Skip to main content

A Pexider system of additive functional equations in Banach algebras

Abstract

In this paper, we solve the system of functional equations

$$\begin{aligned} \textstyle\begin{cases} f(x+y)+g(y-x)=2f(x), \\ g(x+y)-f(y-x)=2g(y) \end{cases}\displaystyle \end{aligned}$$

and we investigate the stability of g-derivations in Banach algebras.

1 Introduction

Let \(\mathcal{B}\) be a complex Banach algebra and let \(g :\mathcal{B}\rightarrow \mathcal{B}\) be a C-linear mapping. Mirzavaziri and Moslehian [1] introduced the concept of g-derivation \(f: \mathcal{B}\to \mathcal{B}\) as follows:

$$\begin{aligned} f(xy)= f(x)g(y)+ g(x)f(y) \end{aligned}$$
(1.1)

for all \(x, y \in \mathcal{B}\). Park et al. [2] introduced the concept of hom-derivation on \(\mathcal{B}\), i.e., \(g :\mathcal{B}\rightarrow \mathcal{B}\) is a homomorphism and f satisfies (1.1) for all \(x, y \in \mathcal{B}\).

The stability problem of functional equations originated from a question of Ulam [3] concerning the stability of group homomorphisms. Hyers [4] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [5] for additive mappings and by Th.M. Rassias [6] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Th.M. Rassias theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general control function in the spirit of Th.M. Rassias’ approach. Recently, Lee et al. [8, 9] extended more general functional equations, which were mixed types of additive, quadratic and cubic functional equations in Banach spaces, and Park and Rassias [10] applied the functional equation theory to study partial multipliers in \(C^{*}\)-algebras. Many mathematicians developed the Hyers results in various directions [1118].

The method provided by Hyers [4] which produces the additive function will be called a direct method. This method is the most significant and strongest tool to study the stability of different functional equations. That is, the exact solution of the functional equation is explicitly constructed as a limit of a sequence, starting from the given approximate solution [19, 20]. The other significant method is the fixed point theorem, that is, the exact solution of the functional equation is explicitly created as a fixed point of some certain map (see [21, 22]).

We consider a fixed point alternative theorem.

Theorem 1.1

[23] Assume that \((\mathcal{B} ,d)\) is a complete generalized metric space and \(\mathcal{I} : \mathcal{B} \rightarrow \mathcal{B}\) is a strictly contractive mapping, that is,

$$\begin{aligned} d(\mathcal{I}u,\mathcal{I}v)\leq L d(u,v) \end{aligned}$$

for all \(u,v\in \mathcal{B}\) and a Lipschitz constant \(L<1\). Then for each given element \(u\in \mathcal{B}\), either

$$\begin{aligned} d\bigl(\mathcal{I}^{n}u,\mathcal{I}^{n+1}u\bigr)=+\infty , \quad \forall n\geq 0, \end{aligned}$$

or

$$\begin{aligned} d\bigl(\mathcal{I}^{n}u,\mathcal{I}^{n+1}u\bigr)< +\infty , \quad \forall n\geq n_{0}, \end{aligned}$$

for some positive integer \(n_{0}\). Furthermore, if the second alternative holds, then:

  1. (i)

    the sequence \((\mathcal{I}^{n}u)\) is convergent to a fixed point p of \(\mathcal{I}\);

  2. (ii)

    p is the unique fixed point of \(\mathcal{I}\) in the set \(V: = \{v\in \mathcal{B} , d(\mathcal{I}^{n_{0}} u,v)<+\infty \}\);

  3. (iii)

    \(d(v,p)\leq \frac{1}{1-L}d(v,\mathcal{I}v)\) for all \(u,v\in V\).

In this paper, we consider the following system of functional equations:

$$\begin{aligned} &\textstyle\begin{cases} f(x+y)+g(y-x)=2f(x), \\ g(x+y)-f(y-x)=2g(y) \end{cases}\displaystyle \end{aligned}$$
(1.2)

for all \(x,y\in \mathcal{B}\).

