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We consider a class of nondifferentiable multiobjective programs with inequality and equality
constraints in which each component of the objective function contains a term involving the
support function of a compact convex set. We introduce G-Karush-Kuhn-Tucker conditions and G-
Fritz John conditions for our nondifferentiable multiobjective programs. By using suitable G-invex
functions, we establish G-Karush-Kuhn-Tucker necessary and sufficient optimality conditions, and
G-Fritz John necessary and sufficient optimality conditions of our nondifferentiable multiobjective
programs. Our optimality conditions generalize and improve the results in Antczak (2009) to the
nondifferentiable case.

1. Introduction and Preliminaries

A number of different forms of invexity have appeared. In [1], Martin defined Kuhn-Tucker
invexity and weak duality invexity. In [2], Ben-Israel and Mond presented some new results
for invex functions. Hanson [3] introduced the concepts of invex functions, and Type I, Type
II functions were introduced by Hanson and Mond [4]. Craven and Glover [5] established
Kuhn-Tucker type optimality conditions for cone invex programs, and Jeyakumar and Mond
[6] introduced the class of the so-called V-invex functions to proved some optimality for a
class of differentiable vector optimization problems than under invexity assumption. Egudo
[7] established some duality results for differentiable multiobjective programming problems
with invex functions. Kaul et al. [8] considered Wolfe-type and Mond-Weir-type duals and
generalized the duality results of Weir [9] under weaker invexity assumptions.

Based on the paper by Mond and Schechter [10], Yang et al. [11] studied a class
of nondifferentiable multiobjective programs. They replaced the objective function by the
support function of a compact convex set, constructed a more general dual model for a class
of nondifferentiable multiobjective programs, and established only weak duality theorems
for efficient solutions under suitable weak convexity conditions. Subsequently, Kim et al.
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[12] established necessary and sufficient optimality conditions and duality results for weakly
efficient solutions of nondifferentiable multiobjective fractional programming problems.

Recently, Antczak [13, 14] studied the optimality and duality for G-multi-objective
programming problems. They defined a new class of differentiable nonconvex vector
valued functions, namely, the vector G-invex (G-incave) functions with respect to η. They
used vector G-invexity to develop optimality conditions for differentiable multiobjective
programming problems with both inequality and equality constraints. Considering the
concept of a (weak) Pareto solution, they established the so-called G-Karush-Kuhn-Tucker
necessary optimality conditions for differentiable vector optimization problems under the
Kuhn-Tucker constraint qualification.

In this paper, we obtain an extension of the results in [13],which were established
in the differentiable to the nondifferentiable case. We proposed a class of nondifferentiable
multiobjective programming problems in which each component of the objective function
contains a term involving the support function of a compact convex set. We obtain
G-Karush-Tucker necessary and sufficient conditions and G-Fritz John necessary and
sufficient conditions for weak Pareto solution. Necessary optimal theorems are presented by
using alternative theorem [15] and Mangasarian-Fromovitz constraint qualification [16]. In
addition, we give sufficient optimal theorems under suitable G-invexity conditions.

We provide some definitions and some results that we shall use in the sequel.
Throughout the paper, the following convention will be used.

For any x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T ,we write

x = y, iff xi = yi, ∀i = 1, 2, . . . , n,

x < y, iff xi < yi, ∀i = 1, 2, . . . , n,

x � y, iff xi ≤ yi, ∀i = 1, 2, . . . , n,

x ≤ y, iff xi � yi, x /=y, n > 1.

(1.1)

Throughout the paper, we will use the same notation for row and column vectors when the
interpretation is obvious. We say that a vector z ∈ R

n is negative if z � 0 and strictly negative
if z < 0.

Definition 1.1. A function f : R → R is said to be strictly increasing if and only if

∀x, y ∈ R, x < y =⇒ f(x) < f
(
y
)
. (1.2)

Let f = (f1, . . . , fk) : X → R
k be a vector-valued differentiable function defined on

a nonempty open set X ⊂ R
n, and Ifi(X), i = 1, . . . , k, the range of fi, that is, the image of X

under fi.

