Skip to main content

Blow up, growth, and decay of solutions for a class of coupled nonlinear viscoelastic Kirchhoff equations with distributed delay and variable exponents

Abstract

In this work, we consider a quasilinear system of viscoelastic equations with dispersion, source, distributed delay, and variable exponents. Under a suitable hypothesis the blow-up and growth of solutions are proved, and by using an integral inequality due to Komornik the general decay result is obtained in the case of absence of the source term \(f_{1}=f_{2}=0\).

1 Introduction

Our understanding of real-world phenomena and our technology today are largely based on mathematical analysis for partial differential equations (PDEs) [1, 2, 4, 5]. This mathematical analysis helps us to visualize and understand different real-world problems [7, 8, 10, 11]. The mathematical analysis study of PDEs has also taught us to show a little modesty: we have discovered the impossibility of predicting certain phenomena governed by nonlinear PDEs in the medium term—think of the now famous butterfly effect: a small variation of the initial conditions can lead to very large variations in very long time. On the other hand, we have also learned to “hear the shape of a drum”: it has been shown mathematically that the frequencies emitted by a drum during membrane vibration—a phenomenon described by a PDE—allow the drum shape to be perfectly reconstructed. One of the things to keep in mind about PDEs is that you usually do not want to get their solutions explicitly! What mathematics can do, on the other hand, is to say whether one or more solutions exist, and sometimes to very precisely describe certain properties of these solutions. However, the emergence of extremely powerful computers today makes it possible to obtain approximate solutions for partial derivative equations, even very complicated. This is what happens, for example, when you look at the weather forecast, or when we see the moving images of a simulation of airflow on the wing of airplane. The role of mathematicians is then to build approximation schemes and to demonstrate the relevance of the simulations by establishing a priori estimates on the made errors. When did EDP appear? They likely originated in the early days of rational mechanics in the seventeenth century, with figures like Newton and Leibniz playing crucial roles. As scientific disciplines, especially physics, advanced in energy functional, fluid mechanics equations, Navier–Stokes equations, where they contributed to the expansion of partial differential equations (PDEs).

To highlight a few key contributors, Euler’s name stands out, as well as Navier and Stokes for fluid mechanics equations, Fourier for heat equations, Maxwell for electromagnetism equations, and Schrödinger, Heisenberg, and Einstein for quantum mechanics and the theory of relativity PDEs, respectively (see e.g. [1, 6, 9] and the references therein). Nevertheless, the systematic examination of partial differential equations (PDEs) is relatively recent, with mathematicians embarking on this endeavor only in the twentieth century. A significant leap occurred with Schwartz’s formulation of the theory of distributions in the 1950s, and comparable progress emerged through Hörmander’s work on pseudo-differential calculus in the early 1970s. Importantly, the study of PDEs remains highly active as we progress into the twenty-first century [1216]. Mathematics serves as a potent tool in both scientific inquiry and engineering applications, enabling precise modeling, analysis, and solution exploration of complex mathematical systems fundamental to advancing our understanding of the natural world and optimizing technological innovations [1719, 2123]. This research not only influences applied sciences but also plays a crucial role in the ongoing evolution of mathematics itself, particularly in the domains of geometry and analysis. In this work, the following problem is addressed:

$$ \textstyle\begin{cases} \vert v_{t} \vert ^{\eta }v_{tt}-M( \Vert \nabla v \Vert _{2}^{2}) \Delta v+\int _{0}^{t}h_{1}(t-r)\Delta v(r)\,dr-\Delta v_{tt}+ \beta _{1} \vert v_{t}(t) \vert ^{m(y)-2} v_{t}(t) \\ \quad {}+\int _{\tau _{1}}^{\tau _{2}}\beta _{2}(r) \vert v_{t}(t-r) \vert ^{m(y)-2} v_{t}(t-r)\,dr =f_{1} ( v,w ) , \quad ( y,t ) \in \Omega \times ( 0,T ), \\ \vert w_{t} \vert ^{\eta }w_{tt}-M( \Vert \nabla w \Vert _{2}^{2}) \Delta w+\int _{0}^{t}h_{2}(t-r)\Delta w(r)\,dr \\ \quad {}-\Delta w_{tt}+ \beta _{3} \vert w_{t}(t) \vert ^{s(y)-2} w_{t}(t) \\ \quad {}+\int _{\tau _{1}}^{\tau _{2}}\beta _{4}(r) \vert w_{t}(t-r) \vert ^{s(y)-2} w_{t}(t-r)\,dr =f_{2} ( v,w ) , \quad ( y,t ) \in \Omega \times ( 0,T ) , \\ v ( y,t ) =w ( y,t ) =0,\quad ( y,t ) \in \partial \Omega \times ( 0,T ) , \\ v ( y,0 ) =v_{0} ( y ) ,\qquad v_{t} ( y,0 ) =v_{1} ( y ) , \quad y\in \Omega , \\ w ( y,0 ) =w_{0} ( y ) ,\qquad w_{t} ( y,0 ) =w_{1} ( y ) ,\quad y\in \Omega , \\ v_{t}( y,-t) =f_{0}( y,t),\qquad w_{t}( y,-t) =g_{0}( y,t) \quad \text{in } \Omega \times (0, \tau _{2}), \end{cases} $$
(1.1)

in which \(\eta \geq 0\) for \(N=1,2\) and \(0<\eta \leq \frac{2}{N-2}\) for \(N\geq 3\), and \(h_{i}(.):R^{+}\rightarrow R^{+}\) (\(i=1,2\)) represents positive relaxation functions, which will be specified later. The term \(-\Delta ( . ) {tt}\) denotes the dispersion term, and \(M(\sigma )\) is a nonnegative locally Lipschitz function for \(\gamma ,\sigma \geq 0\) such that \(M(\sigma )=\alpha{1}+\alpha _{2}\sigma ^{\gamma}\). Specifically, we choose \(\alpha _{1}=\alpha _{2}=1\), and

$$ \textstyle\begin{cases} f_{1}(v,w)=a_{1} \vert v+w \vert ^{2(q(y)+1)}(v+w)+b_{1} \vert v \vert ^{q(y)}.v. \vert w \vert ^{q(y)+2}, \\ f_{2}(v,w)=a_{1} \vert v+w \vert ^{2(q(y)+1)}(v+w)+b_{1} \vert w \vert ^{q(y)}.w. \vert v \vert ^{q(y)+2}. \end{cases} $$
(1.2)

In this context, we consider nonnegative constants \(\tau _{1}<\tau _{2}\) such that \(\beta {i} : [\tau{1}, \tau _{2}] \rightarrow \mathbb{R}\), where \(i=2,4\) represents the time delay in the distributive case. Furthermore, \(q(.)\), \(m(.)\), and \(s(.)\) are variable exponents defined as measurable functions on Ω̅ in the following manner:

$$\begin{aligned}& 1\leq q^{-}\leq q(y)\leq q^{+}\leq q^{*}, \\& 2\leq m^{-}\leq m(y)\leq m^{+}\leq m^{*}, \\& 2\leq s^{-}\leq s(y)\leq s^{+}\leq s^{*}, \end{aligned}$$
(1.3)

where

$$\begin{aligned}& q^{-}= \inf_{y\in \overline{\Omega}} q(y), \qquad m^{-}= \inf _{y\in \overline{\Omega}} m(y), \qquad s^{-}= \inf_{y\in \overline{\Omega}} s(y), \\& q^{+}= \sup_{y\in \overline{\Omega}} q(y), \qquad m^{+}= \sup _{y\in \overline{\Omega}} m(y),\qquad s^{+}= \sup_{y\in \overline{\Omega}} s(y), \end{aligned}$$
(1.4)

with

$$ \max \bigl\{ m^{+},s^{+}\bigr\} \leq 2q^{-}+1 $$
(1.5)

and

$$ m^{*},s^{*}=\frac{2(n-1)}{n-2} \quad \text{if } n\geq 3. $$
(1.6)

This research is organized into distinct sections. In the following section, we present the hypotheses, concepts, and lemmas essential for our study. Section 2 is dedicated to proving the blow-up result, followed by the derivation of exponential growth of solutions. In Sect. 4, we establish the general decay when \(f_{1}=f_{2}=0\). The paper concludes with a comprehensive summary in the final section.

2 Fundamental theory

The importance of studying the blow-up of solutions in various systems lies in its ability to reveal critical thresholds, instabilities, and singularities that can significantly impact the behavior and evolution of dynamic processes [2730]. Here, we will present some related theory and will define suitable assumptions for the proof of blow-up result.

(A1) Take a decreasing and differentiable function \(h_{i}: \mathbb{R}_{+}\rightarrow \mathbb{R}_{+}\) in a manner that

$$\begin{aligned}& h_{i}(t)\geq 0 , \qquad 1- \int _{0}^{\infty }h_{i} ( r ) \,dr=l_{i}>0, \quad i=1,2. \end{aligned}$$
(2.1)

(A2) One can find \(\xi _{1},\xi _{2}>0\) in a way that

$$\begin{aligned}& h_{i}^{\prime } ( t ) \leq -\xi _{i} h_{i} ( t ) ,\quad t\geq 0, i=1,2. \end{aligned}$$
(2.2)

(A3) \(\beta _{i}:[\tau _{1}, \tau _{2}]\rightarrow \mathbb{R}\), \(i=2,4\), are a bounded functions satisfying

$$\begin{aligned}& \delta \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \,dr< \beta _{1}, \quad \delta >1, \\& \delta \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \,dr< \beta _{3},\quad \delta >1. \end{aligned}$$
(2.3)

Lemma 2.1

There exists \(F(v, w)\) in a manner that

$$\begin{aligned} F(v, w) =&\frac{1}{2(q(y)+2)} \bigl[v f_{1}(v, w)+w f_{2}(v, w) \bigr] \\ =&\frac{1}{2(q(y)+2)} \bigl[a_{1} \vert v+w \vert ^{2(q(y)+2)}+2 b_{1} \vert v w \vert ^{q(y)+2} \bigr] \geq 0, \end{aligned}$$

in which

$$\begin{aligned} \frac{\partial F}{\partial v}=f_{1}(v, w), \qquad \frac{\partial F}{\partial w}=f_{2}(v, w). \end{aligned}$$

Here, consider \(a_{1}=b_{1} = 1 \) for convenience.

Lemma 2.2

[26] One can find \(c_{0}>0\) and \(c_{1}>0\) in a way that

$$\begin{aligned} \frac{c_{0}}{2(q(y)+2)} \bigl( \vert v \vert ^{2(q(y)+2)}+ \vert w \vert ^{2(q(y)+2)} \bigr) \leq& F(v, w) \\ \leq& \frac{c_{1}}{2(q(y)+2)} \bigl( \vert v \vert ^{2(q(y)+2)}+ \vert w \vert ^{2(q(y)+2)} \bigr). \end{aligned}$$
(2.4)

Consider a measurable function \(q:\Omega \rightarrow [1,\infty )\). We introduce the Lebesgue space with a variable exponent \(q(.)\) as follows:

$$ L^{q(.)}(\Omega )= \biggl\{ v:\Omega \rightarrow \mathbb{R}; \text{measurable in } \Omega : \int _{\Omega} \vert v \vert ^{q(.)}\,dy< \infty \biggr\} , $$

with the norm defined by

$$ \Vert v \Vert _{q(.)}=\inf \biggl\{ \lambda >0: \int _{\Omega} \biggl\vert \frac{v}{\lambda} \biggr\vert ^{q(y)}\,dy\leq 1 \biggr\} . $$

Endowed with this norm, \(L^{q(.)}(\Omega )\) forms a Banach space. Subsequently, we introduce the variable-exponent Sobolev space \(W^{1,q(.)}(\Omega )\) as follows:

$$ W^{1,q(.)}(\Omega )= \bigl\{ v \in L^{q(.)}(\Omega ); \nabla v \text{ exists and } \vert \nabla v \vert \in L^{q(.)}(\Omega ) \bigr\} , $$

with the norm given by

$$ \Vert v \Vert _{1,q(.)}= \Vert v \Vert _{q(.)}+ \Vert \nabla v \Vert _{q(.)}, $$

\(W^{1,q(.)}(\Omega )\) is a Banach space, and the closure of \(C^{\infty}_{0}(\Omega )\) is given by \(W^{1,q(.)}_{0}(\Omega )\).

For \(v\in W^{1,q(.)}_{0}(\Omega )\), we give the equivalent norm

$$ \Vert v \Vert _{1,q(.)}= \Vert \nabla v \Vert _{q(.)}. $$

\(W^{-1,q'(.)}_{0}(\Omega )\) sign to the dual of \(W^{1,q(.)}_{0}(\Omega )\) in which \(\frac{1}{q(.)}+\frac{1}{q'(.)}=1\).

Also, we take the log-Hölder inequality

$$\begin{aligned} \bigl\vert q(y)-q(z) \bigr\vert \leq -\frac{A}{\log \vert y-z \vert } \end{aligned}$$
(2.5)

for all \(y,z\in \Omega \), with \(\vert y-z\vert <\zeta \), where \(0<\zeta <1\) and \(A>0\).