The aim of the present paper is to solve the system of functional equations (1.2) and prove the Hyers–Ulam stability of g-derivations in complex Banach algebras by using the fixed point method.

Throughout this paper, we assume that \(\mathcal{B}\) is a complex Banach algebra.

2 Stability of the system of functional equations (1.2)

We solve and investigate the system of additive functional equations (1.2) in complex Banach algebras.

Lemma 2.1

[24, Theorem 2.1] Let \(\mathcal{B}\) be a complex Banach algebra and let \(\mathcal{F} :\mathcal{B} \rightarrow \mathcal{B}\) be an additive mapping such that \(\mathcal{F}(\alpha x)=\alpha \mathcal{F}(x)\) for all \(\alpha \in {\mathbf{T}}^{1} := \{\zeta \in {\mathbf{C}}: |\zeta |= 1\}\) and all \(x\in \mathcal{B}\). Then \(\mathcal{F}\) is C-linear.

Lemma 2.2

Let \(f,g : \mathcal{B} \rightarrow \mathcal{B}\) be mappings satisfying (1.2) for all \(x,y\in \mathcal{B}\). Then the mappings \(f,g : \mathcal{B} \rightarrow \mathcal{B}\) are additive.

Proof

Letting \(x=y=0\) in (1.2), we get

$$\begin{aligned} f(0)=g(0)=0. \end{aligned}$$

Putting \(y=x\) in (1.2), we have

$$\begin{aligned} f(2x)=2f(x) \end{aligned}$$

for all \(x\in \mathcal{B}\). Setting \(y=0\) in (1.2), we obtain

$$\begin{aligned} g(x)=f(-x) \end{aligned}$$
(2.1)

for all \(x\in \mathcal{B}\).

Replacing \(g(y-x)\) by \(f(x-y)\) in (1.2), we have

$$\begin{aligned} f(x+y)+f(x-y)=f(2x) \end{aligned}$$

for all \(x,y\in \mathcal{B}\). Hence the mapping \(f: \mathcal{B} \rightarrow \mathcal{B}\) is additive and thus by (2.1) the mapping \(g: \mathcal{B} \rightarrow \mathcal{B}\) is additive. □

Using the fixed point technique, we prove the Hyers–Ulam stability of the system of the additive functional equations (1.2) in complex Banach algebras.

Theorem 2.3

Suppose that \(\Delta : \mathcal{B}^{2}\rightarrow [0,\infty )\) is a function such that there exists an \(L<1\) with

$$\begin{aligned} \Delta \biggl(\frac{x}{2},\frac{y}{2} \biggr)\leq \frac{L}{2} \Delta (x,y) \end{aligned}$$
(2.2)

for all \(x,y\in \mathcal{B}\). Let \(f,g : \mathcal{B} \rightarrow \mathcal{B}\) be mappings satisfying

$$\begin{aligned} &\textstyle\begin{cases} \Vert f(x+y)+g(y-x)-2f(x) \Vert \leq \Delta (x,y), \\ \Vert g(x+y)-f(y-x)-2g(y) \Vert \leq \Delta (x,y) \end{cases}\displaystyle \end{aligned}$$
(2.3)

for all \(x,y\in \mathcal{B}\). Then there exist unique additive mappings \(F, G : \mathcal{B}\rightarrow \mathcal{B}\) such that

$$\begin{aligned} & \bigl\Vert F(x)-f(x) \bigr\Vert \leq \frac{L}{2(1-L)} \Delta (x,x), \\ & \bigl\Vert G(x)-g(x) \bigr\Vert \leq \frac{L}{2(1-L)} \Delta (x,x) \end{aligned}$$

for all \(x\in \mathcal{B}\).