Definition 1.2 (see [11]). Let C be a compact convex set in R
n. The support function s(x | C)

is defined by

s(x | C) := max
{
xTy : y ∈ C

}
. (1.3)
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The support function s(x | C), being convex and everywhere finite, has a subdifferential, that
is, there exists z such that

s
(
y | C) ≥ s(x | C) + zT

(
y − x

)
, ∀y ∈ D. (1.4)

Equivalently,

zTx = s(x | C). (1.5)

The subdifferential of s(x | C) at x is given by

∂s(x | C) :=
{
z ∈ C : zTx = s(x | C)

}
. (1.6)

Now, in the natural way, we generalize the definition of a real-valued G-invex function. Let
f = (f1, . . . , fk) : X → R

k be a vector-valued differentiable function defined on a nonempty
open set X ⊂ R

n, and Ifi(X), i = 1, . . . , k, the range of fi, that is, the image of X under fi.

Definition 1.3. Let f : X → R
n be a vector-valued differentiable function defined on a

nonempty set X ⊂ R
n and u ∈ X. If there exist a differentiable vector-valued function

Gf = (Gf1 , . . . , Gfk) : R → R
k such that any of its component Gfi : Ifi(X) → R is a strictly

increasing function on its domain and a vector-valued function η : X ×X → R
n such that, for

all x ∈ X (x /=u) and for any i = 1, . . . , k,

Gfi

(
fi(x)

) −Gfi

(
fi(u)

)
� (>)G′

fi

(
fi(u)

)∇fi(u)η(x, u), (1.7)

then f is said to be a (strictly) vector Gf -invex function at u on X (with respect to η) (or
shortly, G-invex function at u on X). If (1.7) is satisfied for each u ∈ X, then f is vector
Gf -invex on X with respect to η.

Lemma 1.4 (see [13]). In order to define an analogous class of (strictly) vector Gf -incave functions
with respect to η, the direction of the inequality in the definition of Gf -invex function should be
changed to the opposite one.

We consider the following multiobjective programming problem.

(NMP) Minimize
(
GF1

(
f1(x) + s(x | C1)

)
, . . . , GFk

(
fk(x) + s(x | Ck)

))

subject to
(
Gg1

(
g1(x)

)
, . . . , Ggm

(
gm(x)

))
� 0,

(
Gh1(h1(x)), . . . , Ghp

(
hp(x)

))
= 0,

(1.8)

where fi : X → R, i ∈ I = {1, . . . , k}, gj : X → R, j ∈ J = {1, . . . , m}, ht : X → R, t ∈ T =
{1, . . . , p}, are differentiable functions on a nonempty open set X ⊂ R

n. Moreover, GFi , i ∈ I,
are differentiable real-valued strictly increasing functions, Ggj , j ∈ J, are differentiable real-
valued strictly increasing functions, and Ght , t ∈ T , are differentiable real-valued strictly
increasing functions. Let D = {x ∈ X : Ggj (gj(x)) � 0, j ∈ J,Ght(ht(x)) = 0, t ∈ T} be
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the set of all feasible solutions for problem (NMP), and Fi = fi(·) + (·)Twi. Further, we denote
by J(z) := {j ∈ J : Ggj (gj(z)) = 0} the set of inequality constraint functions active at z ∈ D
and by I(z) := {i ∈ I : λi > 0} the objective functions indices set, for which the corresponding
Lagrange multiplier is not equal 0. For such optimization problems, minimization means in
general obtaining weak Pareto optimal solutions in the following sense.

Definition 1.5. A feasible point x is said to be a weak Pareto solution (a weakly efficient
solution, a weak minimum) of (NMP) if there exists no other x ∈ D such that

Gf(x)+xTw

(
f(x) + s(x | C)) < Gf(x)+xTw

(
f(x) + s(x | C)). (1.9)

Definition 1.6 (see [17]). Let W be a given set in R
n ordered by � or by <. Specifically, we

call the minimal element of W defined by ≤ a minimal vector, and that defined by < a weak
minimal vector. Formally speaking, a vector z ∈ w is called a minimal vector in W if there
exists no vector z in W such that z ≤ z; it is called a weak minimal vector if there exists no
vector z inW such that z < z.

By using the result of Antczak [13] and the definition of a weak minimal vector, we
obtain the following proposition.