Theorem 2.3

Assume (2.1)(2.3) hold. Then, for any \((v_{0},v_{1},w_{0},w_{1},f_{0},g_{0})\in \mathcal{H}\), (1.1) has a unique solution for some \(T>0\):

$$\begin{aligned}& v,w\in C\bigl([0,T]; H^{2}(\Omega )\cap H^{1}_{0}( \Omega )\bigr), \\& v_{t}\in C\bigl([0,T]; H^{1}_{0}(\Omega ) \bigr)\cap L^{m(y)}\bigl(\Omega \times (0,T)\bigr) \cap \mathcal{H}_{1}, \\& w_{t}\in C\bigl([0,T]; H^{1}_{0}(\Omega ) \bigr)\cap L^{s(y)}\bigl(\Omega \times (0,T)\bigr) \cap \mathcal{H}_{2}, \end{aligned}$$

where

$$\begin{aligned}& \mathcal{H}_{1}= L^{m(y)}\bigl(\Omega \times (0,1)\times ( \tau _{1}, \tau _{2})\bigr), \\& \mathcal{H}_{2}= L^{s(y)}\bigl(\Omega \times (0,1)\times ( \tau _{1}, \tau _{2})\bigr), \\& \mathcal{H}= H^{1}_{0}(\Omega )\times L^{2}( \Omega )\times H^{1}_{0}( \Omega ) \times L^{2}( \Omega )\times \mathcal{H}_{1}\times \mathcal{H}_{2}. \end{aligned}$$

Proof

We can prove the local existence result for (1.1) in suitable Sobolev spaces by exploiting the Faedo–Galerkin approximation method (see [3, 24]). □

Firstly, we take the following variables as mentioned in [25]:

$$\begin{aligned}& x(y, \rho , r, t)=v_{t}(y, t-r\rho ), \\& z(y, \rho , r, t)=w_{t}(y, t-r\rho ), \end{aligned}$$

which verify

$$ \textstyle\begin{cases} r x_{t}(y, \rho , r, t)+x_{\rho}(y, \rho , r, t)=0, \\ x(y, 0, r, t)=v_{t}(y, t), \end{cases} $$
(2.6)

and

$$ \textstyle\begin{cases} r z_{t}(y, \rho , r, t)+z_{\rho}(y, \rho , r, t)=0, \\ z(y, 0, r, t)=w_{t}(y, t). \end{cases} $$
(2.7)

Then, problem (1.1) is equivalent to

$$ \textstyle\begin{cases} \vert v_{t} \vert ^{\eta }v_{tt}-M( \Vert \nabla v \Vert _{2}^{2}) \Delta v+\int _{0}^{t}h_{1}(t-r)\Delta v(r)\,dr-\Delta v_{tt}+ \beta _{1} \vert v_{t}(t) \vert ^{m(y)-2} v_{t}(t) \\ \quad {}+\int _{\tau _{1}}^{\tau _{2}}\beta _{2}(r) \vert x(y,1,r,t) \vert ^{m(y)-2} x(y,1,r,t)\,dr =f_{1} ( v,w ), \\ \vert w_{t} \vert ^{\eta }w_{tt}-M( \Vert \nabla w \Vert _{2}^{2}) \Delta w+\int _{0}^{t}h_{2}(t-r)\Delta w(r)\,dr \\ \quad {}-\Delta w_{tt}+ \beta _{3} \vert w_{t}(t) \vert ^{s(y)-2} w_{t}(t) \\ \quad {}+\int _{\tau _{1}}^{\tau _{2}}\beta _{4}(r) \vert z(y,1,r,t) \vert ^{s(y)-2} z(y,1,r,t)\,dr =f_{2} ( v,w ), \\ r x_{t}(y, \rho , r, t)+x_{\rho}(y, \rho , r, t)=0, \\ r z_{t}(y, \rho , r, t)+z_{\rho}(y, \rho , r, t)=0. \\ v( y,0) =v_{0}( y),\qquad v_{t}( y,0) =v_{1}( y),\qquad w( y,0) =w_{0}( y), \\ w_{t}( y,0) =w_{1}( y),\quad \text{in } \Omega \\ x(y,\rho ,r,0)=f_{0}(y,\rho r),\qquad z(y,\rho ,r,0)=g_{0}(y,\rho r),\quad \text{in } \Omega \times (0,1)\times (0, \tau _{2}) \\ v( y,t) =w(y,t)=0,\quad \text{in } \partial \Omega \times (0, T), \end{cases} $$
(2.8)

where

$$ (y, \rho , r, t)\in \Omega \times (0,1)\times (\tau _{1},\tau _{2}) \times (0,T). $$

In the upcoming step, the energy functional is introduced.

Lemma 2.4

Let (2.1)(2.3) be satisfied, and assume that \((v,w,x,z)\) is a solution of (2.8), then \(E(t)\) is nonincreasing, that is,

$$\begin{aligned} E(t) =&\frac{1}{\eta +2} \bigl[ \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2} \bigr]+\frac{1}{2} \bigl[ \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} \bigr] \\ &{}+\frac{1}{2(\gamma +1)} \bigl[ \Vert \nabla v \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)} \bigr]+\mathcal{W}(x,z) \\ &{}+\frac{1}{2} \biggl[ \biggl(1- \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \biggr] \\ &{}+\frac{1}{2} \bigl[(h_{1}o\nabla v) (t)+(h_{2}o \nabla w) (t) \bigr]- \int _{\Omega}F(v,w)\,dy \end{aligned}$$
(2.9)

fulfills

$$\begin{aligned} E'(t) \leq & \frac{1}{2} \bigl[\bigl(h'_{1}o \nabla v\bigr) (t)+\bigl(h'_{2}o\nabla w\bigr) (t) \bigr]- \frac{1}{2} \bigl[h_{1}(t) \Vert \nabla v \Vert _{2}^{2}+h_{2}(t) \Vert \nabla w \Vert _{2}^{2} \bigr] \\ &{}-C_{0} \biggl\{ \int _{\Omega} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy+ \int _{ \Omega} \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dr\,dy \\ &{}+ \int _{\Omega} \bigl\vert w_{t}(t) \bigr\vert ^{s(y)}\,dy+ \int _{\Omega} \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)}\,dr\,dy \biggr\} \\ \leq & 0, \end{aligned}$$
(2.10)

where

$$\begin{aligned} \mathcal{W}(x,z) =& \int _{\Omega} \int _{0}^{1} \int _{ \tau _{1}}^{ \tau _{2}}r \bigl\vert \beta _{2}(r) \bigr\vert \frac{(\delta m(y)-1) \vert x(y,\rho ,r,t) \vert ^{m(y)}}{m(y)}\,dr \,d\rho \,dy \\ &{}+ \int _{\Omega} \int _{0}^{1} \int _{ \tau _{1}}^{\tau _{2}}r \bigl\vert \beta _{4}(r) \bigr\vert \frac{(\delta s(y)-1) \vert z(y,\rho ,r,t) \vert ^{s(y)}}{s(y)}\,dr \,d\rho \,dy. \end{aligned}$$
(2.11)

Proof

By multiplying (2.8)1, (2.8)2 by \(v_{t}\), \(w_{t}\) and integrating over Ω, we have

$$\begin{aligned}& \frac {d}{dt} \biggl\{ \frac{1}{\eta +2} \Vert v_{t} \Vert _{\eta +2}^{ \eta +2}+\frac{1}{\eta +2} \Vert w_{t} \Vert _{\eta +2}^{\eta +2}+ \frac{1}{2} \Vert \nabla v_{t} \Vert _{2}^{2}+\frac{1}{2} \Vert \nabla w_{t} \Vert _{2}^{2} \\& \qquad {}+\frac{1}{2(\gamma +1)} \bigl[ \Vert \nabla v \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)} \bigr] \\& \qquad {}+\frac{1}{2} \biggl(1- \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+\frac{1}{2} \biggl(1- \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \\& \qquad {}+\frac{1}{2}(h_{1}o\nabla v) (t)+\frac{1}{2}(h_{2}o \nabla w) (t)- \int _{\Omega}F(v,w)\,dy \biggr\} \\& \quad = -\beta _{1} \int _{\Omega} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy- \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}}\beta _{2}(r) v_{t} \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2} x(y,1,r,t)\,dr \\& \qquad {}-\beta _{3} \int _{\Omega} \bigl\vert w_{t}(t) \bigr\vert ^{s(y)}\,dy- \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}}\beta _{4}(r) w_{t} \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)-2} z(y,1,r,t) \,dr \\& \qquad {}+\frac{1}{2}\bigl(h_{1}'o\nabla v\bigr)- \frac{1}{2}h_{1}(t) \Vert \nabla v \Vert _{2}^{2}+\frac{1}{2}\bigl(h_{2}'o \nabla w\bigr)-\frac{1}{2}h_{2}(t) \Vert \nabla w \Vert _{2}^{2}. \end{aligned}$$
(2.12)

Now, multiplying (2.8)3 by \((\frac{\delta m(y)-1}{m(y)} \vert x(y,1,r,t) \vert ^{m(y)-1} \vert \beta _{2}(r)\vert )\), then integrating over \(\Omega \times (0, 1)\times (\tau _{1}, \tau _{2})\), and applying (2.6)2, the following is obtained:

$$\begin{aligned}& \frac {d}{dt } \int _{\Omega} \int _{0}^{1} \int _{\tau _{1}}^{\tau _{2}}r \bigl\vert \beta _{2}(r) \bigr\vert \frac{(\delta m(y)-1) \vert x(y,\rho ,r,t) \vert ^{m(y)}}{m(y)}\,dr \,d\rho \,dr \\& \quad = - \int _{\Omega} \int _{0}^{1} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \bigl(\delta m(y)-1\bigr) \vert x \vert ^{m(y)-1} x_{\rho }\,dr \,d\rho \,dy \\& \quad = - \int _{\Omega} \int _{0}^{1} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \frac{\delta m(y)-1}{m(y)}\frac{d}{d\rho} \bigl\vert x(y,\rho ,r,t) \bigr\vert ^{m(y)}\,dr \,d\rho \,dy \\& \quad = \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \frac{\delta m(y)-1}{m(y)} \bigl( \bigl\vert x( y, 0 , r, t) \bigr\vert ^{m(y)} - \bigl\vert x(y, 1, r, t) \bigr\vert ^{m(y)} \bigr) \,dr \,dy \\& \quad = \biggl( \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \,dr \biggr) \int _{\Omega}\frac{\delta m(y)-1}{m(y)} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \\& \qquad {}- \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \frac{\delta m(y)-1}{m(y)} \bigl\vert x ( y, 1, r, t ) \bigr\vert ^{m(y)}\,dr \,dy, \end{aligned}$$
(2.13)

and by the inequalities of Young, we have

$$\begin{aligned}& \int _{\Omega} v_{t} \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}x(y,1,r,t)\,dy \\& \quad \leq \int _{\Omega}\frac{1}{m(y)} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy+ \int _{\Omega}\frac{m(y)-1}{m(y)} \bigl\vert x ( y, 1, r, t ) \bigr\vert ^{m(y)}\,dy. \end{aligned}$$
(2.14)

Hence,

$$\begin{aligned}& \int _{\tau _{1}}^{\tau _{2}} \beta _{2}(r) \int _{\Omega} v_{t} \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}x(y,1,r,t)\,dx\,ds \\& \quad \leq \biggl( \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \,dr \biggr) \int _{\Omega}\frac{1}{m(y)} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \\& \qquad {}+ \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \frac{m(y)-1}{m(r)} \bigl\vert x ( y, 1, r, t ) \bigr\vert ^{m(y)}\,ds\,dx. \end{aligned}$$
(2.15)

Similarly, we get

$$\begin{aligned}& \frac {d}{dt } \int _{\Omega} \int _{0}^{1} \int _{\tau _{1}}^{\tau _{2}}r \bigl\vert \beta _{4}(r) \bigr\vert \frac{(\delta s(y)-1) \vert z(y,\rho ,r,t) \vert ^{s(y)}}{s(y)}\,dr \,d\rho \,dy \\& \quad = \biggl( \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \,dr \biggr) \int _{\Omega}\frac{\delta s(y)-1}{s(y)} \bigl\vert w_{t}(t) \bigr\vert ^{s(y)}\,dy \\& \qquad {}- \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \frac{\delta s(y)-1}{s(y)} \bigl\vert z ( y, 1, r, t ) \bigr\vert ^{s(y)}\,dr \,dy \end{aligned}$$
(2.16)

and

$$\begin{aligned}& \int _{\tau _{1}}^{\tau _{2}} \beta _{4}(r) \int _{\Omega} w_{t} \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)-2}z(y,1,r,t)\,dy\,dr \\& \quad \leq \biggl( \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \,dr \biggr) \int _{\Omega}\frac{1}{s(y)} \bigl\vert w_{t}(t) \bigr\vert ^{s(y)}\,dy \\& \qquad {}+ \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \frac{s(y)-1}{s(y)} \bigl\vert z ( y, 1, r, t ) \bigr\vert ^{s(y)}\,ds\,dx. \end{aligned}$$
(2.17)

According to (2.12), (2.13), (2.15), (2.16), (2.17), we find (2.9) and

$$\begin{aligned} \frac{d}{dt}E(t) \leq &- \biggl(\beta _{1}-\delta \int _{\tau _{1}}^{ \tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \,dr \biggr) \int _{\Omega} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \\ &{}-(\delta -1) \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dr\,dy \\ &{}- \biggl(\beta _{3}-\delta \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \,dr \biggr) \int _{\Omega} \bigl\vert w_{t}(t) \bigr\vert ^{s(y)}\,dy \\ &{}-(\delta -1) \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)}\,dr\,dy \\ &{}+\frac{1}{2}\bigl(h_{1}'o\nabla v\bigr)- \frac{1}{2}h_{1}(t) \Vert \nabla v \Vert _{2}^{2}+\frac{1}{2}\bigl(h_{2}'o \nabla w\bigr)-\frac{1}{2}h_{2}(t) \Vert \nabla w \Vert _{2}^{2}. \end{aligned}$$
(2.18)

Hence, by (2.3), we obtain (2.10), where

$$ C_{0}=\min \biggl\{ \biggl(\beta _{1}-\delta \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(s) \bigr\vert \,ds \biggr), \biggl(\beta _{3}-\delta \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(s) \bigr\vert \,ds \biggr),(\delta -1) \biggr\} >0, $$

and hence E is a decreasing function, which completes the proof. □

3 Blow-up

Here, we establish the blow-up result for the solution of (2.8). Initially, we introduce the functional as follows:

$$\begin{aligned} \mathbb{H}(t) =&-E(t)=-\frac{1}{\eta +2} \bigl[ \Vert v_{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2} \bigr]- \frac{1}{2} \bigl[ \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} \bigr] \\ &{}-\frac{1}{2(\gamma +1)} \bigl[ \Vert \nabla v \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)} \bigr]-\mathcal{W}(x,z) \\ &{}-\frac{1}{2} \biggl[ \biggl(1- \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \biggr] \\ &{}-\frac{1}{2} \bigl[(h_{1}o\nabla v) (t)+(h_{2}o \nabla w) (t) \bigr]+ \int _{\Omega}F(v,w)\,dy. \end{aligned}$$
(3.1)

Theorem 3.1

Assume that (2.1)(2.3) hold and assume \(E(0)<0\), then the solution of (2.8) blows up in finite time.