Proof

Putting \(x=y=0\) in (2.3), we get

$$\begin{aligned} &\textstyle\begin{cases} \Vert g(0)-f(0) \Vert \leq \Delta (0,0)=0, \\ \Vert f(0)+g(0) \Vert \leq \Delta (0,0)=0, \end{cases}\displaystyle \end{aligned}$$

so \(f(0)=g(0)=0\).

Letting \(y=x\) in (2.3), we obtain

$$\begin{aligned} &\textstyle\begin{cases} \Vert f(2x)-2f(x) \Vert \leq \Delta (x,x), \\ \Vert g(2x)-2g(x) \Vert \leq \Delta (x,x). \end{cases}\displaystyle \end{aligned}$$
(2.4)

Let \(\Gamma =\{\gamma : \mathcal{B}\rightarrow \mathcal{B}: \gamma (0)=0 \}\). We define a generalized metric \(d: \Gamma \times \Gamma \rightarrow [0,\infty ]\) by

$$\begin{aligned} d(\delta , \gamma )=\inf \bigl\{ \mu \in {\mathbf{R}}_{+} : \bigl\Vert \delta (x)- \gamma (x) \bigr\Vert \leq \mu \Delta (x,x) , \forall x\in \mathcal{B} \bigr\} \end{aligned}$$

and we consider \(\inf \emptyset =+\infty \). Then d is a complete generalized metric on Γ (see [25]).

Now, we define the mapping \(\mathcal{J}:(\Gamma ,d) \rightarrow (\Gamma ,d)\) such that

$$ \mathcal{J}\delta (x):=2\delta \biggl(\frac{x}{2} \biggr) $$

for all \(x\in \mathcal{B}\).

Actually, let \(\delta , \gamma \in (\Gamma ,d)\) be given such that \(d(\delta , \gamma )=\mu \). Then

$$ \bigl\Vert \delta (x)-\gamma (x) \bigr\Vert \leq \mu \Delta (x,x) $$

for all \(x\in \mathcal{B}\). Hence

$$\begin{aligned} \bigl\Vert \mathcal{J}\delta (x)-\mathcal{J}\gamma (x) \bigr\Vert = \biggl\Vert 2\delta \biggl(\frac{x}{2} \biggr)-2\gamma \biggl( \frac{x}{2} \biggr) \biggr\Vert \leq 2\mu \Delta \biggl( \frac{x}{2},\frac{x}{2} \biggr) \leq L\mu \Delta (x,x) \end{aligned}$$

for all \(x\in \mathcal{B}\). It follows that \(d( \mathcal{J}\delta , \mathcal{J}\gamma )\leq L\mu \). So

$$\begin{aligned} d( \mathcal{J}\delta , \mathcal{J}\gamma )\leq Ld(\delta ,\gamma ) \end{aligned}$$

for all \(x\in \mathcal{B}\) and all \(\delta ,\gamma \in \Gamma \).

Using (2.4), we obtain

$$\begin{aligned} &\textstyle\begin{cases} \Vert f(x)-2f (\frac{x}{2} ) \Vert \leq \Delta (\frac{x}{2},\frac{x}{2} ) \leq \frac{L}{2}\Delta (x,x), \\ \Vert g(x)-2g (\frac{x}{2} ) \Vert \leq \Delta (\frac{x}{2},\frac{x}{2} ) \leq \frac{L}{2}\Delta (x,x) \end{cases}\displaystyle \end{aligned}$$

for all \(x\in \mathcal{B}\), which imply that \(d(f,\mathcal{J} f)\leq \frac{L}{2}\) and \(d(g,\mathcal{J}g)\leq \frac{L}{2}\).

Using the fixed point alternative, we deduce the existence of unique fixed points of \(\mathcal{J}\), that is, the existence of mappings \(F,G : \mathcal{B}\rightarrow \mathcal{B}\), respectively, such that

$$ F(x)=2F \biggl(\frac{x}{2} \biggr), \qquad G(x)=2G \biggl( \frac{x}{2} \biggr) $$

with the following property: there exist \(\mu , \eta \in (0,\infty )\) satisfying

$$\begin{aligned} \bigl\Vert f(x)-F(x) \bigr\Vert \leq \mu \Delta (x,x), \qquad \bigl\Vert g(x)-G(x) \bigr\Vert \leq \eta \Delta (x,x) \end{aligned}$$

for all \(x\in \mathcal{B}\).

