ β

∫
2Q

|du|p−1|h|dx

≤ β ‖du‖p−1
r;2Q ‖h‖ r

r−p+1 ;2Q

≤ c(n)β|p − r| ‖du‖p−1
r;2Q ‖dv‖r−p+1

r;2Q

Together with the Minkowski inequality and (2.8) yield

‖dv‖r;2Q ≤ ∥∥dη ∧ (u − u2Q)
∥∥
r;2Q + ‖ηdu‖r;2Q

≤ c(n)
diamQ

∥∥u − u2Q
∥∥
r;2Q + ‖ηdu‖r;2Q

≤ c(n, r)
diamQ

· (diamQ)
1
r

⎛
⎜⎝∫
2Q

|du|
nr

n + r − 1 dx

⎞
⎟⎠

n+r−1
nr

+ ‖du‖r;2Q

= c(n, r)(diam(Q))−
r−1
r ‖du‖ nr

n+r−1 ;2Q + ‖du‖r;2Q

Thus, combined with Young’s inequality we have

|I2| ≤ c(n)β|p − r| ‖du‖rr;2Q
+ c(n, p, r)β|p − r|(diam(Q))−

(r−1)(r−p+1)
r ‖du‖r−p+1

nr
n+r−1 ;2Q

‖du‖p−1
r;2Q

≤ c(n)β|p − r| ‖du‖rr;2Q + ε ‖du‖rr;2Q
+ c(n, p, r, ε)β

r
r−p+1 |p − r|

r
r−p+1 (diam(Q))−(r−1) ‖du‖r nr

n+r−1 ;2Q

(2:10)
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Therefore, combined (2.6)-(2.10) we get

α

∫
Q

|du|rdx ≤(2ε + c(n)β|p − r|) ‖du‖rr;2Q

+ (1 + β
r

r−p+1 |p − r|
r

r−p+1 )c(n, p, r, ε)(diam(Q))−(r−1) ‖du‖r nr
n+r−1 ;2Q

Then, we have by dividing a|Q| in both sides that∫
Q
|du|rdx ≤ (2ε + c(n)β|p − r|)

α

∫
2Q

|du|rdx

+
(1 + |p − r|

r
r−p+1 β

r
r−p+1 )c(n, p, r, ε)

α

(∫
2Q

|du|
nr

n+r−1 dx

) n+r−1
n

Let ε small enough and we can choose r close enough to p, i.e. there exists 0 <ε0 <ε1
such that for sufficient small ε and |p - r| <ε0 we have θ = (2ε + c(n)b|p-r|)/a < 1,

then we obtain

∫
Q
|du|rdx ≤ θ

∫
2Q

|du|rdx + c

(∫
2Q

|du|
nr

n+r−1 dx

) n+r−1
n

where c = c(n, p, a, b) < ∞. The theorem follows.

2.2 Hölder continuity of A-harmonic sensors

We already have the result of Hölder continuity for functions by Morrey lemma in the

case of functions. In this section, we establish the Hölder continuity for differential

forms satisfying A-harmonic equation (1.1) by isoperimetric inequality for differential

forms from [8] and Morrey’s Lemma for differential forms in [9].

Let Γ = Γ(a1, a2) be the family of locally rectifiable arcs g Î ℝn joining the points a1
and a2. Here, d = d(a1, a2) is the distance between the points a1, a2 Î ℝn. We denote

by ds the element of arc length in ℝn.

For a subdomain D � Rn, we set

δ(D) = inf
{mk}

lim inf
k→∞

d(mk,D)

where the infimum is taken over all possible sequences {mk}, mk Î ℝn, not having

accumulation points in ℝn.

Now we give the definition of Hölder continuity for differential forms which appears

in [9].

Definition 2.4 [9]Let u be a differential form of degree l and D a compact subset of

ℝn. We say that u is Hölder continuous with exponent a at a1Î D if

inf
γ∈�

∫
γ

|du|ds ≤ C(a1)dα
(2:11)
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for all a2 Î D with d = d(a1, a2) <(D)/2. One says that u is Hölder continuous with

exponent a on D if (2.11) is satisfied for all a1 Î D. If C = supa1∈DC(a1) < ∞, the differ-

ential form u is called uniformly Hölder continuous on D.

Remark: If the differential form u of degree zero, i.e. u is a function, is Hölder con-

tinuous, then

|u(a1) − u(a2)| ≤ inf
γ∈�

∫
γ

|∇u|ds = inf
γ∈�

∫
γ

|du|ds

agrees with the usual definition for Hölder continuous functions.

Definition 2.5 [10]A differential form ϕ ∈ Lploc(�,∧l(Rn)) is said to be weakly closed,

writing d� = 0, if∫
�

〈ϕ, d∗ψ〉 = 0

for every test form ψ ∈ W1,p′

loc (�,∧l+1(Rn))with compact support contained in Ω,

where the exponent p’ is the Hölder conjugate of p.

Remark: For smooth differential forms �, the definition above agrees with the tradi-

tional definition of closedness d� = 0.

Definition 2.6 [8]A pair of weakly closed differential forms F Î Lr (Ω, Λl (ℝn)) and

ΨÎ Ls (Ω, Λn-1), where 1 <r, s < ∞ satisfy Sobolev’s relation 1
r +

1
s = 1 + 1

n, will be called

an admissible pair if F Λ Ψ ≥ 0 and

lim inf
t→∞ t

1
n

∫
H>t

H(x)dx = 0

where H = |F|r + |Ψ| s.