Proof

From (2.9), the following can be written:

$$ E(t)\leq E(0)\leq 0. $$
(3.2)

Therefore

$$\begin{aligned} \mathbb{H}'(t) =&-E'(t) \\ \geq & C_{0} \biggl\{ \int _{\Omega} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy+ \int _{\Omega} \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dr\,dy \\ &{}+ \int _{\Omega} \bigl\vert w_{t}(t) \bigr\vert ^{s(y)}\,dy+ \int _{\Omega} \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)}\,dr\,dy \biggr\} . \end{aligned}$$
(3.3)

Hence

$$\begin{aligned}& \mathbb{H}'(t) \geq C_{0} \int _{\Omega} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \geq 0 \\& \mathbb{H}'(t) \geq C_{0} \int _{\Omega} \bigl\vert w_{t}(t) \bigr\vert ^{s(y)}\,dy \geq 0 \\& \mathbb{H}'(t) \geq C_{0} \int _{\Omega} \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dr\,dy\geq 0 \\& \mathbb{H}'(t) \geq C_{0} \int _{\Omega} \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)}\,dr\,dy\geq 0. \end{aligned}$$
(3.4)

By (3.1) and (2.4), we have

$$\begin{aligned} 0 \leq& \mathbb{H}(0)\leq \mathbb{H}(t) \\ \leq & \int _{\Omega}F(v,w)\,dy \\ \leq & \int _{\Omega}\frac{c_{1}}{2(q(y)+2)} \bigl( \vert v \vert ^{2(q(y)+2)}+ \vert w \vert ^{2(q(y)+2)} \bigr)\,dy \\ \leq &\frac{c_{1}}{2(q^{-}+2)}\bigl(\varrho (v)+\varrho (w)\bigr), \end{aligned}$$
(3.5)

in which

$$ \varrho (v)=\varrho _{q(.)}(v)= \int _{\Omega} \vert v \vert ^{2(q(y)+2)}\,dy. $$

Lemma 3.2

Let \(\exists c>0\) in a way that any solution of (2.8) fulfills

$$ \Vert v \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)}+ \Vert w \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq c\bigl(\varrho (v)+\varrho (w)\bigr). $$
(3.6)

Proof

Let

$$ \Omega _{1}=\bigl\{ y\in \Omega : \bigl\vert v(y,t) \bigr\vert \geq 1\bigr\} , \qquad \Omega _{2}=\bigl\{ y\in \Omega : \bigl\vert v(y,t) \bigr\vert < 1\bigr\} , $$
(3.7)

we have

$$\begin{aligned} \varrho (v) =& \int _{\Omega _{1}} \vert v \vert ^{2(q(y)+2)}\,dy+ \int _{ \Omega _{2}} \vert v \vert ^{2(q(y)+2)}\,dy \\ \geq & \int _{\Omega _{1}} \vert v \vert ^{2(q^{-}+2)}\,dy+c\biggl( \int _{ \Omega _{2}} \vert v \vert ^{2(q^{-}+2)}\,dy \biggr)^{ \frac{2(q^{+}+2)}{2(q^{-}+2)}}, \end{aligned}$$
(3.8)

then

$$\begin{aligned}& \varrho (v) \geq \int _{\Omega _{1}} \vert v \vert ^{2(q^{-}+2)}\,dy \\& \biggl(\frac{\varrho (v)}{c}\biggr)^{\frac{2(q^{-}+2)}{2(q^{+}+2)}} \geq \int _{ \Omega _{1}} \vert v \vert ^{2(q^{-}+2)}\,dy. \end{aligned}$$
(3.9)

Hence, we get

$$\begin{aligned} \Vert v \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq &\varrho (v)+c\bigl( \varrho (v)\bigr)^{ \frac{2(q^{-}+2)}{2(q^{+}+2)}} \\ \leq &\bigl(\varrho (v)+\varrho (w)\bigr)+c\bigl(\varrho (v)+\varrho (w) \bigr)^{ \frac{2(q^{-}+2)}{2(q^{+}+2)}} \\ \leq &\bigl(\varrho (v)+\varrho (w)\bigr)\bigl[1+c\bigl(\varrho (v)+\varrho (w) \bigr)^{ \frac{2(q^{-}+2)}{2(q^{+}+2)}-1}\bigr]. \end{aligned}$$
(3.10)

According to (3.5), we have

$$\begin{aligned} \frac{\mathbb{H}(0)}{c}\leq \bigl(\varrho (v)+\varrho (w)\bigr). \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert v \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq &\bigl(\varrho (v)+ \varrho (w)\bigr)\bigl[1+c\bigl( \mathbb{H}(0)\bigr)^{\frac{2(q^{-}+2)}{2(q^{+}+2)}-1}\bigr]. \end{aligned}$$

Hence

$$ \Vert v \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq c\bigl(\varrho (v)+ \varrho (w)\bigr). $$
(3.11)

Similarly, we find

$$ \Vert w \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq c\bigl(\varrho (v)+ \varrho (w)\bigr). $$
(3.12)

The adding of (3.11) and (3.12) gives us (3.6). □

Corollary 3.3

$$\begin{aligned}& \int _{\Omega} \vert v \vert ^{m(y)}\,dy\leq c \bigl( \bigl(\varrho (v)+ \varrho (w)\bigr)^{m^{-}/2(q^{-}+2)}+\bigl(\varrho (v)+\varrho (w) \bigr)^{m^{+}/2(q^{-}+2)} \bigr), \\& \int _{\Omega} \vert w \vert ^{s(y)}\,dy\leq c \bigl( \bigl(\varrho (v)+ \varrho (w)\bigr)^{s^{-}/2(q^{-}+2)}+\bigl(\varrho (v)+\varrho (w) \bigr)^{s^{+}/2(q^{-}+2)} \bigr). \end{aligned}$$
(3.13)

Proof

From (1.5), we have

$$\begin{aligned} \int _{\Omega} \vert v \vert ^{m(y)}\,dy \leq & \int _{\Omega _{1}} \vert v \vert ^{m^{+}}\,dy+ \int _{\Omega _{2}} \vert v \vert ^{m^{-}}\,dy \\ \leq &c \biggl( \int _{\Omega _{1}} \vert v \vert ^{2(q^{-}+2)}\,dy \biggr)^{ \frac{m^{+}}{2(q^{-}+2)}}+c \biggl( \int _{\Omega _{2}} \vert v \vert ^{2(q^{-}+2)}\,dy \biggr)^{\frac{m^{-}}{2(q^{-}+2)}} \\ \leq &c \bigl( \Vert v \Vert ^{m^{+}}_{2(q^{-}+2)}+ \Vert v \Vert ^{m^{-}}_{2(q^{-}+2)} \bigr). \end{aligned}$$
(3.14)

According to Lemma 3.2, we find (3.13)1. Similarly, we obtain (3.13)2. □

Now, take

$$\begin{aligned} \mathcal{K}(t) =&\mathbb{H}^{1-\alpha}(t)+\frac{\varepsilon}{\eta +1} \int _{\Omega} \bigl[v \vert v_{t} \vert ^{\eta}v_{t}+w \vert w_{t} \vert ^{ \eta}w_{t} \bigr]\,dy \\ &{}+\varepsilon \int _{\Omega} [\nabla v_{t}\nabla v+\nabla w_{t} \nabla w ]\,dy, \end{aligned}$$
(3.15)

in which \(0<\varepsilon \) will be considered later and take

$$\begin{aligned} 0< \alpha < &\min \biggl\{ \biggl(1-\frac {1}{2(q^{-}+2)}- \frac{1}{\eta +2} \biggr),\frac{1+2\gamma}{4(\gamma +1)}, \frac{2q^{-}+4-m^{-}}{(2q^{-}+4)(m^{+}-1)}, \\ & \frac{2q^{-}+4-m^{+}}{(2q^{-}+4)(m^{+}-1)}, \frac{2q^{-}+4-r^{+}}{(2q^{-}+4)(s^{+}-1)}, \frac{2q^{-}+4-s^{-}}{(2q^{-}+4)(s^{+}-1)} \biggr\} < 1. \end{aligned}$$
(3.16)

By multiplying (2.8)1, (2.8)2 by v, w and with the help of (4.4), the following is achieved:

$$\begin{aligned} \mathcal{K}'(t) =&(1-\alpha )\mathbb{H}^{-\alpha} \mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\ &{}+ \underbrace{\varepsilon \int _{\Omega}\nabla v \int ^{t}_{0}g(t-r) \nabla v(r)\,dr \,dy}_{J_{1}} + \underbrace{\varepsilon \int _{\Omega}\nabla w \int ^{t}_{0}h(t-r) \nabla w(r)\,dr \,dy}_{J_{2}} \\ &{}- \underbrace{\varepsilon \beta _{1} \int _{\Omega} vv_{t} \vert v_{t} \vert ^{m(y)-2}\,dy}_{J_{3}}- \underbrace{\varepsilon \beta _{3} \int _{\Omega} ww_{t} \vert w_{t} \vert ^{s(y)-2}\,dy}_{J_{4}} \\ &{}- \underbrace{\varepsilon \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \beta _{2}(r) vx(y,1,r,t) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}\,dr \,dy}_{J_{5}} \\ &{}- \underbrace{\varepsilon \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}}\beta _{4}(r) wz(y,1,r,t) \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)-2}\,dr \,dy}_{J_{6}} \\ &{}-\varepsilon \bigl( \Vert \nabla v \Vert _{2}^{2}+ \Vert \nabla w \Vert _{2}^{2}\bigr)- \varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+\underbrace{\varepsilon \int _{\Omega}\bigl(vf_{1}(v,w)+wf_{2}(v,w) \bigr)\,dy}_{J_{7}}. \end{aligned}$$

By (2.1), we obtain

$$\begin{aligned} \mathcal{K}'(t) \geq &(1-\alpha )\mathbb{H}^{-\alpha} \mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\ &{}+ \underbrace{\varepsilon \int _{\Omega}\nabla v \int ^{t}_{0}g(t-r) \nabla v(r)\,dr \,dy}_{J_{1}} + \underbrace{\varepsilon \int _{\Omega}\nabla w \int ^{t}_{0}h(t-r) \nabla w(r)\,dr \,dy}_{J_{2}} \\ &{}- \underbrace{\varepsilon \beta _{1} \int _{\Omega} vv_{t} \vert v_{t} \vert ^{m(y)-2}\,dy}_{J_{3}}- \underbrace{\varepsilon \beta _{3} \int _{\Omega} ww_{t} \vert w_{t} \vert ^{s(y)-2}\,dy}_{J_{4}} \\ &{}- \underbrace{\varepsilon \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \beta _{2}(r) vx(y,1,r,t) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}\,dr \,dy}_{J_{5}} \\ &{}- \underbrace{\varepsilon \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}}\beta _{4}(r) wz(y,1,r,t) \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)-2}\,dr \,dy}_{J_{6}} \\ &{}-\varepsilon \bigl( \Vert \nabla v \Vert _{2}^{2}+ \Vert \nabla w \Vert _{2}^{2}\bigr)- \varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+\underbrace{\varepsilon \bigl(2q^{-}+4\bigr) \int _{\Omega}F(v,w)\,dy}_{J_{7}}. \end{aligned}$$
(3.17)

We have

$$\begin{aligned}& J_{1} = \varepsilon \int _{0}^{t}h_{1}(t-r)\,dr \int _{\Omega}\nabla v.\bigl( \nabla v(r)-\nabla v(t)\bigr)\,dy \,dr+\varepsilon \int _{0}^{t}h_{1}(r)\,dr \Vert \nabla v \Vert _{2}^{2} \\& \hphantom{J_{1}} \geq \frac{\varepsilon}{2} \int _{0}^{t}h_{1}(r)\,dr \Vert \nabla v \Vert _{2}^{2}-\frac{\varepsilon}{2}(h_{1}o\nabla v), \end{aligned}$$
(3.18)
$$\begin{aligned}& J_{2} = \varepsilon \int _{0}^{t}h_{2}(t-r)\,dr \int _{\Omega}\nabla w.\bigl( \nabla w(r)-\nabla w(t)\bigr)\,dy \,dr+\varepsilon \int _{0}^{t}h_{2}(r)\,dr \Vert \nabla w \Vert _{2}^{2} \\& \hphantom{J_{2}} \geq \frac{\varepsilon}{2} \int _{0}^{t}h_{2}(r)\,dr \Vert \nabla w \Vert _{2}^{2}-\frac{\varepsilon}{2}(h_{2}o\nabla w). \end{aligned}$$
(3.19)

From (4.5), we find

$$\begin{aligned} \mathcal{K}'(t) \geq &(1-\alpha )\mathbb{H}^{-\alpha} \mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \biggr] \\ &{}-\frac{\varepsilon}{2}(h_{1}o\nabla v)-\frac{\varepsilon}{2}(h_{2}o \nabla w)-\varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+J_{3}+J_{4}+J_{5}+J_{6}+J_{7} . \end{aligned}$$
(3.20)

Applying the inequality of Young, we have for \(\delta _{1},\delta _{2}>0\)

$$\begin{aligned}& J_{3} \leq \varepsilon \beta _{1} \biggl\{ \frac{1}{m^{-}} \int _{ \Omega}\delta _{1}^{m(y)} \vert v \vert ^{m(y)}\,dy+\frac{m^{+}-1}{m^{+}} \int _{\Omega}\delta _{1}^{-\frac{m(y)}{m(y)-1}} \vert v_{t} \vert ^{m(y)}\,dy \biggr\} , \end{aligned}$$
(3.21)
$$\begin{aligned}& J_{4} \leq \varepsilon \beta _{3} \biggl\{ \frac{1}{s^{-}} \int _{ \Omega}\delta _{2}^{s(y)} \vert w \vert ^{s(y)}\,dy+\frac{s^{+}-1}{s^{+}} \int _{\Omega}\delta _{2}^{-\frac{s(y)}{s(y)-1}} \vert w_{t} \vert ^{s(y)}\,dy \biggr\} , \end{aligned}$$
(3.22)

and

$$\begin{aligned}& J_{5} \leq \varepsilon \biggl\{ \frac{(\int _{\tau _{1}}^{\tau _{2}} \vert \beta _{2}(r) \vert \,dr)}{m^{-}} \int _{\Omega}\delta _{1}^{m(y)} \vert v \vert ^{m(y)}\,dy \\& \hphantom{J_{5} \leq} {}+\frac{m^{+}-1}{m^{-}} \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \delta _{1}^{-\frac{m(y)}{m(y)-1}} \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dr \,dy \biggr\} , \end{aligned}$$
(3.23)
$$\begin{aligned}& J_{6} \leq \varepsilon \biggl\{ \frac{(\int _{\tau _{1}}^{\tau _{2}} \vert \beta _{4}(r) \vert \,dr)}{s^{-}} \int _{\Omega}\delta _{2}^{s(y)} \vert w \vert ^{s(y)}\,dy \\& \hphantom{J_{6} \leq} {}+\frac{s^{+}-1}{s^{-}} \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \delta _{2}^{-\frac{s(y)}{s(y)-1}} \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)}\,dr \,dy \biggr\} . \end{aligned}$$
(3.24)