Since \(\lim_{n\rightarrow \infty}d(\mathcal{J}^{n}f,F)=0\) and \(\lim_{n\rightarrow \infty}d(\mathcal{J}^{n}g,G)=0\),

$$\begin{aligned} \lim_{n\rightarrow \infty} 2^{n} f \biggl(\frac{x}{2^{n}} \biggr)=F(x), \qquad \lim_{n\rightarrow \infty} 2^{n} g \biggl( \frac{x}{2^{n}} \biggr)=G(x) \end{aligned}$$

for all \(x\in \mathcal{B}\).

Next, \(d(f,F)\leq \frac{1}{1-L}d(f,\mathcal{J}f)\) and \(d(g,G)\leq \frac{1}{1-L}d(g,\mathcal{J}g)\), which imply

$$\begin{aligned} \bigl\Vert f(x)-F(x) \bigr\Vert \leq \frac{L}{2(1-L)} \Delta (x,x), \qquad \bigl\Vert g(x)-G(x) \bigr\Vert \leq \frac{L}{2(1-L)} \Delta (x,x) \end{aligned}$$
(2.5)

for all \(x\in \mathcal{B}\).

Using (2.2) and (2.3), we conclude that

$$\begin{aligned} \bigl\Vert F(x+y)+G(y-x)-2F(x) \bigr\Vert &=\lim_{n\rightarrow \infty} 2^{n} \biggl\Vert f \biggl(\frac{x+y}{2^{n}} \biggr)+g \biggl( \frac{y-x}{2^{n}} \biggr)-2f \biggl(\frac{x}{2^{n}} \biggr) \biggr\Vert \\ &\leq \lim_{n\rightarrow \infty} 2^{n} \Delta \biggl( \frac{x}{2^{n}}, \frac{y}{2^{n}} \biggr)\leq \lim_{n\rightarrow \infty} L^{n} \Delta (x,y)=0 \end{aligned}$$

and

$$\begin{aligned} \bigl\Vert G(x+y)-F(y-x)-2G(x) \bigr\Vert &=\lim_{n\rightarrow \infty} 2^{n} \biggl\Vert g \biggl(\frac{x+y}{2^{n}} \biggr)-f \biggl( \frac{y-x}{2^{n}} \biggr)-2g \biggl(\frac{x}{2^{n}} \biggr) \biggr\Vert \\ &\leq \lim_{n\rightarrow \infty} 2^{n} \Delta \biggl( \frac{x}{2^{n}}, \frac{y}{2^{n}} \biggr)\leq \lim_{n\rightarrow \infty} L^{n} \Delta (x,y)=0 \end{aligned}$$

for all \(x,y\in \mathcal{B}\), since \(L<1\). Hence

$$\begin{aligned} &\textstyle\begin{cases} F(x+y)+G(y-x)=2F(x), \\ G(x+y)-F(y-x)=2G(x) \end{cases}\displaystyle \end{aligned}$$

for all \(x,y\in \mathcal{B}\), since \(L<1\). Therefore by Lemma 2.2, the mappings \(F,G: \mathcal{B}\rightarrow \mathcal{B}\) are additive. □