Remark: Inequality between two volume forms should be understood as inequality

between their coefficients with respect to the standard basis, that is to say, we say that

an n-form a on ℝn is nonnegative if a = ldx for some nonnegative function l.
The main lemmas we used are the following

Lemma 2.7 [8]Let (F, Ψ) be an admissible pair. Given x Î ℝn, for almost every all B

= B (x, δ) ⊂ ℝn, 0 <δ <δ(D)/2 we have

∫
B

� ∧ � ≤ c(n)

⎛
⎝∫

∂B

(|�|r + |�|s)
⎞
⎠

n
n−1

(2:12)

provided 1 < s = r(n−1)
nr−n+1

.

Lemma 2.8 [9] (Morrey’s Lemma) Let u ∈ W1,p
loc (�,�l(Rn)), 0 ≤ l ≤ n. If for each

point a Î D and r <δ(D)/2 the equality∫
B(a,r)

|du|p ≤ Crn−p+α
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holds, then for all a1, a2 Î D, d(a1, a2) <δ(D)/2, we get

inf
γ∈�(a1,a2)

∫
γ

|du|ds ≤ Cdα/p,

where C = C (n, p, a).
As an application of the isoperimetric inequality (2.12) and the Morrey’s Lemma 2.8,

we establish the Hölder continuity of A-harmonic sensors. Namely, we have the

following

Theorem 2.9 Suppose that a differential form u ∈ W1,p
loc (�,�l(Rn))with n

n−1 < p < n,

is A-harmonic, then u is Hölder continuous.

Proof: Firstly, we set F = du, Ψ = ✶A(x, du). We should to prove (F, Ψ) is an admis-

sible pair. It is easy to see that F is closed, so it is weakly closed. And the weak closed-

ness of ✶A(x, du) follows from

(−1)nl+1
∫
�

〈∗A(x, du), d∗ψ〉 =
∫
�

〈∗A(x, du), ∗d ∗ ψ〉

=
∫
�

〈A(x, du), d ∗ ψ〉 =
∫
�

〈A(x, du), ∗dφ〉 = 0

for all ψ = (−1)l(n−l) ∗ φ ∈ W1,q
0 (�,�n−l+1(Rn)). Next we set r = pn

n+1 and s = p′n
n+1

in

Definition 2.6, where the exponent p’ is the Hölder conjugate of p. Then, we have
1
r +

1
s = 1 + 1

n and

H = |�|r + |�|s = |du|
pn
n+1 + |A(x, du)|

p′n
n+1

≤ |du|
pn
n+1 + β

p′n
n+1 |du|

pn
n+1

= c(n, p,β)|du|
pn
n+1 ∈ L

n+1
n

thus we have

0 ≤ t
1
n

∫
H>t

H(x)dx =
∫

H>t

t
1
n H(x)dx

≤
∫

H>t

H(x)
n+1
n dx

tends to 0 as t tends to ∞. Moreover, since

� ∧ � = du ∧ ∗A(x, du) = 〈A(x, du), du〉 ∗ 1 ≥ α|du|p ∗ 1

we get by Definition 2.6 that (F, Ψ) is an admissible pair.

Secondly, we set 1 < r = p(n−1)
n < n − 1 and s = p′(n−1)

n
in (2.12), then we have

s = r(n−1)
nr−n+1 > 1 and by applying the isoperimetric inequality (2.12) for the admissible

pair (F, Ψ), we obtain that
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α

∫
B(a,r)

|du|p ≤
∫

B(a,r)

du ∧ ∗A(x, du)

≤ c(n)

⎛
⎜⎝ ∫

∂B(a,r)

(|du|r + | ∗ A(x, du)|s)
⎞
⎟⎠

n
n−1

= c(n)

⎛
⎜⎝ ∫

∂B(a,r)

(|du|r + |A(x, du)|s)
⎞
⎟⎠

n
n−1

≤ c(n)

⎛
⎜⎝ ∫

∂B(a,r)

(
|du|r + β s|du|s(p−1)

)⎞
⎟⎠

n
n−1

= c(n)

⎛
⎜⎝ ∫

∂B(a,r)

(|du|r + β s|du|r)
⎞
⎟⎠

n
n−1

= c(n)(1 + β s)
n

n−1

⎛
⎜⎝ ∫

∂B(a,r)

|du|
p(n−1)

n

⎞
⎟⎠

n
n−1

≤ c(n)(1 + β s)
n

n−1

⎛
⎜⎝ ∫

∂B(a,r)

|du|p
⎞
⎟⎠ ·

⎛
⎜⎝ ∫

∂B(a,r)

⎞
⎟⎠

1
n−1

= c(n)(1 + β s)
n

n−1 (nωn)
1

n−1 r
∫

∂B(a,r)

|du|p

Therefore,

r∫
0

dt
∫

∂B(a,t)

|du|p =
∫

B(a,r)

|du|p ≤ c(n)(1 + β s)
n

n−1 (nωn)
1

n−1

α
r

∫
∂B(a,r)

|du|p

Setting

h(r) =

r∫
0

dt
∫

∂B(a,t)

|du|p,

then

h(r) ≤ C0rh(r)′,

where C0 = c(n)(1 + β s)
n

n−1 (nωn)
1

n−1 /α. Then, we have (r
− 1
C0 h(r))′ ≥ 0, therefore

r
− 1
C0 h(r) is increasing, then we get h(r) ≤ ( r

δ
)

1
C0 h(δ), i.e.

∫
B(a,r)

|du|p ≤
( r

δ

) 1
C0

∫
B(a,δ)

|du|p = Cr
1
C0 ,
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Therefore, the Morrey’s lemma (Lemma 2.8) infers that

inf
γ∈�(a1,a2)

∫
γ

|du|ds ≤ Cd
1− n

p +
1

C0p

i.e. u is Hölder continuous with the exponent 1 − n
p +

1
C0p

.. The theorem follows.
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