Therefore, by setting \(\delta _{1}\), \(\delta _{2}\) so that

$$\begin{aligned} \delta _{1}^{-\frac{m(y)}{m(y)-1}}=\frac{C_{0}}{2}\kappa \mathbb{H}^{- \alpha}(t), \qquad \delta _{2}^{-\frac{s(y)}{s(y)-1}}= \frac{C_{0}}{2}\kappa \mathbb{H}^{- \alpha}(t), \end{aligned}$$
(3.25)

putting in (3.20), the following is obtained:

$$\begin{aligned} \mathcal{K}'(t) \geq &\bigl[(1-\alpha )-\varepsilon \kappa ( \widehat{m}+ \widehat{s})\bigr]\mathbb{H}^{-\alpha}\mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1} \bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2} \bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \biggr] \\ &{}+\varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} \bigr)-\frac{\varepsilon}{2}(h_{1}o\nabla v)- \frac{\varepsilon}{2}(h_{2}o\nabla w) \\ &{}-\varepsilon \frac{\beta _{1}(\delta +1)}{\delta m^{-}} \int _{ \Omega}\biggl(\frac{C_{0}\kappa}{2}\biggr)^{1-m(y)} \mathbb{H}^{\alpha (m(y)-1)}(t) \vert v \vert ^{m(y)}\,dy \\ &{}-\varepsilon \frac{\beta _{3}(\delta +1)}{\delta s^{-}} \int _{ \Omega}\biggl(\frac{C_{0}\kappa}{2}\biggr)^{1-s(y)} \mathbb{H}^{\alpha (s(y)-1)}(t) \vert w \vert ^{s(y)}\,dy \\ &{}-\varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr)+J_{7} , \end{aligned}$$
(3.26)

in which \(\widehat{m}=\frac{m^{+}-1}{m^{-}}\), \(\widehat{s}=\frac{s^{+}-1}{s^{-}}\), by using (3.5) and (3.13), we have

$$\begin{aligned}& \frac{\beta _{1}(\delta +1)}{\delta m^{-}} \int _{\Omega}\biggl( \frac{C_{0}\kappa}{2}\biggr)^{1-m(y)} \mathbb{H}^{\alpha (m(y)-1)}(t) \vert v \vert ^{m(y)}\,dy \\& \quad \leq \frac{\beta _{1}(\delta +1)}{\delta m^{-}} \int _{\Omega}\biggl( \frac{C_{0}\kappa}{2}\biggr)^{1-m^{-}} \mathbb{H}^{\alpha (m^{+}-1)}(t) \vert v \vert ^{m(y)}\,dy \\& \quad = C_{1}\mathbb{H}^{\alpha (m^{+}-1)}(t) \int _{\Omega} \vert v \vert ^{m(y)}\,dy \\& \quad \leq C_{2} \bigl\{ \bigl(\varrho (v)+\varrho (w)\bigr)^{ \frac{m^{-}}{2(q^{-}+2)}+\alpha (m^{+}-1)} \bigl(\varrho (v)+\varrho (w)\bigr)^{\frac{m^{+}}{2(q^{-}+2)}+\alpha (m^{+}-1)} \bigr\} . \end{aligned}$$
(3.27)

By (3.16), we find

$$\begin{aligned}& r=m^{-}+\alpha \bigl(2 q^{-}+4\bigr) \bigl(m^{+}-1\bigr)\leq \bigl(2q^{-}+4\bigr), \\& r=m^{+}+\alpha \bigl(2 q^{-}+4\bigr) \bigl(m^{+}-1\bigr)\leq \bigl(2 q^{-}+4\bigr), \end{aligned}$$

and by the inequality

$$ x^{\gamma}\leq x+1\leq \biggl(1+\frac{1}{b}\biggr) (x+b),\quad \forall x \geq 0, 0< \gamma \leq 1, b>0, $$
(3.28)

with \(b=\frac{1}{\mathbb{H}(0)}\). Then we have

$$\begin{aligned} \bigl(\varrho (v)+\varrho (w)\bigr)^{\frac{m^{-}}{2(q^{-}+2)}+\alpha (m^{+}-1)} \leq &\biggl(1+ \frac{1}{\mathbb{H}(0)}\biggr) \bigl(\bigl(\varrho (v)+\varrho (w)\bigr)+ \mathbb{H}(0) \bigr) \\ \leq &C_{3} \bigl(\bigl(\varrho (v)+\varrho (w)\bigr)+\mathbb{H}(t) \bigr) \end{aligned}$$
(3.29)

and

$$\begin{aligned} \bigl(\varrho (v)+\varrho (w)\bigr)^{\frac{m^{+}}{2(q^{-}+2)}+\alpha (m^{+}-1)} \leq C_{3} \bigl( \bigl(\varrho (v)+\varrho (w)\bigr)+\mathbb{H}(t) \bigr), \end{aligned}$$
(3.30)

where \(C_{3}=1+\frac{1}{\mathbb{H}(0)}\). Substituting (3.29) and (3.30) into (3.27), we get

$$\begin{aligned}& \frac{\beta _{1}(\delta +1)}{\delta m^{-}} \int _{\Omega}\biggl( \frac{C_{0}\kappa}{2}\biggr)^{1-m(y)} \mathbb{H}^{\alpha (m(y)-1)}(t) \vert v \vert ^{m(y)}\,dy \\& \quad \leq C_{4} \bigl(\bigl(\varrho (v)+\varrho (w)\bigr)+\mathbb{H}(t) \bigr). \end{aligned}$$
(3.31)

Similarly, we find

$$\begin{aligned}& \frac{\beta _{3}(\delta +1)}{\delta s^{-}} \int _{\Omega}\biggl( \frac{C_{0}\kappa}{2}\biggr)^{1-s(y)} \mathbb{H}^{\alpha (s(y)-1)}(t) \vert w \vert ^{s(y)}\,dy \\& \quad \leq C_{5} \bigl(\bigl(\varrho (v)+\varrho (w)\bigr)+\mathbb{H}(t) \bigr), \end{aligned}$$
(3.32)

where \(C_{4}=C_{4}(\kappa )=C_{3}\frac{\beta _{1}(\delta +1)}{\delta m^{-}}( \frac{C_{0}\kappa}{2})^{1-m^{-}}\), \(C_{5}=C_{5}(\kappa )=C_{3}\frac{\beta _{3}(\delta +1)}{\delta s^{-}}( \frac{C_{0}\kappa}{2})^{1-s^{-}}\).

Combining (3.31), (3.32), and (3.26), and by (2.4), we obtain

$$\begin{aligned} \mathcal{K}'(t) \geq &\bigl[(1-\alpha )-\varepsilon \kappa ( \widehat{m}+ \widehat{s})\bigr]\mathbb{H}^{-\alpha}\mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1} \bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2} \bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \biggr] \\ &{}+\varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} \bigr)-\frac{\varepsilon}{2}(h_{1}o\nabla w)- \frac{\varepsilon}{2}(h_{2}o\nabla w)+ J_{7} \\ &{}-\varepsilon ( C_{4}+C_{5}) \bigl(\bigl(\varrho (v)+ \varrho (w)\bigr)+ \mathbb{H}(t) \bigr)-\varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr). \end{aligned}$$
(3.33)

Now, for \(0< a<1\), from (3.1) and (2.4)

$$\begin{aligned} J_{7} =&\varepsilon \bigl(2q^{-}+4\bigr) \int _{\Omega}F(v,w)\,dy \\ =&\varepsilon a\bigl(2q^{-}+4\bigr) \int _{\Omega}F(v,w)\,dy \\ &{}+(1-a) \bigl(2q^{-}+4\bigr)\varepsilon \mathcal{W}(x,z)+\varepsilon (1-a) \bigl(2q^{-}+4\bigr) \mathbb{H}(t) \\ &{}+\frac{\varepsilon (1-a)(2q^{-}+4)}{\eta +2}\bigl( \Vert v_{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}\bigr) \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}g(r)\,dr\biggr) \Vert \nabla v \Vert _{2}^{2} \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h(r)\,dr\biggr) \Vert \nabla w \Vert _{2}^{2} \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \bigl((h_{1}o \nabla v)+(h_{2}o\nabla w)\bigr) \\ &{}+\frac{\varepsilon (1-a)(q^{-}+2)}{(\gamma +1)}\bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr). \end{aligned}$$
(3.34)

Substituting (4.21) in (4.20) and applying (2.4), the following is obtained:

$$\begin{aligned} \mathcal{K}'(t) \geq & \bigl\{ (1-\alpha )-\varepsilon \kappa ( \widehat{m}+\widehat{s}) \bigr\} \mathbb{H}^{-\alpha}\mathbb{H}'(t) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(q^{-}+2\bigr)+1 \bigr\} \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(2q^{-}+4\bigr)+1 \bigr\} \mathcal{W}(x,z) \\ &{}+\varepsilon \biggl\{ \frac{\varepsilon (1-a)(2q^{-}+4)}{\eta +2}+ \frac{1}{\eta +1} \biggr\} \bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}\bigr) \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{1}(r)\,dr \biggr)- \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(r)\,dr \biggr) \biggr\} \Vert \nabla v \Vert _{2}^{2} \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{2}(r)\,dr \biggr)- \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(r)\,dr \biggr) \biggr\} \Vert \nabla w \Vert _{2}^{2} \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr)-\frac{1}{2} \biggr\} (h_{1}o\nabla v+h_{2}o \nabla w) \\ &{}+\varepsilon \biggl\{ \frac{(1-a)(q^{-}+2)}{\gamma +1}-1 \biggr\} \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2( \gamma +1)}\bigr) \\ &{}+\varepsilon \bigl\{ c_{0}a- \bigl(C_{4}(\kappa )+C_{5}(\kappa ) \bigr) \bigr\} \bigl(\varrho (v)+\varrho (w) \bigr) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(2q^{-}+4\bigr)- \bigl(C_{4}(\kappa )+C_{5}( \kappa ) \bigr) \bigr\} \mathbb{H}(t). \end{aligned}$$
(3.35)

Here, choose \(0< a\) in a manner that

$$ \bigl(q^{-}+2\bigr) (1-a)>1+\gamma . $$

Further, we have

$$\begin{aligned}& \lambda _{1} := \bigl(q^{-}+2\bigr) (1-a)-1>0 \\& \lambda _{2} := \bigl(q^{-}+2\bigr) (1-a)- \frac{1}{2}>0 \\& \lambda _{3} := \frac{(q^{-}+2)(1-a)}{\gamma +1}-1>0, \end{aligned}$$

and suppose

$$ \max \biggl\{ \int _{0}^{\infty}h_{1}(r)\,dr, \int _{0}^{\infty}h_{2}(r)\,dr \biggr\} < \frac {(q^{-}+2)(1-a)-1}{((q^{-}+2)(1-a)-\frac {1}{2})}= \frac {2\lambda _{1}}{2\lambda _{1}+1}, $$
(3.36)

which gives

$$\begin{aligned}& \lambda _{4} = \biggl\{ \bigl(\bigl(q^{-}+2\bigr) (1-a)-1 \bigr)- \int _{0}^{t}h_{1}(r)\,dr \biggl( \bigl(q^{-}+2\bigr) (1-a)-\frac{1}{2} \biggr) \biggr\} >0, \\& \lambda _{5} = \biggl\{ \bigl(\bigl(q^{-}+2\bigr) (1-a)-1 \bigr)- \int _{0}^{t}h_{2}(r)\,dr \biggl( \bigl(q^{-}+2\bigr) (1-a)-\frac{1}{2} \biggr) \biggr\} >0. \end{aligned}$$

After that, select κ large enough that

$$\begin{aligned}& \lambda _{6} = ac_{0}- \bigl(C_{4}(\kappa )+C_{5}(\kappa ) \bigr)>0, \\& \lambda _{7} = 2\bigl(q^{-}+2\bigr) (1-a)- \bigl(C_{4}(\kappa )+C_{5}(\kappa ) \bigr)>0. \end{aligned}$$

In the last stage, take κ, a, and we pick ε in a way that

$$ \lambda _{8}=(1-\alpha )-\varepsilon \kappa (\widehat{m}+ \widehat{s})>0, $$

and

$$\begin{aligned} \mathcal{K}(0) =&\mathbb{H}^{1-\alpha}(0)+\frac{\varepsilon}{\eta +1} \int _{\Omega} \bigl[v_{0} \vert v_{1} \vert ^{\eta}v_{1}+w_{0} \vert w_{1} \vert ^{\eta}w_{1} \bigr]\,dy \\ &{}+\varepsilon \int _{\Omega} [\nabla v_{1}\nabla v_{0}+ \nabla w_{1} \nabla w_{0} ]\,dy>0. \end{aligned}$$
(3.37)

Thus, for some \(\mu >0\), (3.35) implies

$$\begin{aligned} \mathcal{K}'(t) \geq &\mu \bigl\{ \mathbb{H}(t)+ \Vert v_{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)} \\ &{}+ \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} + \Vert \nabla v \Vert _{2}^{2}+ \Vert \nabla w \Vert _{2}^{2} +(h_{1}o \nabla v)+(h_{2}o \nabla w) \\ &{}+\varrho (v)+\varrho (w)+\mathcal{W}(x,z) \bigr\} \end{aligned}$$
(3.38)

and

$$ \mathcal{K}(t)\geq \mathcal{K}(0)>0,\quad t>0. $$
(3.39)

In the coming step, applying the inequalities of Holder and Young, we get

$$\begin{aligned} \biggl\vert \int _{\Omega}\bigl(v \vert v_{t} \vert ^{\eta} v_{t}+w \vert w_{t} \vert ^{\eta}w_{t}\bigr)\,dy \biggr\vert ^{\frac{1}{1-\alpha}} \leq &C \bigl[ \Vert v \Vert _{2(q^{-}+2)}^{\frac{\theta}{1-\alpha}}+ \Vert v_{t} \Vert _{\eta +2}^{\frac{\mu}{1-\alpha}} \\ &{}+ \Vert w \Vert _{2(q^{-}+2)}^{\frac{\theta}{1-\alpha}}+ \Vert w_{t} \Vert _{\eta +2}^{\frac{\mu}{1-\alpha}} \bigr], \end{aligned}$$
(3.40)

where \(\frac{1}{\mu}+\frac{1}{\theta}=1\).