Proposition 1.7. Let x be feasible solution in a multiobjective programming problem and let
Gfi(·)+(·)Twi

, i = 1, . . . , k, be a continuous real-valued strictly increasing function defined on
Ifi+(·)Twi

(X). Further, we denoteW = {Gf1(·)+(·)Tw1
(f1(x)+s(x | C1)), . . . , Gfk(·)+(·)Twk

(fk(x)+s(x |
Ck)) : x ∈ X} ⊂ R

k and z = (Gf1(·)+(·)Tw1
(f1(x) + s(x | C1)), . . . , Gfk(·)+(·)Twk

(fk(x) + s(x |
Ck)) ∈ W . Then, x is a weak Pareto solution in the set of all feasible solutions X for a multiobjective
programming problem if and only if the corresponding vector z is a weak minimal vector in the setW .

Proof. Let x be a weak Pareto solution. Then there does not exist x∗ such that

Gf(·)+(·)Twi

(
fi(x∗) + s(x∗ | Ci)

)
< Gf(·)+(·)Twi

(
fi(x) + s(x | Ci)

)
. (1.10)

By the strict increase of Gfi(·)+(·)Twi
involving the support function, we have

Gf(·)+(·)Twi

(
fi(x∗) + x∗w

i

)
< Gf(·)+(·)Twi

(
fi(x∗) + s(x∗ | Ci)

)
. (1.11)

Therefore, z = (Gf1(·)+(·)Tw1
(f1(x) + s(x | C1)), . . . , Gfk(·)+(·)Twk

(fk(x) + s(x | Ck))) is a weak
minimal vector in the set W. The converse part is proved similarly.

Lemma 1.8 (see [13]). In the case when GFi(a) ≡ a, i = 1, . . . , k, for any a ∈ IFi(X), we obtain a
definition of a vector-valued invex function.

2. Optimality Conditions

In this section, we establish G-Fritz John and G-Karush-Kuhn-Tucker necessary and sufficient
conditions for a weak Pareto optimal point of (NMP).
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Theorem 2.1 (G-Fritz John Necessary Optimality Conditions). Suppose that GFi , i ∈ I, are
differentiable real-valued strictly increasing functions defined on IFi(D), Ggj , j ∈ J, are differentiable
real-valued strictly increasing functions defined on Igj (D), and Ght , t ∈ T , are differentiable real-
valued strictly increasing functions defined on Iht(D), and let Fi = fi(·)+(·)Twi. Let x ∈ D be a weak
Pareto optimal point in problem (NMP). Then there exist λ ∈ R

k
+, ξ ∈ R

m
+ , μ ∈ R

p, and wi ∈ Ci such
that

k∑

i=1

λiG
′
Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)
+

m∑

j=1

ξjG
′
gj

(
gj(x)

)∇gj(x)

+
p∑

t=1

μtG
′
ht
(ht(x))∇ht(x) = 0,

ξjGgj

(
gj(x)

)
= 0, j ∈ J,

〈wi, x〉 = s(x | Ci), i = 1, . . . , k,

λ � 0, ξ � 0,
(
λ1, . . . , λk, ξ1, . . . , ξm, μ1, . . . , μp

)
/= 0.

(2.1)

Proof. Let bi(x) = s(x | Ci), i = 1, . . . , k. Since Ci is convex and compact,

b′i(x;d) =
lim
λ→ 0+

bi(x + λd) − bi(x)

λ
(2.2)

is finite. Also, for all d ∈ R
n,

(
GFi

(
fi + bi

))′(x;d)

=
lim
λ→ 0+

GFi

(
fi(x + λd) + bi(x + λd)

) −GFi

(
fi(x) + bi(x)

)

λ

= G′
Fi

(
fi + bi

)(∇fi + b′i
)
(x;d)

=
〈
G′

Fi

(
fi(x) + bi(x)

)(∇fi(x) + b′i(x)
)
, d

〉
.