Corollary 2.4

Let η, p be nonnegative real numbers with \(p\geq 1\) and let \(f,g : \mathcal{B} \rightarrow \mathcal{B}\) be mappings satisfying

$$\begin{aligned} &\textstyle\begin{cases} \Vert f(x+y)+g(y-x)-2f(x) \Vert \leq \eta ( \Vert x \Vert ^{p}+ \Vert y \Vert ^{p}), \\ \Vert g(x+y)-f(y-x)-2g(y) \Vert \leq \eta ( \Vert x \Vert ^{p}+ \Vert y \Vert ^{p}) \end{cases}\displaystyle \end{aligned}$$

for all \(x,y\in \mathcal{B}\). Then there exist unique additive mappings \(F, G : \mathcal{B}\rightarrow \mathcal{B}\) such that

$$\begin{aligned} & \bigl\Vert F(x)-f(x) \bigr\Vert \leq \frac{\eta}{2^{p-1}-1} \Vert x \Vert ^{p}, \\ & \bigl\Vert G(x)-g(x) \bigr\Vert \leq \frac{\eta}{2^{p-1}-1} \Vert x \Vert ^{p} \end{aligned}$$

for all \(x\in \mathcal{B}\).

Proof

The proof follows from Theorem 2.3 by taking \(L=2^{1-p}\) and \(\Delta (x,y)=\eta (\Vert x\Vert ^{p}+\Vert y\Vert ^{p})\) for all \(x,y\in \mathcal{B}\). □

3 Stability of G-derivations in Banach algebras

In this section, by using the fixed point technique, we prove the Hyers–Ulam stability of g-derivations in complex Banach algebras.

Lemma 3.1

Let \(f,g : \mathcal{B} \rightarrow \mathcal{B}\) be mappings satisfying

$$\begin{aligned} &\textstyle\begin{cases} f(\lambda (x+y))+g(\lambda (y-x))=2\lambda f(x), \\ g(\lambda (x+y))-f(\lambda (y-x))=2\lambda g(y) \end{cases}\displaystyle \end{aligned}$$
(3.1)

for all \(x,y\in \mathcal{B}\) and all \(\lambda \in {\mathbf{T}}^{1}\). Then the mappings \(f,g : \mathcal{B} \rightarrow \mathcal{B}\) are C-linear.

Proof

If we put \(\lambda =1\) in (3.1), then f and g are additive by Lemma 2.2.

Letting \(y=x\) in (3.1), we have

$$\begin{aligned} &\textstyle\begin{cases} f(2\lambda x)=2\lambda f(x), \\ g(2\lambda x)=2\lambda g(x) \end{cases}\displaystyle \end{aligned}$$

for all \(x\in \mathcal{B}\) and all \(\lambda \in {\mathbf{T}}^{1}\). Since the mappings f and g are additive,

$$\begin{aligned} &\textstyle\begin{cases} f(\lambda x)=\lambda f(x), \\ g(\lambda x)=\lambda g(x) \end{cases}\displaystyle \end{aligned}$$

for all \(x\in \mathcal{B}\) and all \(\lambda \in {\mathbf{T}}^{1}\). So by Lemma 2.1 the mappings f and g are C-linear. □

Theorem 3.2

Suppose that \(\Delta : \mathcal{B}^{2}\rightarrow [0,\infty )\) is a function such that there exists an \(L<1\) with

$$\begin{aligned} \Delta (x,y)\leq \frac{L}{4} \Delta (2x,2y) \end{aligned}$$
(3.2)

for all \(x,y\in \mathcal{B}\). Let \(f,g : \mathcal{B} \rightarrow \mathcal{B}\) be mappings satisfying

$$\begin{aligned} &\textstyle\begin{cases} \Vert f(\lambda (x+y))+g(\lambda (y-x))-2\lambda f(x) \Vert \leq \Delta (x,y), \\ \Vert g(\lambda (x+y))-f(\lambda (y-x))-2\lambda g(y) \Vert \leq \Delta (x,y), \end{cases}\displaystyle \end{aligned}$$
(3.3)
$$\begin{aligned} &\bigl\Vert f(xy)-f(x)g(y)-g(x)f(y) \bigr\Vert \leq \Delta (x,y) \end{aligned}$$
(3.4)

for all \(x,y\in \mathcal{B}\) and all \(\lambda \in {\mathbf{T}}^{1}\). Then there exist unique C-linear mappings \(F,G: \mathcal{B} \rightarrow \mathcal{B}\) such that F is a G-derivation and

$$\begin{aligned} & \bigl\Vert F(x)-f(x) \bigr\Vert \leq \frac{L}{2(2-L)} \Delta (x,x), \end{aligned}$$
(3.5)
$$\begin{aligned} & \bigl\Vert G(x)-g(x) \bigr\Vert \leq \frac{L}{2(2-L)} \Delta (x,x) \end{aligned}$$
(3.6)

for all \(x\in \mathcal{B}\).