Select \(\mu =(\eta +2)(1-\alpha )\) to obtain the following:

$$ \frac{\theta}{1-\alpha}=\frac{\eta +2}{(1-\alpha )(\eta +2)-1}\leq 2\bigl(q^{-}+2\bigr). $$

Consequently, by the application of (3.5), (3.16), and (3.28), we have

$$\begin{aligned}& \Vert v \Vert _{2(q^{-}+2)}^{\frac{\eta +2}{(1-\alpha )(\eta +2)-1}} \leq d\bigl( \Vert v \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+\mathbb{H}(t)\bigr) \\& \Vert w \Vert _{2(q^{-}+2)}^{\frac{\eta +2}{(1-\alpha )(\eta +2)-1}} \leq d\bigl( \Vert w \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+\mathbb{H}(t)\bigr), \quad \forall t\geq 0. \end{aligned}$$

Therefore, we have

$$\begin{aligned}& \biggl\vert \int _{\Omega}\bigl(v \vert v_{t} \vert ^{\eta} v_{t}+w \vert w_{t} \vert ^{\eta}w_{t}\bigr)\,dy \biggr\vert ^{\frac{1}{1-\alpha}} \\& \leq c \bigl\{ \varrho (v)+\varrho (w)+ \Vert v_{t} \Vert _{\eta +2}^{ \eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}+\mathbb{H}(t) \bigr\} . \end{aligned}$$
(3.41)

In the same way, we have

$$\begin{aligned} \biggl\vert \int _{\Omega}(\nabla v\nabla v_{t}+\nabla w \nabla w_{t})\,dy \biggr\vert ^{\frac{1}{1-\alpha}} \leq &C \bigl[ \Vert \nabla v \Vert _{2}^{ \frac{\theta}{1-\alpha}}+ \Vert \nabla v_{t} \Vert _{2}^{ \frac{\mu}{1-\alpha}} \\ &{}+ \Vert \nabla w \Vert _{2}^{\frac{\theta}{1-\alpha}}+ \Vert \nabla w_{t} \Vert _{2}^{\frac{\mu}{1-\alpha}} \bigr], \end{aligned}$$

where \(\frac{1}{\mu}+\frac{1}{\theta}=1\).

For the next step, assume \(\theta =2(\gamma +1)(1-\alpha )\) to get

$$\begin{aligned}& \frac{\mu}{1-\alpha}=\frac{2(\gamma +1)}{2(1-\alpha )(\gamma +1)-1} \leq 2 \\& \biggl\vert \int _{\Omega}(\nabla v\nabla v_{t}+\nabla w \nabla w_{t})\,dy \biggr\vert ^{\frac{1}{1-\alpha}} \leq c \bigl\{ \Vert \nabla v \Vert ^{2( \gamma +1)}_{2}+ \Vert \nabla w \Vert ^{2(\gamma +1)}_{2} \\& \hphantom{\biggl\vert \int _{\Omega}(\nabla v\nabla v_{t}+\nabla w \nabla w_{t})\,dy \biggr\vert ^{\frac{1}{1-\alpha}} \leq} {}+ \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} \bigr\} . \end{aligned}$$
(3.42)

Thus, by (3.41) and (3.42),

$$\begin{aligned} \mathcal{K}^{\frac{1}{1-\alpha}}(t) =& \biggl(\mathbb{H}^{1-\alpha}(t)+ \frac{\varepsilon}{\eta +1} \int _{\Omega}\bigl(v \vert v_{t} \vert ^{\eta}v_{t}+w \vert w_{t} \vert ^{\eta}w_{t}\bigr)\,dy \\ &{}+\varepsilon \int _{\Omega}(\nabla v_{t}\nabla v+\nabla w_{t} \nabla w)\,dy \biggr)^{\frac{1}{1-\alpha}} \\ \leq &c \biggl(\mathbb{H}(t)+ \biggl\vert \int _{\Omega}\bigl(v \vert v_{t} \vert ^{ \eta} v_{t}+w \vert w_{t} \vert ^{\eta}w_{t}\bigr)\,dy \biggr\vert ^{ \frac{1}{1-\alpha}}+ \Vert \nabla v \Vert _{2}^{\frac{2}{1-\alpha}}+ \Vert \nabla w \Vert _{2}^{\frac{2}{1-\alpha}} \\ &{}+ \Vert \nabla v_{t} \Vert _{2}^{\frac{2}{1-\alpha}}+ \Vert \nabla w_{t} \Vert _{2}^{\frac{2}{1-\alpha}} \biggr) \\ \leq &c \bigl(\mathbb{H}(t)+ \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla v_{t} \Vert _{2}^{2} \\ &{}+ \Vert \nabla w_{t} \Vert _{2}^{2}+(h_{1}o \nabla v)+(h_{2}o\nabla w)+ \varrho (v)+\varrho (w) \bigr) \\ \leq &c \bigl\{ \mathbb{H}(t)+ \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)} \\ &{}+ \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}+ \Vert \nabla v \Vert _{2}^{2}+ \Vert \nabla w \Vert _{2}^{2}+(h_{1}o \nabla v)+(h_{2}o\nabla w) \\ &{}+\varrho (v)+\varrho (w)+\mathcal{W}(x,z) \bigr\} . \end{aligned}$$
(3.43)

Now, (3.38) and (3.43) imply

$$ \mathcal{K}'(t)\geq \lambda \mathcal{K}^{\frac{1}{1-\alpha}}(t), $$
(3.44)

in which \(0< \lambda \), this relies only on β and c.

Further simplification of (4.31) leads to

$$ \mathcal{K}^{\frac{\alpha}{1-\alpha}}(t)\geq \frac{1}{\mathcal{K}^{\frac{-\alpha}{1-\alpha}}(0)-\lambda \frac{\alpha}{(1-\alpha )} t}. $$

Hence, \(\mathcal{K}(t)\) blows up in time

$$ T\leq T^{*}= \frac{1-\alpha}{\lambda \alpha \mathcal{K}^{\alpha /(1-\alpha )}(0)}. $$

Thus, it completes the proof.  □

4 Growth of solution

Here, the exponential growth of solution of problem (2.8) will be established.

For this, the functional is defined as follows:

$$\begin{aligned} \mathbb{H}(t) =&-E(t) \\ =&-\frac{1}{\eta +2} \bigl[ \Vert v_{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2} \bigr]- \frac{1}{2} \bigl[ \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} \bigr] \\ &{}-\frac{1}{2(\gamma +1)} \bigl[ \Vert \nabla v \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)} \bigr]-\mathcal{W}(x,z) \\ &{}-\frac{1}{2} \biggl[ \biggl(1- \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \biggr] \\ &{}-\frac{1}{2} \bigl[(h_{1}o\nabla v) (t)+(h_{2}o \nabla w) (t) \bigr]+ \int _{\Omega}F(v,w)\,dy. \end{aligned}$$
(4.1)

Theorem 4.1

Assume that (2.1)(2.3) are satisfied, and suppose \(E(0)<0\), then

$$ 2\bigl(q^{-}+2\bigr)>\frac{\eta +2}{\eta +1}. $$
(4.2)

Then the solution of problem (2.8) grows exponentially.

Proof

To prove the required result, (2.9) implies

$$ E(t)\leq E(0)\leq 0 $$
(4.3)

with the help of (3.3) and (3.4).

Now, take the following:

$$\begin{aligned} \mathcal{R}(t) =&\mathbb{H}(t)+\frac{\varepsilon}{\eta +1} \int _{ \Omega} \bigl[v \vert v_{t} \vert ^{\eta}v_{t}+w \vert w_{t} \vert ^{\eta}w_{t} \bigr]\,dy \\ &{}+\varepsilon \int _{\Omega} [\nabla v_{t}\nabla v+\nabla w_{t} \nabla w ]\,dy, \end{aligned}$$
(4.4)

in which \(\varepsilon >0\) will be chosen in a later stage.

From (2.8)1, (2.8)2, and (4.4), we have

$$\begin{aligned} \mathcal{R}'(t) =&\mathbb{H}'(t)+\frac{\varepsilon}{\eta +1} \bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}\bigr)+ \varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\ &{}+ \underbrace{\varepsilon \int _{\Omega}\nabla v \int ^{t}_{0}g(t-r) \nabla v(r)\,dr \,dy}_{I_{1}} + \underbrace{\varepsilon \int _{\Omega}\nabla w \int ^{t}_{0}h(t-r) \nabla w(r)\,dr \,dy}_{I_{2}} \\ &{}- \underbrace{\varepsilon \beta _{1} \int _{\Omega} vv_{t} \vert v_{t} \vert ^{m(y)-2}\,dy}_{I_{3}}- \underbrace{\varepsilon \beta _{3} \int _{\Omega} ww_{t} \vert w_{t} \vert ^{s(y)-2}\,dy}_{I_{4}} \\ &{}- \underbrace{\varepsilon \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \beta _{2}(r) vx(y,1,r,t) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}\,dr \,dy}_{I_{5}} \\ &{}- \underbrace{\varepsilon \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \beta _{4}(r) wz(y,1,r,t) \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)-2}\,dr \,dy}_{I_{6}} \\ &{}-\varepsilon \bigl( \Vert \nabla v \Vert _{2}^{2}+ \Vert \nabla w \Vert _{2}^{2}\bigr)- \varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+\underbrace{\varepsilon \int _{\Omega}\bigl(vf_{1}(v,w)+wf_{2}(v,w) \bigr)\,dy}_{I_{7}}. \end{aligned}$$

By (2.1), we obtain

$$\begin{aligned} \mathcal{R}'(t) \geq &\mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{ \eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\ &{}+ \underbrace{\varepsilon \int _{\Omega}\nabla v \int ^{t}_{0}g(t-r) \nabla v(r)\,dr \,dy}_{I_{1}} + \underbrace{\varepsilon \int _{\Omega}\nabla w \int ^{t}_{0}h(t-r) \nabla w(r)\,dr \,dy}_{I_{2}} \\ &{}- \underbrace{\varepsilon \beta _{1} \int _{\Omega} vv_{t} \vert v_{t} \vert ^{m(y)-2}\,dy}_{I_{3}}- \underbrace{\varepsilon \beta _{3} \int _{\Omega} ww_{t} \vert w_{t} \vert ^{s(y)-2}\,dy}_{I_{4}} \\ &{}- \underbrace{\varepsilon \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \beta _{2}(r) vx(y,1,r,t) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}\,dr \,dy}_{I_{5}} \\ &{}- \underbrace{\varepsilon \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \beta _{4}(r) wz(y,1,r,t) \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)-2}\,dr \,dy}_{I_{6}} \\ &{}-\varepsilon \bigl( \Vert \nabla v \Vert _{2}^{2}+ \Vert \nabla w \Vert _{2}^{2}\bigr)- \varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+\underbrace{\varepsilon \bigl(2q^{-}+4\bigr) \int _{\Omega}F(v,w)\,dy}_{I_{7}}. \end{aligned}$$
(4.5)

Similar to \(J_{1}\), \(J_{2}\) in (3.21) and (3.22), we estimate \(I_{1}\), \(I_{2}\):

$$\begin{aligned}& I_{1}=J_{1}\geq \frac{\varepsilon}{2} \int _{0}^{t}h_{1}(r)\,dr \Vert \nabla v \Vert _{2}^{2}-\frac{\varepsilon}{2}(h_{1}o\nabla v), \end{aligned}$$
(4.6)
$$\begin{aligned}& I_{2}=J_{2}\geq \frac{\varepsilon}{2} \int _{0}^{t}h_{2}(r)\,dr \Vert \nabla w \Vert _{2}^{2}-\frac{\varepsilon}{2}(h_{2}o\nabla w). \end{aligned}$$
(4.7)

From (4.5), we find

$$\begin{aligned} \mathcal{K}'(t) \geq &\mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{ \eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \biggr] \\ &{}-\frac{\varepsilon}{2}(h_{1}o\nabla v)-\frac{\varepsilon}{2}(h_{2}o \nabla w)-\varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+I_{3}+I_{4}+I_{5}+I_{6}+I_{7} . \end{aligned}$$
(4.8)

Similar to \(J_{3}\), \(J_{4}\), \(J_{5}\), and \(J_{6}\) in (3.20)–(3.24), we estimate \(I_{i}\), \(i=3,\ldots,6\). By Young’s inequality, we find for \(\delta _{1},\delta _{2}>0\)

$$\begin{aligned}& I_{3} \leq \varepsilon \beta _{1} \biggl\{ \frac{1}{m^{-}} \int _{ \Omega}\delta _{1}^{m(y)} \vert v \vert ^{m(y)}\,dy+\frac{m^{+}-1}{m^{+}} \int _{\Omega}\delta _{1}^{-\frac{m(y)}{m(y)-1}} \vert v_{t} \vert ^{m(y)}\,dy \biggr\} , \end{aligned}$$
(4.9)
$$\begin{aligned}& I_{4} \leq \varepsilon \beta _{3} \biggl\{ \frac{1}{s^{-}} \int _{ \Omega}\delta _{2}^{s(y)} \vert w \vert ^{s(y)}\,dy+\frac{s^{+}-1}{s^{+}} \int _{\Omega}\delta _{2}^{-\frac{s(y)}{s(y)-1}} \vert w_{t} \vert ^{s(y)}\,dy \biggr\} , \end{aligned}$$
(4.10)

and

$$\begin{aligned}& I_{5} \leq \varepsilon \biggl\{ \frac{(\int _{\tau _{1}}^{\tau _{2}} \vert \beta _{2}(r) \vert \,dr)}{m^{-}} \int _{\Omega}\delta _{1}^{m(y)} \vert v \vert ^{m(y)}\,dy \\& \hphantom{I_{5} \leq} {}+\frac{m^{+}-1}{m^{-}} \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \delta _{1}^{-\frac{m(y)}{m(y)-1}} \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dr \,dy \biggr\} , \end{aligned}$$
(4.11)
$$\begin{aligned}& I_{6} \leq \varepsilon \biggl\{ \frac{(\int _{\tau _{1}}^{\tau _{2}} \vert \beta _{4}(r) \vert \,dr)}{s^{-}} \int _{\Omega}\delta _{2}^{s(y)} \vert w \vert ^{s(y)}\,dy \\& \hphantom{I_{6} \leq} {}+\frac{s^{+}-1}{s^{-}} \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{4}(r) \bigr\vert \delta _{2}^{-\frac{s(y)}{s(y)-1}} \bigl\vert z(y,1,r,t) \bigr\vert ^{s(y)}\,dr \,dy \biggr\} . \end{aligned}$$
(4.12)