(2.3)

Since x is a weak Pareto optimal point in (NMP)

〈
G′

Fi

(
fi(x) + bi(x)

)(∇fi(x) + b′i(x)
)
, d

〉
< 0, i = 1, . . . , k,

〈
G′

gj

(
gj(x)

)∇gj(x), d
〉

� 0, j ∈ J(x),

〈
G′

ht
(ht(x))∇ht(x), d

〉
= 0, t ∈ T,

(2.4)
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has no solution d ∈ R
n. By [15, Corollary 4.2.2], there exist λi � 0, i = 1, . . . , k, ξj � 0, j ∈

J(x), and μt, t = 1, . . . , p, not all zero, such that for any d ∈ R
n,

k∑

i=1

λi
〈
G′

Fi

(
fi(x) + bi(x)

)(∇fi(x) + b′i(x)
)
, d

〉

+
∑

j∈J(x)
ξj
〈
G′

gj

(
gj(x)

)∇gj(x), d
〉
+

p∑

t=1

μt

〈
G′

ht(ht(x))∇ht(x), d
〉

� 0.

(2.5)

Let A = {∑k
i=1 λi[G

′
Fi(fi(x) + bi(x))(∇fi(x) + wi)] +

∑
j∈J(x) ξjG

′
gj (gj(x))∇gj(x) +

∑p

t=1 μtG
′
ht
(ht(x))∇ht(x) | wi ∈ ∂bi(x), i = 1, . . . , k}. Then 0 ∈ A. Assume to the

contrary that 0/∈A. By separation theorem, there exists d∗ ∈ R
n, d∗ /= (0, . . . , 0) such

that for all a ∈ A, 〈a, d∗〉 < 0, that is, for all wi ∈ bi(x)

k∑

i=1

λi
〈
G′

Fi

(
fi(x) + bi(x)

)(∇fi(x) + b′i(x)
)
d∗
〉

+
∑

j∈J(x)
ξj
〈
G′

gj

(
gj(x)

)∇gj(x), d∗
〉
+

p∑

t=1

μt

〈
G′

ht
(ht(x))∇ht(x), d∗

〉
< 0.

(2.6)

This contradicts (2.5).
Letting ξj = 0, for all j /∈ J(x), we get

k∑

i=1

λiG
′
Fi

(
fi(x) + s(x | Ci)

)(∇fi(x) + ∂bi(x)
)

+
m∑

j=1

ξjG
′
gj

(
gj(x)

)∇gj(x) +
p∑

t=1

μtG
′
ht
(ht(x))∇ht(x) = 0,

m∑

j=1

ξjGgj

(
gj(x)

)
= 0,

(λ1, . . . , λk, ξ1, . . . , ξm)/= 0.

(2.7)

Since ∂bi(x) = {wi ∈ Ci | 〈wi, x〉 = s(x | Ci)}, we obtain the desired result.

Theorem 2.2 (G-Karush-Kuhn-Tucker Necessary Optimality Conditions). Suppose that
GFi , i ∈ I, are differentiable real-valued strictly increasing functions defined on IFi(D), Ggj , j ∈ J,
are differentiable real-valued strictly increasing functions defined on Igj (D), and Ght , t ∈ T , are
differentiable real-valued strictly increasing functions defined on Iht(D), and Ght , t ∈ T , are linearly
independent, and let Fi = fi(·) + (·)Twi. Moreover, we assume that there exists z∗ ∈ R

n such that
〈G′

gj (gj(x))∇gj(x), z∗〉 < 0, j ∈ J(x), and 〈G′
ht
(ht(x))∇ht(x), z∗〉 = 0, t = 1, . . . , p. If x ∈ D
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is a weak Pareto optimal point in problem (NMP), then there exist λ ∈ R
k
+, ξ ∈ R

m
+ , μ ∈ R

p, and
wi ∈ Ci, i = 1, . . . , k such that

k∑

i=1

λiG
′
Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)
+

m∑

j=1

ξjG
′
gj

(
gj(x)

)∇gj(x)

+
p∑

t=1

μtG
′
ht
(ht(x))∇ht(x) = 0,

ξjGgj

(
gj(x)

)
= 0, j ∈ J,

〈wi, x〉 = s(x | Ci), i = 1, . . . , k,

λ ≥ 0,
k∑

i=1

λi = 1, ξ � 0.

