Skip to main content

Some existence results for a differential equation and an inclusion of fractional order via (convex) F-contraction mapping

Abstract

The existence of solutions for a class of μ-Caputo fractional differential equations and an inclusion problem equipped with nonlocal μ-integral boundary conditions are investigated. We use F-contraction, convex F-contraction, and some consequences to achieve the desired goals. Finally, some examples are provided to illustrate the results.

1 Introduction

The subject of fractional differential equations (FDEs) is gaining much importance and significance. Due to the influence memory function of a fractional derivative (FD), FDEs have been widely used to describe many physical phenomena such as seepage flow in porous media. The existence of solutions to such equations has also been investigated by many scientists ([4, 1117, 20, 26, 38]). The authors in [37] studied the problem of a FDE involving nonlocal fractional integral (FI) conditions as

$$ \textstyle\begin{cases} {}^{RL}D_{0^{+}}^{\pi ^{*}}w^{*}(\varsigma )= \mathfrak{h}(\varsigma ,w^{*}( \varsigma )), \quad \varsigma \in [0, T] ; \\ w^{*}(0)=0, \\ w^{*}(T)=\sum_{i=1}^{n}\beta _{i}^{\mathcal{H}}I_{0^{+}}^{p_{i}}w^{*}( \zeta _{i}), \end{cases} $$

where \(1<\pi ^{*}\leq 2\), \({}^{RL}D_{0^{+}}^{\pi ^{*}}\), and \({}^{\mathcal{H}}I_{0^{+}}^{p_{i}}\) denote, respectively, the Riemann–Liouville (R–L) FD of order \(\pi ^{*}\) and the Hadamard FI of order \(p_{i}>0\), \(\zeta _{i}\in (0, T)\), \(\mathfrak{h}: [0, T]\times \mathfrak{R}\to \mathfrak{R}\) and \(\beta _{i}\in \mathfrak{R}\), \(i\in \{1, 2, \ldots , n\}\) with \(\sum_{i=1}^{n} \frac{\beta _{i}\zeta _{i}\pi ^{*}-1}{(\pi ^{*}-1)^{p_{i}}}\neq T^{ \pi ^{*}-1}\).

Ntouyas et al. ([29]) investigated the problem

$$ \textstyle\begin{cases} {}^{RL}D_{0^{+}}^{\pi ^{*}}w^{*}(\varsigma )= \mathfrak{H}(\varsigma ,w^{*}( \varsigma )), \quad \varsigma \in [0, T] ; \\ w^{*}(0)=0, \\ w^{*}(T)=\sum_{i=1}^{n}\beta _{i}^{\mathcal{H}}I_{0^{+}}^{p_{i}}w^{*}( \zeta _{i}), \end{cases} $$

where \(1<\pi ^{*}\leq 2\), \({}^{RL}D_{0^{+}}^{\pi ^{*}}\) and \({}^{\mathcal{H}}I_{0^{+}}^{p_{i}}\) indicate, respectively, the R–L FD of order \(\pi ^{*}\) and the Hadamard FI of order \(p_{i}>0\), \(\zeta _{i}\in (0, T)\), \(\mathfrak{h}: [0, T]\times \mathfrak{R}\to \mathbb{P}(\mathfrak{R})\) and \(\beta _{i}\in \mathfrak{R}\), \(i=1, 2, \ldots , n\) with \(\sum_{i=1}^{n} \frac{\beta _{i}\zeta _{i}\pi ^{*}-1}{(\pi ^{*}-1)^{p_{i}}}\neq T^{ \pi ^{*}-1}\).

Almeida in [7], obtained a generalization of the classical Caputo operator to μ-Caputo operator. To see some results in this area, refer to [13, 5, 6, 9, 10, 18, 19, 25, 28, 3134, 36, 39].

Here, we first consider the problem

$$ \textstyle\begin{cases} {}^{\mathcal{C}}D_{0}^{\pi ^{*},\mu}w^{*}(\varsigma )= \mathfrak{h}( \varsigma ,w^{*}(\varsigma )), \quad \varsigma \in \mathbb{I}=[s_{0}, T]; \\ w^{*}(s_{0})=0, \\ w^{*}(T)=\sum_{i=1}^{n}\beta _{i}^{RL}I_{0}^{p_{i},\mu}w^{*}( \zeta _{i}), \end{cases} $$
(1)

in which \({}^{\mathcal{C}}D_{0}^{\pi ^{*},\mu}\) and \({}^{RL}I_{0}^{p_{i},\mu}\) are, respectively, the μ-Caputo FD of order \(\pi ^{*}\), \(1 <\pi ^{*} < 2 \) and the R–L μ-FI of order \(p_{i}>0\), \(s_{0}>0\), \(\zeta _{i}\in (s_{0},T)\), \(\mathfrak{h}:\mathbb{I}\times \mathfrak{R}\rightarrow \mathfrak{R}\) and \(\beta _{i}\in \mathfrak{R}\) \(i=1,2,\ldots,n\). Also, the existence of solutions of the problem

$$ \textstyle\begin{cases} {}^{\mathcal{C}}D_{0}^{\pi ^{*}, \mu}w^{*}(\varsigma )\in \mathfrak{g}( \varsigma ,w^{*}(\varsigma )), \quad \varsigma \in \mathbb{I}; \\ w^{*}(s_{0})=0, \\ w^{*}(T)=\sum_{i=1}^{n}\beta _{i}^{RL}I_{0}^{p_{i},\mu}w^{*}(\zeta _{i}), \end{cases} $$
(2)

will be investigated in which \(\mathfrak{g}: \mathbb{I} \times \mathfrak{R} \rightarrow \mathbb{P}( \mathfrak{R})\) is a set-valued compact map.