Therefore, by setting \(\delta _{1}\), \(\delta _{2}\) so that

$$\begin{aligned} \delta _{1}^{-\frac{m(y)}{m(y)-1}}=\frac{C_{0}}{2}\kappa ,\qquad \delta _{2}^{-\frac{s(y)}{s(y)-1}}=\frac{C_{0}}{2}\kappa , \end{aligned}$$
(4.13)

substituting in (4.8), the following is achieved:

$$\begin{aligned} \mathcal{R}'(t) \geq &\bigl[1-\varepsilon \kappa (\widehat{m}+ \widehat{s})\bigr] \mathbb{H}'(t)+\frac{\varepsilon}{\eta +1} \bigl( \Vert v_{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2} \bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \biggr] \\ &{}+\varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} \bigr)-\frac{\varepsilon}{2}(h_{1}o\nabla v)- \frac{\varepsilon}{2}(h_{2}o\nabla w) \\ &{}-\varepsilon \frac{\beta _{1}(\delta +1)}{\delta m^{-}} \int _{ \Omega}\biggl(\frac{C_{0}\kappa}{2}\biggr)^{1-m(y)} \vert v \vert ^{m(y)}\,dy \\ &{}-\varepsilon \frac{\beta _{3}(\delta +1)}{\delta s^{-}} \int _{ \Omega}\biggl(\frac{C_{0}\kappa}{2}\biggr)^{1-s(y)} \vert w \vert ^{s(y)}\,dy \\ &{}-\varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr)+I_{7}, \end{aligned}$$
(4.14)

where \(\widehat{m}=\frac{m^{+}-1}{m^{-}}\), \(\widehat{s}=\frac{s^{+}-1}{s^{-}}\). By using (3.5) and (3.13), we have

$$\begin{aligned} \frac{\beta _{1}(\delta +1)}{\delta m^{-}} \int _{\Omega}\biggl( \frac{C_{0}\kappa}{2}\biggr)^{1-m(y)} \vert v \vert ^{m(y)}\,dy \leq & \frac{\beta _{1}(\delta +1)}{\delta m^{-}} \int _{\Omega}\biggl( \frac{C_{0}\kappa}{2}\biggr)^{1-m^{-}} \vert v \vert ^{m(y)}\,dy \\ =&C_{8} \int _{\Omega} \vert v \vert ^{m(y)}\,dy \\ \leq &C_{9} \bigl\{ \bigl(\varrho (v)+\varrho (w) \bigr)^{ \frac{m^{-}}{2(q^{-}+2)}} \\ &{}+\bigl(\varrho (v)+\varrho (w)\bigr)^{\frac{m^{+}}{2(q^{-}+2)}} \bigr\} . \end{aligned}$$
(4.15)

By (1.5), we find

$$\begin{aligned} r=m^{-}\leq \bigl(2q^{-}+4\bigr), \qquad r=m^{+} \leq \bigl(2 q^{-}+4\bigr), \end{aligned}$$

and by (3.28) with \(b=\frac{1}{\mathbb{H}(0)}\). Then we have

$$\begin{aligned} \bigl(\varrho (v)+\varrho (w)\bigr)^{\frac{m^{-}}{2(q^{-}+2)}} \leq &\biggl(1+ \frac{1}{\mathbb{H}(0)}\biggr) \bigl(\bigl(\varrho (v)+\varrho (w)\bigr)+\mathbb{H}(0) \bigr) \\ \leq &C_{10} \bigl(\bigl(\varrho (v)+\varrho (w)\bigr)+\mathbb{H}(t) \bigr) \end{aligned}$$
(4.16)

and

$$\begin{aligned} \bigl(\varrho (v)+\varrho (w)\bigr)^{\frac{m^{+}}{2(q^{-}+2)}}\leq C_{10} \bigl( \bigl( \varrho (v)+\varrho (w)\bigr)+\mathbb{H}(t) \bigr), \end{aligned}$$
(4.17)

where \(C_{10}=1+\frac{1}{\mathbb{H}(0)}\). Substituting (4.16) and (4.17) into (4.15), we get

$$\begin{aligned} \frac{\beta _{1}(\delta +1)}{\delta m^{-}} \int _{\Omega}\biggl( \frac{C_{0}\kappa}{2}\biggr)^{1-m(y)} \vert v \vert ^{m(y)}\,dy\leq C_{11} \bigl(\bigl(\varrho (v)+\varrho (w)\bigr)+\mathbb{H}(t) \bigr). \end{aligned}$$
(4.18)

Similarly, we find

$$\begin{aligned} \frac{\beta _{3}(\delta +1)}{\delta s^{-}} \int _{\Omega}\biggl( \frac{C_{0}\kappa}{2}\biggr)^{1-s(y)} \vert w \vert ^{s(y)}\,dy\leq C_{12} \bigl(\bigl(\varrho (v)+\varrho (w)\bigr)+\mathbb{H}(t) \bigr), \end{aligned}$$
(4.19)

where \(C_{11}=C_{11}(\kappa )=C_{9} \frac{\beta _{1}(\delta +1)}{\delta m^{-}}(\frac{C_{0}\kappa}{2})^{1-m^{-}}\), \(C_{12}=C_{12}(\kappa )=C_{9} \frac{\beta _{3}(\delta +1)}{\delta s^{-}}(\frac{C_{0}\kappa}{2})^{1-s^{-}}\).

Combining (4.18), (4.19), and (4.14), we have

$$\begin{aligned} \mathcal{R}'(t) \geq &\bigl[1-\varepsilon \kappa (\widehat{m}+ \widehat{s})\bigr] \mathbb{H}'(t)+\frac{\varepsilon}{\eta +1} \bigl( \Vert v_{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2} \bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(r)\,dr \biggr) \Vert \nabla w \Vert _{2}^{2} \biggr] \\ &{}+\varepsilon \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} \bigr)-\frac{\varepsilon}{2}(h_{1}o\nabla v)- \frac{\varepsilon}{2}(h_{2}o\nabla w)+ I_{7} \\ &{}-\varepsilon ( C_{11}+C_{12}) \bigl(\bigl(\varrho (v)+ \varrho (w)\bigr)+ \mathbb{H}(t) \bigr)-\varepsilon \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla v \Vert _{2}^{2(\gamma +1)}\bigr). \end{aligned}$$
(4.20)

Now, for \(0< a<1\), from (4.1) and (2.4)

$$\begin{aligned}& J_{7}=\varepsilon \bigl(2q^{-}+4\bigr) \int _{\Omega}F(v,w)\,dy \\& \quad = \varepsilon a\bigl(2q^{-}+4\bigr) \int _{\Omega}F(v,w)\,dy \\& \qquad {}+(1-a) \bigl(2q^{-}+4\bigr)\varepsilon \mathcal{W}(x,z)+\varepsilon (1-a) \bigl(2q^{-}+4\bigr) \mathbb{H}(t) \\& \qquad {}+\frac{\varepsilon (1-a)(2q^{-}+4)}{\eta +2}\bigl( \Vert v_{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}\bigr) \\& \qquad {}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\& \qquad {}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}g(r)\,dr\biggr) \Vert \nabla v \Vert _{2}^{2} \\& \qquad {}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h(r)\,dr\biggr) \Vert \nabla w \Vert _{2}^{2} \\& \qquad {}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \bigl((h_{1}o \nabla v)+(h_{2}o\nabla w)\bigr) \\& \qquad {}+\frac{\varepsilon (1-a)(q^{-}+2)}{(\gamma +1)}\bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)}\bigr). \end{aligned}$$
(4.21)

Substituting (4.21) in (4.20) and applying (2.4), we have

$$\begin{aligned} \mathcal{R}'(t) \geq & \bigl\{ 1-\varepsilon \kappa (\widehat{m}+ \widehat{s}) \bigr\} \mathbb{H}'(t) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(q^{-}+2\bigr)+1 \bigr\} \bigl( \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}\bigr) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(2q^{-}+4\bigr)+1 \bigr\} \mathcal{W}(x,z) \\ &{}+\varepsilon \biggl\{ \frac{\varepsilon (1-a)(2q^{-}+4)}{\eta +2}+ \frac{1}{\eta +1} \biggr\} \bigl( \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}\bigr) \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{1}(r)\,dr \biggr)- \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(r)\,dr \biggr) \biggr\} \Vert \nabla v \Vert _{2}^{2} \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{2}(r)\,dr \biggr)- \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(r)\,dr \biggr) \biggr\} \Vert \nabla w \Vert _{2}^{2} \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr)-\frac{1}{2} \biggr\} (h_{1}o\nabla v+h_{2}o \nabla w) \\ &{}+\varepsilon \biggl\{ \frac{(1-a)(q^{-}+2)}{\gamma +1}-1 \biggr\} \bigl( \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2( \gamma +1)}\bigr) \\ &{}+\varepsilon \bigl\{ c_{0}a- \bigl(C_{11}(\kappa )+C_{12}(\kappa ) \bigr) \bigr\} \bigl(\varrho (v)+\varrho (w) \bigr) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(2q^{-}+4\bigr)- \bigl(C_{11}(\kappa )+C_{12}( \kappa ) \bigr) \bigr\} \mathbb{H}(t). \end{aligned}$$
(4.22)

Here, assume that \(0< a\) is small in a manner that

$$ \bigl(q^{-}+2\bigr) (1-a)>1+\gamma , $$

we have

$$\begin{aligned}& \lambda _{1} := \bigl(q^{-}+2\bigr) (1-a)-1>0, \\& \lambda _{2} := \bigl(q^{-}+2\bigr) (1-a)- \frac{1}{2}>0, \\& \lambda _{3} := \frac{(q^{-}+2)(1-a)}{\gamma +1}-1>0, \end{aligned}$$

and we assume

$$ \max \biggl\{ \int _{0}^{\infty}h_{1}(r)\,dr, \int _{0}^{\infty}h_{2}(r)\,dr \biggr\} < \frac {(q^{-}+2)(1-a)-1}{((q^{-}+2)(1-a)-\frac {1}{2})}= \frac {2\lambda _{1}}{2\lambda _{1}+1}, $$
(4.23)

which gives

$$\begin{aligned}& \lambda _{4} = \biggl\{ \bigl(\bigl(q^{-}+2\bigr) (1-a)-1 \bigr)- \int _{0}^{t}h_{1}(r)\,dr \biggl( \bigl(q^{-}+2\bigr) (1-a)-\frac{1}{2} \biggr) \biggr\} >0, \\& \lambda _{5} = \biggl\{ \bigl(\bigl(q^{-}+2\bigr) (1-a)-1 \bigr)- \int _{0}^{t}h_{2}(r)\,dr \biggl( \bigl(q^{-}+2\bigr) (1-a)-\frac{1}{2} \biggr) \biggr\} >0. \end{aligned}$$

After this, select κ large in a way that

$$\begin{aligned}& \lambda _{6} = ac_{0}- \bigl(C_{11}(\kappa )+C_{12}(\kappa ) \bigr)>0, \\& \lambda _{7} = 2\bigl(q^{-}+2\bigr) (1-a)- \bigl(C_{11}(\kappa )+C_{12}(\kappa ) \bigr)>0. \end{aligned}$$

At the last stage, fix κ, a and pick ε small such that

$$ \lambda _{8}=(1-\alpha )-\varepsilon \kappa (\widehat{m}+ \widehat{s})>0 $$

and

$$\begin{aligned} \mathcal{R}(0) =&\mathbb{H}(0)+\frac{\varepsilon}{\eta +1} \int _{ \Omega} \bigl[v_{0} \vert v_{1} \vert ^{\eta}v_{1}+w_{0} \vert w_{1} \vert ^{\eta}w_{1} \bigr]\,dy, \\ &{}+\varepsilon \int _{\Omega} [\nabla v_{1}\nabla v_{0}+ \nabla w_{1} \nabla w_{0} ]\,dy>0, \end{aligned}$$
(4.24)

and from (4.4)

$$\begin{aligned} \mathcal{R}(t) \leq & \frac{c_{1}}{2(q^{-}+2)} \bigl[ \Vert v \Vert _{2(q^{+}+2)}^{2(q^{+}+2)}+ \Vert w \Vert _{2(q^{+}+2)}^{2(q^{+}+2)} \bigr]. \end{aligned}$$
(4.25)

Thus, for some \(\mu _{1}>0\), (4.22) implies

$$\begin{aligned} \mathcal{R}'(t) \geq &\mu _{1} \bigl\{ \mathbb{H}(t)+ \Vert v_{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2(\gamma +1)} \\ &{}+ \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2} + \Vert \nabla v \Vert _{2}^{2}+ \Vert \nabla w \Vert _{2}^{2} +(h_{1}o \nabla v)+(h_{2}o \nabla w) \\ &{}+\varrho (v)+\varrho (w)+\mathcal{W}(x,z) \bigr\} \end{aligned}$$
(4.26)

and

$$ \mathcal{R}(t)\geq \mathcal{R}(0)>0, \quad t>0. $$
(4.27)

Further, applying the inequalities of Holder and Young, we get

$$\begin{aligned} \biggl\vert \int _{\Omega}\bigl(v \vert v_{t} \vert ^{\eta} v_{t}+w \vert w_{t} \vert ^{\eta}w_{t}\bigr)\,dy \biggr\vert \leq &C \bigl[ \Vert v \Vert _{2(q^{-}+2)}^{ \theta}+ \Vert v_{t} \Vert _{\eta +2}^{\mu} \\ &{}+ \Vert w \Vert _{2(q^{-}+2)}^{\theta}+ \Vert w_{t} \Vert _{\eta +2}^{\mu} \bigr] , \end{aligned}$$
(4.28)

where \(\frac{1}{\mu}+\frac{1}{\theta}=1\). Next, assume \(\mu =(\eta +2)\) to reach

$$ \theta =\frac{(\eta +2)}{(\eta +1)}\leq 2\bigl(q^{-}+2\bigr). $$

Subsequently, by using (4.2) and (3.28), we obtain

$$\begin{aligned}& \Vert v \Vert _{2(q^{-}+2)}^{\frac{\eta +2}{(\eta +1)}} \leq K\bigl( \Vert v \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+\mathbb{H}(t)\bigr) \\& \Vert w \Vert _{2(q^{-}+2)}^{\frac{\eta +2}{(\eta +1)}} \leq K\bigl( \Vert w \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+\mathbb{H}(t)\bigr), \quad \forall t\geq 0. \end{aligned}$$

Therefore

$$\begin{aligned}& \biggl\vert \int _{\Omega}\bigl(v \vert v_{t} \vert ^{\eta} v_{t}+w \vert w_{t} \vert ^{\eta}w_{t}\bigr)\,dy \biggr\vert \\& \quad \leq c \bigl\{ \bigl(\varrho (v)+\varrho (v)\bigr)+ \Vert v_{t} \Vert _{\eta +2}^{ \eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}+\mathbb{H}(t) \bigr\} . \end{aligned}$$
(4.29)

Hence

$$\begin{aligned} \mathcal{R}(t) =& \biggl(\mathbb{H}(t)+\frac{\varepsilon}{\eta +1} \int _{\Omega}\bigl(v \vert v_{t} \vert ^{\eta}v_{t}+w \vert w_{t} \vert ^{ \eta}w_{t}\bigr)\,dy \\ &{}+\varepsilon \int _{\Omega}(\nabla v_{t}\nabla v+\nabla w_{t} \nabla w)\,dy \biggr) \\ \leq &c \bigl(\mathbb{H}(t)+ \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla v \Vert _{2}^{2}+ \Vert \nabla w \Vert _{2}^{2} \\ &{}+ \Vert \nabla v_{t} \Vert _{2}^{2}+ \Vert \nabla w_{t} \Vert _{2}^{2}+ \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla w \Vert _{2}^{2( \gamma +1)} \\ &{}+(h_{1}o\nabla v)+(h_{2}o\nabla w)+\mathcal{W}(x,z)+ \bigl(\varrho (v)+ \varrho (v)\bigr) \bigr) . \end{aligned}$$
(4.30)