(2.8)

Proof. Since x is a weak Pareto optimal point of (NMP), by Theorem 2.1, there exist λ̂ ∈ R
k
+, ξ̂ ∈

R
m
+ , μ̂ ∈ R

p, and wi ∈ Ci, i = 1, . . . , k such that

k∑

i=1

λ̂iG
′
Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)
+

m∑

j=1

ξ̂jG
′
gj

(
gj(x)

)∇gj(x)

+
p∑

t=1

μ̂tG
′
ht
(ht(x))∇ht(x) = 0,

ξ̂jGgj

(
gj(x)

)
= 0, j ∈ J,

〈wi, x〉 = s(x | Ci), i = 1, . . . , k,

λ̂ � 0, ξ̂ � 0,
(
λ̂1, . . . , λ̂k, ξ̂1, . . . , ξ̂m, μ̂1, . . . , μ̂p

)
/= 0.

(2.9)

Assume that there exists z∗ ∈ R
n such that 〈G′

gj (gj(x))∇gj(x), z∗〉 < 0, j ∈ J(x), and

〈G′
ht
(ht(x))∇ht(x), z∗〉 = 0, t = 1, . . . , p. Then (λ̂1, . . . , λ̂k)/= (0, . . . , 0). Assume to the contrary

that (λ̂1, . . . , λ̂k) = (0, . . . , 0). Then (ξ̂1, . . . , ξ̂m, μ̂1, . . . , μ̂p)/= (0, . . . , 0). If ξ̂ = 0, then μ̂ /= 0. Since
Ght , t ∈ T , are linearly independent, μ̂1Gh1(h1(x)) + · · · + μ̂pGhp(hp(x)) = 0 has a trivial
solution μ̂ = 0, this contradicts to the fact that μ̂ /= 0. So ξ̂ ≥ 0. Define ξ̂j∈J(x) > 0, ξ̂j /∈ J(x) = 0.
Since 〈G′

gj (gj(x))∇gj(x), z∗〉 < 0, j ∈ J(x), we have
∑m

j=1〈G′
gj (gj(x))∇gj(x), z∗〉 < 0 and so

∑m
j=1〈G′

gj (gj(x))∇gj(x), z∗〉 +
∑p

t=1〈G′
ht
(ht(x))∇ht(x), z∗〉 < 0. This is a contradiction. Hence

(λ̂1, . . . , λ̂k)/= (0, . . . , 0). Indeed, it is sufficient only to show that there exist λ ∈ R
k
+, ξ ∈ R

m
+ ,

and μ ∈ R
p such that

∑k
i=1 λi = 1. We set

λq =
1

1 +
∑k

i=1,i /= j λ̂i
, for some q ∈ I(x),

λi =
λ̂i

1 +
∑k

i=1,i /= j λ̂i
, for i ∈ I, i /∈ q,
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ξj =
ξ̂j

1 +
∑k

i=1,i /= j λ̂i
, for j ∈ J,

μt =
μ̂t

1 +
∑k

i=1,i /= j λ̂i
, for t ∈ T.

(2.10)

It is not difficult to see that the G-Karush-Kuhn-Tucker necessary optimality conditions are
satisfied with Lagrange multipliers, there exist λ ∈ R

k
+, ξ ∈ R

m
+ ; and μ ∈ R

p given by (2.10).

We denote by T+(x) and T−(x) the sets of equality constraints indices for which a
corresponding Lagrange multiplier is positive and negative, respectively, that is, T+(x) = {t ∈
T : μt > 0} and T−(x) = {t ∈ T : μt < 0}.

Theorem 2.3 (G-Fritz John Sufficient Optimality Conditions). Let (x, λ, ξ, μ,w) satisfy the G-
Fritz John optimality conditions as follow:

k∑

i=1

λiG
′
Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)

+
m∑

j=1

ξjG
′
gj

(
gj(x)

)∇gj(x) +
p∑

t=1

μtG
′
ht
(ht(x))∇ht(x) = 0,

(2.11)

ξjGgj

(
gj(x)

)
= 0, j ∈ J, ∀x ∈ D, (2.12)

〈wi, x〉 = s(x | Ci), i = 1, . . . , k, (2.13)

λ � 0, ξ � 0, (λ1, . . . , λk, ξ1, . . . , ξm)/= 0. (2.14)

Further, assume that F(= f(·) + (·)Tw) is vector GF-invex with respect to η at x on D, g is
strictlyGg-invex with respect to η at x on D, ht, t ∈ T+(x), is Ght -invex with respect to η at x on D,
and ht, t ∈ T−(x), is Ght -incave with respect to η at x on D. Moreover, suppose that Ggj (0) = 0 for
j ∈ J andGht(0) = 0 for t ∈ T+(x)∪T−(x). Then x is a weak Pareto optimal point in problem (NMP).