Proof

Let \(\lambda =1\) in (3.3). By Theorem 2.3, there are unique additive mappings \(F,G: \mathcal{B} \rightarrow \mathcal{B}\) satisfying (3.5) and (3.6) given by

$$\begin{aligned} \lim_{n\rightarrow \infty} 2^{n}f \biggl(\frac{x}{2^{n}} \biggr)=F(x), \qquad \lim_{n\rightarrow \infty} 2^{n} g \biggl( \frac{x}{2^{n}} \biggr)=G(x) \end{aligned}$$

for all \(x\in \mathcal{B}\).

Using (3.2) and (3.3), we conclude that

$$\begin{aligned} & \bigl\Vert F\bigl(\lambda (x+y)\bigr)+G\bigl(\lambda (y-x)\bigr)-2\lambda F(x) \bigr\Vert \\ &\quad =\lim_{n\rightarrow \infty} 2^{n} \biggl\Vert f \biggl( \frac{\lambda (x+y)}{2^{n} } \biggr)+g \biggl( \frac{\lambda (y-x)}{2^{n}} \biggr)-2\lambda f \biggl(\frac{x}{2^{n}} \biggr) \biggr\Vert \\ &\quad \leq \lim_{n\rightarrow \infty} 2^{n} \Delta \biggl( \frac{x}{2^{n}}, \frac{y}{2^{n}} \biggr)\leq \lim_{n\rightarrow \infty} L^{n} \Delta ( x, y)=0 \end{aligned}$$

and

$$\begin{aligned} & \bigl\Vert G\bigl(\lambda (x+y)\bigr)-F\bigl(\lambda (y-x)\bigr)-2\lambda G(x) \bigr\Vert \\ &\quad =\lim_{n\rightarrow \infty} 2^{n} \biggl\Vert g \biggl( \frac{\lambda (x+y)}{2^{n} } \biggr)-f \biggl( \frac{\lambda (y-x)}{2^{n}} \biggr)-2\lambda g \biggl(\frac{x}{2^{n}} \biggr) \biggr\Vert \\ &\quad \leq \lim_{n\rightarrow \infty} 2^{n} \Delta \biggl( \frac{x}{2^{n}}, \frac{y}{2^{n}} \biggr)\leq \lim_{n\rightarrow \infty} L^{n} \Delta (x,y)=0 \end{aligned}$$

for all \(x,y\in \mathcal{B}\), since \(L<1\). Hence

$$\begin{aligned} &\textstyle\begin{cases} F(\lambda (x+y))+G(\lambda (y-x))=2\lambda F(x), \\ G(\lambda (x+y))-F(\lambda (y-x))=2\lambda G(x) \end{cases}\displaystyle \end{aligned}$$

for all \(x,y\in \mathcal{B}\) and all \(\lambda \in {\mathbf{T}}^{1}\), since \(L<1\). Therefore by Lemma 3.1, the mappings \(F,G: \mathcal{B}\rightarrow \mathcal{B}\) are C-linear.