From (4.26) and (4.30), we have

$$ \mathcal{R}'(t)\geq \lambda _{1} \mathcal{R}(t), $$
(4.31)

where \(\lambda _{1}> 0 \), this relies on \(\mu _{1} \) and c only. Further, (4.31) implies

$$ \mathcal{R}(t)\geq \mathcal{R}(0)e^{(\lambda _{1} t)}, \quad \forall t>0. $$
(4.32)

From (4.4) and (4.25), we get

$$ \mathcal{R}(t)\leq c\bigl( \Vert v \Vert _{2(q^{+}+2)}^{2(q^{+}+2)}+ \Vert w \Vert _{2(q^{+}+2)}^{2(q^{+}+2)}\bigr). $$
(4.33)

Then (4.32) and (4.33) imply

$$ \Vert v \Vert _{2(q^{+}+2)}^{2(q^{+}+2)}+ \Vert w \Vert _{2(q^{+}+2)}^{2(q^{+}+2)} \geq C e^{(\lambda _{1} t)},\quad \forall t>0. $$

Therefore, we deduce that the solution experiences exponential growth in the \(L^{2(p^{+}+2)}\) norm. This concludes the proof. □

5 General decay

In this section, we state and prove the general decay of system (2.8) in the case \(f_{1}=f_{2}=0\). For this goal, problem (2.8) can be written as

$$ \textstyle\begin{cases} \vert v_{t} \vert ^{\eta }v_{tt}-M( \Vert \nabla v \Vert _{2}^{2}) \Delta v+\int _{0}^{t}h_{1}(t-r)\Delta v(r)\,dr-\Delta v_{tt}+ \beta _{1} \vert v_{t}(t) \vert ^{m(y)-2} v_{t}(t) \\ \quad {} +\int _{\tau _{1}}^{\tau _{2}} \vert \beta _{2}(r) \vert \vert x(y,1,r,t) \vert ^{m(y)-2} x(y,1,r,t)\,dr =0, \\ r x_{t}(y, \rho , r, t)+x_{\rho}(y, \rho , r, t)=0, \\ v( y,0) =v_{0}( y),\qquad v_{t}( y,0) =v_{1}( y),\quad \text{in } \Omega \\ x(y,\rho ,r,0)=f_{0}(y,\rho r),\quad \text{in } \Omega \times (0,1)\times (0, \tau _{2}) \\ v( y,t) =0,\quad \text{in } \partial \Omega \times (0, T), \end{cases} $$
(5.1)

where

$$ (y, \rho , r, t)\in \Omega \times (0,1)\times (\tau _{1},\tau _{2}) \times (0,T). $$

Here, we introduce the modified energy functional \(\mathcal{E}\) of (5.1) as follows:

$$\begin{aligned} \mathcal{E}(t) =&\frac{1}{\eta +2} \Vert v_{t} \Vert _{\eta +2}^{\eta +2}+ \frac{1}{2} \Vert \nabla v_{t} \Vert _{2}^{2}+\frac{1}{2(\gamma +1)} \Vert \nabla v \Vert _{2}^{2(\gamma +1)}+\mathcal{F}(x) \\ &{}+\frac{1}{2} \biggl(1- \int _{0}^{t}h_{1}(r)\,dr \biggr) \Vert \nabla v \Vert _{2}^{2}+\frac{1}{2}(h_{1}o \nabla v) (t). \end{aligned}$$
(5.2)

Similar to Lemma 2.4, the energy functional fulfills for assumption (2.3)

$$\begin{aligned} \mathcal{E}'(t) \leq &-C_{0} \biggl\{ \int _{\Omega} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy+ \int _{\Omega} \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dr\,dy \biggr\} \\ &{}+ \frac{1}{2}\bigl(h'_{1}o\nabla v\bigr) (t)- \frac{1}{2}h_{1}(t) \Vert \nabla v \Vert _{2}^{2}\leq 0, \end{aligned}$$
(5.3)

where

$$ \mathcal{F}(z):= \int _{\Omega} \int _{0}^{1} \int _{ \tau _{1}}^{\tau _{2}}r \bigl\vert \beta _{2}(r) \bigr\vert \frac{(\delta m(y)-1) \vert x(y,\rho ,r,t) \vert ^{m(y)}}{m(y)}\,dr \,d\rho \,dy. $$
(5.4)

Remark 5.1

In this case \(f_{1}=f_{2}=0\). Condition (2.3) remains true for (\(\delta =1\)), i.e., it can be replaced by

$$ \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert \,dr< \beta _{1}. $$
(5.5)

Also, relation (5.3) becomes of the form

$$\begin{aligned} \mathcal{E}'(t) \leq &-C_{0} \int _{\Omega} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy+ \frac{1}{2}\bigl(h'_{1}o \nabla v\bigr) (t)-\frac{1}{2}h_{1}(t) \Vert \nabla v \Vert _{2}^{2}\leq 0. \end{aligned}$$
(5.6)

Lemma 5.2

(Komornik, [20]) Assume a nonincreasing function \(E:\mathbb{R}_{+}\rightarrow \mathbb{R}_{+}\), and suppose that \(\exists \sigma ,\omega >0\) in a manner that

$$ \int _{r}^{\infty}E^{1+\sigma}(t)\,dt\leq \frac{1}{\Omega}E^{\sigma}(0)E(r)=cE(r), \quad \forall r>0. $$
(5.7)

Then we have \(\forall t\geq 0\)

$$ \textstyle\begin{cases} E(t)\leq cE(0)/(1+t)^{\frac{1}{\sigma}}, & \textit{if } \sigma >0, \\ E(t)\leq cE(0)e^{-\omega t}, & \textit{if } \sigma =0. \end{cases} $$
(5.8)

Theorem 5.3

Assume that (1.3), (2.1)(2.3), and (2.5) hold. Then \(\exists c,\lambda >0\) such that the solution of (5.1) fulfills

$$ \textstyle\begin{cases} \mathcal{E}(t)\leq c\mathcal{E}(0)/(1+t)^{\frac{2}{m^{+}-2}}, & \textit{if } m^{+}>2, \\ \mathcal{E}(t)\leq c\mathcal{E}^{-\lambda t}, & \textit{if } m(y)=2. \end{cases} $$
(5.9)

Proof

Multiplying (5.1)1 by \(v \mathcal{E}^{p}(t)\) for \(p>0\) to be specified later and integrating the result over \(\Omega \times (s,T), s< T\), we have

$$\begin{aligned}& \int _{r}^{T}\mathcal{E}^{p}(t) \int _{\Omega} \biggl\{ v \vert v_{t} \vert ^{\eta }v_{tt}-M\bigl( \Vert \nabla v \Vert _{2}^{2}\bigr)v\Delta v+ \int _{0}^{t}h_{1}(t-r)v\Delta v(r)\,dr \\& \quad -v\Delta v_{tt}+\beta _{1}vv_{t} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)-2} \\& \quad {}+ \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert v x(y,1,r,t) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}\,dr \biggr\} \,dy\,dt=0, \end{aligned}$$
(5.10)

which implies that

$$\begin{aligned}& \int _{r}^{T}\mathcal{E}^{p}(t) \int _{\Omega} \biggl\{ \frac{d}{dt} \frac{1}{\eta +1} \bigl(v \vert v_{t} \vert ^{\eta } v_{t}\bigr)- \frac{1}{\eta +1} \vert v_{t} \vert ^{\eta +2}+ \frac{d}{dt}(\nabla v \nabla v_{t})- \vert \nabla v_{t} \vert ^{2} \\& \quad {}+M \bigl( \Vert \nabla v \Vert ^{2}_{2} \bigr) \vert \nabla v \vert ^{2}- \int _{0}^{t}h_{1}(t-r)\nabla v\nabla v(r)\,dr+\beta _{1}vv_{t} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)-2} \\& \quad {}+ \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert v x(y,1,r,t) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}\,dr \biggr\} \,dy\,dt=0. \end{aligned}$$
(5.11)

By (5.2) and the relation

$$\begin{aligned}& \frac{d}{dt} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}\bigl(v \vert v_{t} \vert ^{\eta } v_{t}+\nabla v\nabla v_{t}\bigr)\,dy \biggr) \\& \quad = p \mathcal{E}^{p-1}(t)\mathcal{E}'(t) \biggl( \int _{\Omega}v \vert v_{t} \vert ^{\eta } v_{t}\,dy+ \int _{\Omega}\nabla v \nabla v_{t}\,dy \biggr) \\& \qquad {}+\mathcal{E}^{p}(t)\frac{d}{dt} \biggl( \int _{\Omega}v \vert v_{t} \vert ^{\eta } v_{t}\,dy+ \int _{\Omega}\nabla v\nabla v_{t}\,dy \biggr), \end{aligned}$$

this implies

$$\begin{aligned}& (\eta +2) \int _{r}^{T}\mathcal{E}^{p+1}(t)\,dt \\& \quad = \underbrace{ \int _{r}^{T}\frac{d}{dt} \biggl( \mathcal{E}^{p}(t) \int _{\Omega}v \vert v_{t} \vert ^{\eta } v_{t}\,dy \biggr)\,dt}_{I_{1}}- \underbrace{p \int _{r}^{T} \biggl(\mathcal{E}^{p-1}(t) \mathcal{E}'(t) \int _{\Omega}v \vert v_{t} \vert ^{\eta } v_{t}\,dy \biggr)\,dt}_{I_{2}} \\& \qquad {}+(\eta +1) \underbrace{ \int _{r}^{T}\frac{d}{dt} \biggl( \mathcal{E}^{p}(t) \int _{\Omega}\nabla v\nabla v_{t}\,dy \biggr) \,dt}_{I_{3}} \\& \qquad {}- \underbrace{(\eta +1)p \int _{r}^{T} \biggl(\mathcal{E}^{p-1}(t) \mathcal{E}'(t) \int _{\Omega}\nabla v\nabla v_{t}\,dy \biggr) \,dt}_{I_{4}} \\& \qquad {}- \underbrace{\frac{\eta}{2} \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega} \vert \nabla v_{t} \vert ^{2}\,dx \biggr)\,dt}_{I_{5}}+ \underbrace{(\eta +2) \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{F}(x)\,dt}_{I_{6}} \\& \qquad {}+ \underbrace{\frac{\eta +2}{2} \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \biggl(1- \int _{0}^{t}h_{1}(r)\,dr\biggr) \int _{\Omega} \vert \nabla v \vert ^{2}\,dy \biggr) \,dt}_{I_{7}} \\& \qquad {}+ \underbrace{ \biggl((\eta +1)+\frac{\eta +2}{2(\gamma +1)} \biggr) \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega} \Vert \nabla v \Vert ^{2\gamma}_{2} \vert \nabla v \vert ^{2}\,dy \biggr)\,dt}_{I_{8}} \\& \qquad {}+ \underbrace{(\eta +1)\beta _{1} \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}vv_{t} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)-2}\,dy \biggr)\,dt}_{I_{9}} \\& \qquad {}+ \underbrace{(\eta +1) \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert v x(y,1,r,t) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}\,dr \,dy \biggr)\,dt}_{I_{10}} \\& \qquad {}+ \underbrace{\frac{\eta +2}{2} \int _{r}^{T} \bigl(\mathcal{E}^{p}(t) (h_{1}\circ \nabla v) (t) \bigr)\,dt}_{I_{11}} \\& \qquad {}- \underbrace{(\eta +1) \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{0}^{t}h_{1}(t-r) \int _{\Omega}\nabla v\nabla v(r)\,dy\,dr \biggr) \,dt}_{I_{12}}. \end{aligned}$$
(5.12)

At this point, we estimate \(I_{i}\), \(i=1,\ldots,12\), of the RHS in (5.12), we have

$$\begin{aligned} I_{1} =&\mathcal{E}^{p}(T) \int _{\Omega}v \vert v_{t} \vert ^{\eta } v_{t}(y,T)\,dy-\mathcal{E}^{p}(r) \int _{\Omega}v \vert v_{t} \vert ^{\eta } v_{t}(y,r)\,dy \\ \leq &c\mathcal{E}^{p}(T) \bigl\{ \bigl\Vert v(y,T) \bigr\Vert _{2}^{2}+ \bigl\Vert v_{t}(y,T) \bigr\Vert _{\eta +2}^{\eta +2} \bigr\} \\ &{}+c\mathcal{E}^{p}(r) \bigl\{ \bigl\Vert v(y,r) \bigr\Vert _{2}^{2}+ \bigl\Vert v_{t}(y,r) \bigr\Vert _{\eta +2}^{\eta +2} \bigr\} \\ \leq &c\mathcal{E}^{p}(T) \bigl\{ c_{*} \bigl\Vert \nabla v(T) \bigr\Vert ^{2}_{2}+ \mathcal{E}(T) \bigr\} \\ &{}+c\mathcal{E}^{p}(r) \bigl\{ c_{*} \bigl\Vert \nabla v(r) \bigr\Vert ^{2}_{2}+ \mathcal{E}(r) \bigr\} \\ \leq &c_{1} \bigl(\mathcal{E}^{p+1}(T)+ \mathcal{E}^{p+1}(r) \bigr). \end{aligned}$$
(5.13)

Since \(\mathcal{E}\) is decreasing, this implies

$$\begin{aligned} I_{1}\leq c\mathcal{E}^{p+1}(r)\leq \mathcal{E}^{p}(0) \mathcal{E}(r) \leq c\mathcal{E}(r). \end{aligned}$$
(5.14)

Similarly, we find

$$\begin{aligned}& I_{2} \leq -p \int _{r}^{T}\mathcal{E}^{p-1}(t) \mathcal{E}'(t) \bigl(c_{*} \mathcal{E}(t)+\mathcal{E}(t) \bigr)\,dt \\& \hphantom{I_{2}} \leq -c \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{E}'(t)\,dt\leq c \mathcal{E}^{p+1}(r)\leq c \mathcal{E}(r), \end{aligned}$$
(5.15)
$$\begin{aligned}& I_{3} \leq c \int _{r}^{T}\mathcal{E}^{p}(t) \bigl( \Vert \nabla v \Vert ^{2}_{2}+ \Vert \nabla v_{t} \Vert ^{2}_{2}\bigr)\,dt \\& \hphantom{I_{3}} \leq c\mathcal{E}^{p+1}(r)\leq \mathcal{E}^{p}(0) \mathcal{E}(r) \leq c\mathcal{E}(r), \end{aligned}$$
(5.16)

and

$$\begin{aligned} I_{4} \leq &-(\eta +1)p \int _{r}^{T}\mathcal{E}^{p-1}(t) \mathcal{E}'(t) \bigl(c\mathcal{E}(t) \bigr)\,dt \\ \leq &-c \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{E}'(t)\,dt\leq c \mathcal{E}^{p+1}(r)\leq c \mathcal{E}(r). \end{aligned}$$
(5.17)