Proof. Suppose that x is not a weak Pareto optimal point in problem (NMP). Then there exists
x∗ ∈ D such that GFi(fi(x

∗) + s(x∗ | Ci)) < GFi(fi(x) + s(x | Ci)), i = 1, . . . , k. Since 〈wi, x〉 =
s(x | Ci), i = 1, . . . , k,

GFi

(
fi(x∗) + x∗Twi

)
< GFi

(
fi(x∗) + s(x∗ | Ci)

)

< GFi

(
fi(x) + s(x | Ci)

)

= GFi

(
fi(x) + xTwi

)
.

(2.15)

Thus we get

GFi

(
fi(x∗) + x∗Twi

)
< GFi

(
fi(x) + xTwi

)
, i ∈ I. (2.16)
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By assumption, F(= f(·) + (·)Tw) is GF-invex with respect to η at x on D. Then by
Definition 1.3, for any i ∈ I,

[
GFi

(
fi(x∗) + x∗Twi

)]
−
[
GFi

(
fi(x) + xTwi

)]

�
[
G′

Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)]
η(x∗, x).

(2.17)

Hence by (2.16) and (2.17), we obtain

[
G′

Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)]
η(x∗, x) < 0, i ∈ I. (2.18)

Since (x, λ, ξ, μ,w) satisfy the G-Fritz John conditions, by λ � 0,

[
k∑

i=1

λiG
′
Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)
]

η(x∗, x) � 0, i ∈ I. (2.19)

Since g is strictly Gg-invex with respect to η at x on D,

Ggj

(
gj(x∗)

) −Ggj

(
gj(x)

)
> G′

gj

(
gj(x)

)∇gj(x)η(x∗, x). (2.20)

Thus, by ξ � 0,

ξjGgj

(
gj(x∗)

) − ξjGgj

(
gj(x)

)
� ξjG

′
gj

(
gj(x)

)∇gj(x)η(x∗, x). (2.21)

Then, (2.12) implies

m∑

j=1

ξjG
′
gj

(
gj(x)

)∇gj(x)η(x∗, x) � 0. (2.22)

By assumption, ht, t ∈ T+(x), is Ght -invex with respect to η at x on D, and ht, t ∈ T−(x), is
Ght -incave with respect to η at x on D. Then, by Definition 1.3, we have,

Ght(ht(x∗)) −Ght(ht(x)) � G′
ht
(ht(x))∇ht(x)η(x∗, x), t ∈ T+(x),

Ght(ht(x∗)) −Ght(ht(x)) � G′
ht
(ht(x))∇ht(x)η(x∗, x), t ∈ T−(x).

(2.23)

Thus, for any t ∈ T+,

μtGht(ht(x∗)) − μtGht(ht(x)) � μtG
′
ht
(ht(x))∇ht(x)η(x∗, x). (2.24)



10 Journal of Inequalities and Applications

Since x∗ ∈ D and x ∈ D, then the inequality above implies

p∑

t=1

μtG
′
ht
(ht(x))∇ht(x)η(x∗, x) � 0. (2.25)

Adding both sides of inequalities (2.19), (2.22), (2.25), and by (2.14),

[
k∑

i=1

λiG
′
Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)

+
m∑

j=1

ξjG
′
gj

(
gj(x)

)∇gj(x) +
p∑

t=1

μtG
′
ht
(ht(x))∇ht(x)

⎤

⎦η(x∗, x) < 0,

(2.26)

which contradicts (2.11). Hence, x is a weak Pareto optimal for (NMP).