It follows from (3.4) that

$$\begin{aligned} & \bigl\Vert F(xy)-F(x)G(y)-G(x)F(y) \bigr\Vert \\ &\quad=\lim_{n\rightarrow \infty} 4^{n} \biggl\Vert f \biggl( \frac{xy}{4^{n} } \biggr)-f \biggl(\frac{x}{2^{n}} \biggr)g \biggl( \frac{y}{2^{n}} \biggr)-g \biggl(\frac{x}{2^{n}} \biggr)f \biggl( \frac{y}{2^{n}} \biggr) \biggr\Vert \\ &\quad\leq \lim_{n\rightarrow \infty} 4^{n} \Delta \biggl( \frac{x}{2^{n}}, \frac{y}{2^{n}} \biggr) \\ &\quad\leq \lim_{n\rightarrow \infty} L^{n} \Delta (x,y)=0 \end{aligned}$$

for all \(x,y\in \mathcal{B}\). So

$$\begin{aligned} F(xy)=F(x)G(y)+G(x)F(y) \end{aligned}$$

for all \(x,y\in \mathcal{B}\). Thus the C-linear mapping F is a G-derivation. □

Corollary 3.3

Let p, q, η be nonnegative real numbers with \(p+q>2\) and let \(f,g : \mathcal{B} \rightarrow \mathcal{B}\) be mappings satisfying

$$\begin{aligned} &\textstyle\begin{cases} \Vert f(\lambda (x+y))+g(\lambda (y-x))-2\lambda f(x) \Vert \leq \eta \Vert x \Vert ^{p} \Vert y \Vert ^{q}, \\ \Vert g(\lambda (x+y))-f(\lambda (y-x))-2\lambda g(y) \Vert \leq \eta \Vert x \Vert ^{p} \Vert y \Vert ^{q} \end{cases}\displaystyle \end{aligned}$$

and

$$\begin{aligned} \bigl\Vert f(xy)-f(x)g(y)-g(x)f(y) \bigr\Vert \leq \Vert x \Vert ^{p} \Vert y \Vert ^{q} \end{aligned}$$

for all \(x,y\in \mathcal{B}\) and all \(\lambda \in {\mathbf{T}}^{1}\). Then there exist unique C-linear mappings \(F,G: \mathcal{B} \rightarrow \mathcal{B}\) such that F is a G-derivation and

$$\begin{aligned} & \bigl\Vert F(x)-f(x) \bigr\Vert \leq \frac{\eta}{2^{p+q}-2} \Vert x \Vert ^{p+q}, \\ & \bigl\Vert G(x)-g(x) \bigr\Vert \leq \frac{\eta}{2^{p+q}-2} \Vert x \Vert ^{p+q} \end{aligned}$$

for all \(x\in \mathcal{B}\).

Proof

The proof follows from Theorem 3.2 by taking \(\Delta (x,y)=\eta \Vert x\Vert ^{p}\Vert y\Vert ^{q}\) for all \(x,y\in \mathcal{B}\). Choosing \(L=2^{2-p-q}\), we obtain the desired result. □

4 Conclusion

We solved the system of functional equations (1.2) and we proved the Hyers–Ulam stability of g-derivations in Banach algebras.

Data availability

Not applicable.

References

  1. Mirzavaziri, M., Moslehian, M.S.: Automatic continuity of σ-derivations on \(C^{*}\)-algebras. Proc. Am. Math. Soc. 134, 3319–3327 (2006)

    Article  MathSciNet  Google Scholar 

  2. Park, C., Lee, J., Zhang, X.: Additive s-functional inequality and hom-derivations in Banach algebras. J. Fixed Point Theory Appl. 21, 18 (2019)

    Article  MathSciNet  Google Scholar 

  3. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience Publ., New York (1960)

    Google Scholar 

  4. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)

    Article  MathSciNet  Google Scholar 

  6. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  Google Scholar 

  7. Găvruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)

    Article  MathSciNet  Google Scholar 

  8. Lee, Y., Jung, S., Rassias, M.T.: On an n-dimensional mixed type additive and quadratic functional equation. Appl. Math. Comput. 228, 13–16 (2014)

    MathSciNet  Google Scholar 

  9. Lee, Y., Jung, S., Rassias, M.T.: Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation. J. Math. Inequal. 12(1), 43–61 (2018)