Next, we get

$$\begin{aligned} I_{5} =&-\frac{\eta}{2}c \int _{r}^{T} \bigl(\mathcal{E}^{p}(t) \Vert \nabla v_{t} \Vert ^{2}_{2} \bigr)\,dt \\ \leq &c \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{E}(t)\,dt\leq c \mathcal{E}^{p+1}(r)\leq c\mathcal{E}(r). \end{aligned}$$
(5.18)

The other terms are estimated as follows:

$$\begin{aligned}& I_{6} = (\eta +2) \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{F}(x)\,dt \\& \hphantom{I_{6}}\leq (\eta +2) \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{E}(t)\,dt\leq c \mathcal{E}^{p+1}(r)\leq c\mathcal{E}(r), \end{aligned}$$
(5.19)
$$\begin{aligned}& I_{7} \leq (\eta +2) \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{E}(t)\,dt \leq c\mathcal{E}^{p+1}(r)\leq c\mathcal{E}(r). \end{aligned}$$
(5.20)

For the next term, we have

$$\begin{aligned} I_{8} =& \bigl(2(\gamma +1) (\eta +1)+(\eta +2) \bigr) \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \frac{ \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}}{2(\gamma +1)} \biggr)\,dt \\ \leq &c \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{E}(t)\,dt\leq c \mathcal{E}^{p+1}(r)\leq c\mathcal{E}(r), \end{aligned}$$
(5.21)

and applying the inequality of Young, the following is obtained:

$$\begin{aligned} I_{9} =&(\eta +1)\beta _{1} \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{ \Omega}vv_{t} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)-2}\,dy \biggr)\,dt \\ \leq &\varepsilon \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega} \bigl\vert v(t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ &{}+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ \leq &\varepsilon \int _{r}^{T}\mathcal{E}^{p}(t) \biggl[ \int _{ \Omega _{+}} \bigl\vert v(t) \bigr\vert ^{m^{+}}\,dy+ \int _{\Omega _{-}} \bigl\vert v(t) \bigr\vert ^{m^{-}}\,dy \biggr]\,dt \\ &{}+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt. \end{aligned}$$

Here, utilizing \(H_{0}^{1}(\Omega )\hookrightarrow L^{m^{-}}(\Omega )\) and \(H_{0}^{1}(\Omega )\hookrightarrow L^{m^{+}}(\Omega )\), we get

$$\begin{aligned} I_{9} \leq &\varepsilon \int _{r}^{T}\mathcal{E}^{p}(t) \bigl[c \bigl\Vert \nabla v(t) \bigr\Vert ^{m^{+}}_{2} +c \bigl\Vert \nabla v(t) \bigr\Vert ^{m^{-}}_{2} \bigr]\,dt \\ &{}+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ \leq &\varepsilon \int _{r}^{T}\mathcal{E}^{p}(t) \bigl[c \mathcal{E}^{ \frac{m^{+}-2}{2}}(0)\mathcal{E}(t) +c\mathcal{E}^{\frac{m^{-}-2}{2}}(0) \mathcal{E}(t) \bigr]\,dt \\ &{}+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ \leq &c\varepsilon \int _{r}^{T}\mathcal{E}^{p+1}(t)\,dt+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt. \end{aligned}$$
(5.22)

Similarly, we find

$$\begin{aligned} I_{10} =&(\eta +1) \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \beta _{2}(r) \bigr\vert v x(y,1,r,t) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)-2}\,dr \}\,dy \biggr)\,dt \\ \leq &\varepsilon \int _{r}^{T}\mathcal{E}^{p}(t) \bigl[c \bigl\Vert \nabla v(t) \bigr\Vert ^{m^{+}}_{2} +c \bigl\Vert \nabla v(t) \bigr\Vert ^{m^{-}}_{2} \bigr]\,dt \\ &{}+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ \leq &\varepsilon \int _{r}^{T}\mathcal{E}^{p}(t) \bigl[c \mathcal{E}^{ \frac{m^{+}-2}{2}}(0)\mathcal{E}(t) +c\mathcal{E}^{\frac{m^{-}-2}{2}}(0) \mathcal{E}(t) \bigr]\,dt \\ &{}+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ \leq &c\varepsilon \int _{r}^{T}\mathcal{E}^{p+1}(t)\,dt+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \end{aligned}$$
(5.23)

and

$$\begin{aligned} I_{11} \leq &(\eta +2) \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{E}(t)\,dt \leq c\mathcal{E}^{p+1}(r)\leq c\mathcal{E}(r). \end{aligned}$$
(5.24)

Now, by the inequality of Young from the last term, the following is obtained:

$$\begin{aligned} I_{12} \leq &(\eta +1) \int _{r}^{T} (\mathcal{E}^{p}(t) \bigl(c \Vert \nabla v \Vert ^{2}_{2}+c(h_{1} \circ \nabla v) (t) \bigr)\,dt \\ \leq &c \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{E}(t)\,dt\leq c \mathcal{E}^{p+1}(r)\leq c\mathcal{E}(r). \end{aligned}$$
(5.25)

By substituting (5.14)–(5.25) into (5.12), we find

$$\begin{aligned} \int _{r}^{T}\mathcal{E}^{p+1}(t)\,dt \leq &c\varepsilon \int _{r}^{T} \mathcal{E}^{p+1}(t)\,dt+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{ \Omega}c_{\varepsilon}(y) \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ &{}+c\mathcal{E}(r)+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{ \Omega}c_{\varepsilon}(y) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt. \end{aligned}$$
(5.26)

Now, choose ε so small that

$$\begin{aligned} \int _{r}^{T}\mathcal{E}^{p+1}(t)\,dt \leq &c\mathcal{E}(r)+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ &{}+c \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(y) \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt. \end{aligned}$$
(5.27)

After, fix ε, \(c_{\varepsilon}(y)\leq M\) because \(m(y)\) is bounded.

Hence, by (5.3),

$$\begin{aligned} \int _{r}^{T}\mathcal{E}^{p+1}(t)\,dt \leq &c\mathcal{E}(r)+cM \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega} \bigl\vert v_{t}(t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ &{}+cM \int _{r}^{T} \biggl(\mathcal{E}^{p}(t) \int _{\Omega} \bigl\vert x(y,1,r,t) \bigr\vert ^{m(y)}\,dy \biggr)\,dt \\ \leq &c\mathcal{E}(r)-\frac{cM}{C_{0}} \int _{r}^{T}\mathcal{E}^{p}(t) \mathcal{E}'(t)\,dt \\ \leq &c\mathcal{E}(r)+\frac{cM}{C_{0}(p+1)} \bigl[\mathcal{E}^{p+1}(r)- \mathcal{E}^{p+1}(T) \bigr]\leq c\mathcal{E}(r). \end{aligned}$$
(5.28)

Taking \(T\rightarrow \infty \), we get

$$\begin{aligned} \int _{r}^{\infty}\mathcal{E}^{p+1}(t)\,dt\leq c\mathcal{E}(r). \end{aligned}$$
(5.29)

Finally, Komornik’s Lemma 5.2 (with \(\sigma =p=\frac{m^{+}-2}{2}\)) implies our result. This completes the proof. □

6 Conclusion

In this research, we investigated the blow-up and growth of solutions in a coupled nonlinear viscoelastic Kirchhoff-type system with sources, distributed delay, and variable exponents. Additionally, we obtained a general decay result when \(f_{1}=f_{2}=0\) by leveraging an integral inequality introduced by Komornik [20]. Such problems are commonly encountered in various mathematical models of real-world problems. In future research, we plan to apply this approach to address similar problems, incorporating additional damping effects such as Balakrishnan–Taylor damping and logarithmic terms. We will also try to prove the general decay result in the case (\(f_{1},f_{2}\neq 0\)).

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Abdelhedi, B.: Hyperbolic Navier-Stokes equations in three space dimensions. Filomat 37(7), 2209–2218 (2023)

    Article  MathSciNet  Google Scholar 

  2. Agre, K., Rammaha, M.A.: Systems of nonlinear wave equations with damping and source terms. Differ. Integral Equ. 19, 1235–1270 (2007)

    MathSciNet  Google Scholar 

  3. Antontsev, S.: Wave equation with \(p(x,t)\)-Laplacian and damping term: existence and blow-up. Differ. Equ. Appl. 3, 503–525 (2011)

    MathSciNet  Google Scholar 

  4. Ball, J.: Remarks on blow-up and nonexistence theorems for nonlinear evolutions equation. Q. J. Math. 28, 473–486 (1977)

    Article  MathSciNet  Google Scholar 

  5. Ben Aissa, A., Ouchenane, D., Zennir, K.: Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms. Nonlinear Stud. 19(4), 523–535 (2012)

    MathSciNet  Google Scholar 

  6. Ben Omrane, I., Ben Slimane, M., Gala, S., Ragusa, M.A.: A weak-Lp Prodi-Serrin type regularity criterion for the micropolar fluid equations in terms of the pressure. Ric. Mat. (2023). https://doi.org/10.1007/s11587-023-00829-2

    Article  Google Scholar 

  7. Bland, D.R.: The Theory of Linear Viscoelasticity. Dover, Mineola (2016)

    Google Scholar 

  8. Boulaaras, S., Choucha, A., Ouchenane, D., Cherif, B.: Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms. Adv. Differ. Equ. 2020, 310 (2020)

    Article  MathSciNet  Google Scholar 

  9. Boulaaras, S., Choucha, A., Scapellato, A.: General decay of the Moore-Gibson-Thompson equation with viscoelastic memory of type II. J. Funct. Spaces 2022, 9015775 (2022)

    MathSciNet  Google Scholar 

  10. Cavalcanti, M.M., Cavalcanti, D., Ferreira, J.: Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Math. Methods Appl. Sci. 24, 1043–1053 (2001)

    Article  MathSciNet  Google Scholar 

  11. Choucha, A., Boulaaras, S., Jan, R., Alharbi, R.: Blow-up and decay of solutions for a viscoelastic Kirchhoff-type equation with distributed delay and variable exponents. Math. Methods Appl. Sci., 1–18 (2024). https://doi.org/10.1002/mma.9950

  12. Choucha, A., Boulaaras, S., Ouchenane, D., Beloul, S.: General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms. Math. Methods Appl. Sci., 1–22 (2020). https://doi.org/10.1002/mma.7121

  13. Choucha, A., Ouchenane, D., Boulaaras, S.: Well Posedness and Stability Result for a Thermoelastic Laminated Timoshenko Beam with Distributed Delay Term. Math. Methods Appl. Sci., 1–22 (2020). https://doi.org/10.1002/mma.6673

  14. Choucha, A., Ouchenane, D., Boulaaras, S.: Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms. J. Nonlinear Funct. Anal. (2020). https://doi.org/10.23952/jnfa.2020.31

    Article  Google Scholar 

  15. Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33(2), 239 (1961)

    Article  MathSciNet  Google Scholar 

  16. Ekinci, F., Piskin, E., Boulaaras, S.M., Mekawy, I.: Global existence and general decay of solutions for a quasilinear system with degenerate damping terms, JFS (2021)

  17. Georgiev, V., Todorova, G.: Existence of a solution of the wave equation with nonlinear damping and source term. J. Differ. Equ. 109, 295–308 (1994)

    Article  MathSciNet  Google Scholar 

  18. He, L.: On decay and blow-up of solutions for a system of equations. Appl. Anal., 1–30 (2019). https://doi.org/10.1080/00036811.2019.1689562

  19. Kirchhoff, G.: Vorlesungen Uber Mechanik. Tauber, Leipzig (1883)

    Google Scholar 

  20. Komornik, V.: Exact Controlability and Stabilisation. The Multiplier Method Masson and Wiley

  21. Liu, W.: General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source. Nonlinear Anal. 73, 1890–1904 (2010)

    Article  MathSciNet  Google Scholar 

  22. Mesaoudi, S., Kafini, M.: On the decay and global nonexistence of solutions to a damped wave equation with variable-exponent nonlinearity and delay. Ann. Pol. Math. 122(1) (2019)

  23. Mesloub, F., Boulaaras, S.: General decay for a viscoelastic problem with not necessarily decreasing kernel. J. Appl. Math. Comput. 58, 647–665 (2018). https://doi.org/10.1007/S12190-017-1161-9

    Article  MathSciNet  Google Scholar 

  24. Mezouar, N., Boulaaras, S.: Global existence and exponential decay of solutions for generalized coupled non-degenerate Kirchhoff system with a time varying delay term. Bound. Value Probl. 2020, 90 (2020). https://doi.org/10.1186/s1366-020-01390-9

    Article  MathSciNet  Google Scholar 

  25. Nicaise, A.S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 21(9–10), 935–958 (2008)

    MathSciNet  Google Scholar 

  26. Ouchenane, D., Boulaaras, S., Choucha, A., Alngga, M.: Blow-up and general decay of solutions for a Kirchhoff-type equation with distributed delay and variable-exponents. Quaest. Math. (2023). https://doi.org/10.2989/16073606.2023.2183156

    Article  Google Scholar 

  27. Piskin, E., Ekinci, F.: General decay and blow up of solutions for coupled viscoelastic equation of Kirchhoff type with degenerate damping terms. Math. Methods Appl. Sci. 42(16), 5468–5488 (2019)

    Article  MathSciNet  Google Scholar 

  28. Song, H.T., Xue, D.S.: Blow up in a nonlinear viscoelastic wave equation with strong damping. Nonlinear Anal. 109, 245–251 (2014). https://doi.org/10.1016/j.na.2014.06.012

    Article  MathSciNet  Google Scholar 

  29. Song, H.T., Zhong, C.K.: Blow-up of solutions of a nonlinear viscoelastic wave equation. Nonlinear Anal., Real World Appl. 11, 3877–3883 (2010). https://doi.org/10.1016/j.nonrwa.2010.02.015

    Article  MathSciNet  Google Scholar 

  30. Wu, S.T.: General decay of energy for a viscoelastic equation with damping and source terms. Taiwan. J. Math. 16(1), 113–128 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study. All authors read and approve the final manuscript, “S.B. and A.C. wrote the main manuscript text and DO and RJ. review and check. All authors reviewed the manuscript.”

Corresponding author

Correspondence to Salah Boulaaras.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulaaras, S., Choucha, A., Ouchenane, D. et al. Blow up, growth, and decay of solutions for a class of coupled nonlinear viscoelastic Kirchhoff equations with distributed delay and variable exponents. J Inequal Appl 2024, 55 (2024). https://doi.org/10.1186/s13660-024-03132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03132-2

Mathematics Subject Classification

Keywords