Theorem 2.4 (G-Karush-Kuhn-Tucker Sufficient Optimality Conditions). Let (x, λ, ξ, μ,w)
satisfy the G-Karush-Kuhn-Tucker conditions as follow:

k∑

i=1

λiG
′
Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)
+

m∑

j=1

ξjG
′
gj

(
gj(x)

)∇gj(x)

+
p∑

t=1

μtG
′
ht(ht(x))∇ht(x) = 0,

(2.27)

ξjGgj

(
gj(x)

)
= 0, j ∈ J, ∀x ∈ D, (2.28)

〈wi, x〉 = s(x | Ci), i = 1, . . . , k, (2.29)

λ ≥ 0,
k∑

i=1

λi = 1, ξ � 0. (2.30)

Further, assume that F(= f(·) + (·)Tw) is vector GF-invex with respect to η at x on D, g is
strictlyGg-invex with respect to η at x on D, ht, t ∈ T+(x), is Ght -invex with respect to η at x on D,
and ht, t ∈ T−(x), is Ght -incave with respect to η at x on D. Moreover, suppose that Ggj (0) = 0
for j ∈ J and Ght(0) = 0 for t ∈ T+(x) ∪ T−(x). Then x is a weak Pareto optimal point in problem
(NMP).

Proof. Suppose that x is not a weak Pareto optimal point in problem (NMP). Then there exists
x∗ ∈ D such that GFi(fi(x

∗) + s(x∗ | Ci)) < GFi(fi(x) + s(x | Ci)), i = 1, . . . , k. Since 〈wi, x〉 =
s(x | Ci), i = 1, . . . , k,

GFi

(
fi(x∗) + x∗Twi

)
< GFi

(
fi(x∗) + s(x∗ | Ci)

)

< GFi

(
fi(x) + s(x | Ci)

)

= GFi

(
fi(x) + xTwi

)
.

(2.31)
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Thus we get

GFi

(
fi(x∗) + x∗Twi

)
< GFi

(
fi(x) + xTwi

)
, i ∈ I. (2.32)

By assumption, F(= f(·) + (·)Tw) is GF-invex with respect to η at x on D. Then by
Definition 1.3, for any i ∈ I,

[
GFi

(
fi(x∗) + x∗Twi

)]
−
[
GFi

(
fi(x) + xTwi

)]

�
[
G′

Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)]
η(x∗, x).

(2.33)

Hence by (2.32) and (2.33), we obtain

[
G′

Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)]
η(x∗, x) < 0, i ∈ I. (2.34)

Since (x, λ, ξ, μ,w) satisfy the G-Karush-Kuhn-Tucker conditions, by λ ≥ 0,

k∑

i=1

λi
[
G′

Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)]
η(x∗, x) < 0, i ∈ I. (2.35)

Since g is strictly Gg-invex with respect to η at x on D,

Ggj

(
gj(x∗)

) −Ggj

(
gj(x)

)
> G′

gj

(
gj(x)

)∇gj(x)η(x∗, x). (2.36)

Thus, by ξ � 0,

ξjGgj

(
gj(x∗)

) − ξjGgj

(
gj(x)

)
� ξjG

′
gj

(
gj(x)

)∇gj(x)η(x∗, x). (2.37)

Then, (2.28),(2.30) imply

m∑

j=1

ξjG
′
gj

(
gj(x)

)∇gj(x)η(x∗, x) � 0. (2.38)

By assumption, ht, t ∈ T+(x), is Ght -invex with respect to η at x on D, and ht, t ∈ T−(x), is
Ght -incave with respect to η at x on D. Then, by Definition 1.3, we have,

Ght(ht(x∗)) −Ght(ht(x)) � G′
ht
(ht(x))∇ht(x)η(x∗, x), t ∈ T+(x),

Ght(ht(x∗)) −Ght(ht(x)) � G′
ht
(ht(x))∇ht(x)η(x∗, x), t ∈ T−(x).

(2.39)

Thus, for any t ∈ T+,

μtGht(ht(x∗)) − μtGht(ht(x)) � μtG
′
ht
(ht(x))∇ht(x)η(x∗, x). (2.40)
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Since x∗ ∈ D and x ∈ D, then the inequality above implies

p∑

t=1

μtG
′
ht
(ht(x))∇ht(x)η(x∗, x) � 0. (2.41)

Adding both sides of inequalities (2.35), (2.38) and (2.41),

[
k∑

i=1

λiG
′
Fi

(
fi(x) + xTwi

)(∇fi(x) +wi

)

+
m∑

j=1

ξjG
′
gj

(
gj(x)

)∇gj(x) +
p∑

t=1

μtG
′
ht
(ht(x))∇ht(x)

⎤

⎦η(x∗, x) < 0,

(2.42)

which contradicts (2.27). Hence, x is a weak Pareto optimal for (NMP).
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