    Article  MathSciNet  Google Scholar 

  10. Park, C., Rassias, M.T.: Additive functional equations and partial multipliers in \(C^{*}\)-algebras. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2261–2275 (2019)

    Article  MathSciNet  Google Scholar 

  11. Dehghanian, M., Modarres, S.M.S.: Ternary γ-homomorphisms and ternary γ-derivations on ternary semigroups. J. Inequal. Appl. 2012, 34 (2012)

    Article  MathSciNet  Google Scholar 

  12. Dehghanian, M., Modarres, S.M.S., Park, C., Shin, D.: \(C^{*}\)-Ternary 3-derivations on \(C^{*}\)-ternary algebras. J. Inequal. Appl. 2013, 124 (2013)

    Article  MathSciNet  Google Scholar 

  13. Dehghanian, M., Park, C.: \(C^{*}\)-Ternary 3-homomorphisms on \(C^{*}\)-ternary algebras. Results Math. 66(3), 385–404 (2014)

    MathSciNet  Google Scholar 

  14. Czerwik, S.: Functional Equations and Inequalities in Several Variables. World Scientific, River Edge (2002)

    Book  Google Scholar 

  15. Jung, S.: On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal. Appl. 222, 126–137 (1998)

    Article  MathSciNet  Google Scholar 

  16. Eshaghi Gordji, M., Hayati, B., Kamyar, M., Khodaei, H.: On stability and nonstability of systems of functional equations. Quaest. Math. 44(4), 557–567 (2020)

    Article  MathSciNet  Google Scholar 

  17. EL-Fassi, Iz.: Approximate solution of a generalized multi-quadratic type functional equation in Lipschitz space. J. Math. Anal. Appl. 519(2), 126840 (2023)

    Article  MathSciNet  Google Scholar 

  18. EL-Fassi, Iz.: Generalized hyperstability of a Drygas functional equation on a restricted domain using Brzdȩk’s fixed point theorem. J. Fixed Point Theory Appl. 19(4), 2529–2540 (2017)

    Article  MathSciNet  Google Scholar 

  19. Dehghanian, M., Sayyari, Y., Park, C.: Hadamard homomorphisms and Hadamard derivations on Banach algebras. Miskolc Math. Notes 24(1), 81–91 (2023)

    Article  MathSciNet  Google Scholar 

  20. Sayyari, Y., Dehghanian, M., Park, C., Lee, J.: Stability of hyper homomorphisms and hyper derivations in complex Banach algebras. AIMS Math. 7(6), 10700–10710 (2022)

    Article  MathSciNet  Google Scholar 

  21. Dutta, H., Kumar, B.V.S., Al-Shaqsi, K.: Approximation of Jensen type reciprocal mappings via fixed point technique. Miskolc Math. Notes 23(2), 607–619 (2022)

    Article  MathSciNet  Google Scholar 

  22. Lu, G., Park, C.: Hyers–Ulam stability of general Jensen-type mappings in Banach algebras. Results Math. 66, 87–98 (2014)

    Article  MathSciNet  Google Scholar 

  23. Diaz, J.B., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74(2), 305–309 (1968)

    Article  MathSciNet  Google Scholar 

  24. Park, C.: Homomorphisms between Poisson \(JC^{*}\)-algebras. Bull. Braz. Math. Soc. 36, 79–97 (2005)

    Article  MathSciNet  Google Scholar 

  25. Mihet, D., Radu, V.: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 343, 567–572 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the anonymous referee for his/her helpful comments, which helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and Y.S. wrote the main manuscript and S.P. and C.P. revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Siriluk Donganont or Choonkil Park.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors declare that they have no competing interests.

Competing interests

The authors declare no competing interests.

Additional information

Abbreviations

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghanian, M., Sayyari, Y., Donganont, S. et al. A Pexider system of additive functional equations in Banach algebras. J Inequal Appl 2024, 27 (2024). https://doi.org/10.1186/s13660-024-03104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03104-6

Mathematics Subject Classification

Keywords