This study aims to provide a different approach to examining the existence of solutions of (1) and (2). We utilize new techniques based on the application of some F-contraction mappings that are defined in appropriate cones of positive functions.

Here, weaker conditions have been applied compared to other works including the Banach contraction. In the contraction that we apply, the used functions may not even be continuous, while in the Banach contraction, the functions are uniformly continuous, and therefore the number of functions that apply to our contraction is much more than the number of functions that apply to other contractions. Therefore, the number of problems that we can discuss with this contraction will be far more than in similar cases.

2 Requisites preliminaries

We present some basic and auxiliary concepts in this section. The following definitions were given in references [35, 40], and [26].

For function \(w^{*} : [0, + \infty ) \to \mathfrak{R}\), we recall the R–L FI of order \(\pi ^{*} >0\) as

$$ {}^{RL}\mathcal{I}_{s_{0}}^{ \pi ^{*} } w^{*}(\varsigma ) = \int _{s_{0}}^{\varsigma} \frac{(\varsigma - q )^{ \pi ^{*} -1 }}{\Gamma ( \pi ^{*} )} w^{*}(q) \, \mathrm{d}q. $$
(3)

Here, we assume \(n-1 <\pi ^{*} < n\), so that \(n = [\pi ^{*}] +1\). For a continuous function \(w^{*} : [0, + \infty ) \to \mathfrak{R}\), the R–L FD of order \(\pi ^{*}\) is given by

$$ {}^{RL}D_{s_{0}}^{ \pi ^{*} } w^{*}( \varsigma ) = \biggl( \frac{\mathrm{d}}{\mathrm{d}\varsigma} \biggr)^{n} \int _{s_{0}}^{\varsigma} \frac{(\varsigma - q )^{ n - \pi ^{*} -1 }}{\Gamma ( n - \pi ^{*} )} w^{*}(q) \, \mathrm{d}q. $$
(4)

Let \(w^{*}\in \mathcal{AC}^{(n)}_{\mathfrak{R}}([0, + \infty ))\) (absolutely continuous mappings). The Caputo FD is defined by:

$$ {}^{\mathcal{C}}D_{s_{0}}^{ \pi ^{*} } w^{*}( \varsigma ) = \int _{s_{0}}^{\varsigma} \frac{(\varsigma - q)^{n- \pi ^{*} -1}}{\Gamma (n- \pi ^{*} )} w^{*(n)}(q) \, \mathrm{d} q. $$
(5)

Here, consider an increasing function \(\mu \in \mathcal{C}^{n}(\mathbb{I})\) with \(\mu '(\varsigma )> 0\) for every \(s_{0}\leq \varsigma \leq M\). Then, the integral in the sense of μ-R–L of \(w^{*} : \mathbb{I} \to \mathfrak{R}\) of order \(\pi ^{*}\) depending on μ is introduced as

$$ {}^{RL}\mathcal{I}_{s_{0}}^{ \pi ^{*};\mu } w^{*}(\varsigma ) = \frac{1}{\Gamma ( \pi ^{*})} \int _{s_{0}}^{\varsigma } \mu '(q) \bigl( \mu ( \varsigma ) - \mu (q) \bigr)^{ \pi ^{*} -1 } w^{*}(q) \, \mathrm{d}q. $$
(6)

Note that in the case of \(\mu (\varsigma ) = \varsigma \), the R–L μ-FI (6) reduces to the classical R–L FI (3). The \(\pi ^{*}\) ordered R–L μ-FD of the continuous function \(w^{*} : [0, + \infty ) \to \mathfrak{R}\) is illustrated as (see [24, 30, 35])

$$\begin{aligned} {}^{RL}D_{s_{0}}^{ \pi ^{*};\mu } w^{*}( \varsigma ) = \frac{1}{\Gamma (n- \pi ^{*})} \biggl( \frac{1}{\mu '(\varsigma )} \frac{\mathrm{d}}{\mathrm{d}\varsigma} \biggr)^{n} \int _{s_{0}}^{ \varsigma }\mu '(q) \bigl( \mu ( \varsigma ) - \mu (q) \bigr)^{ n-\pi ^{*} -1 } w^{*}(q) \, \mathrm{d}q. \end{aligned}$$
(7)

Similarly, in the case of \(\mu (\varsigma ) = a\), the R–L μ-FD (7) becomes the classical R–L FD (4). Almeida has presented the following derivative ([7])

$$ {}^{\mathcal{C}}D_{s_{0}}^{ \pi ^{*};\mu } w^{*}( \varsigma ) = \frac{1}{\Gamma (n- \pi ^{*})} \int _{s_{0}}^{ \varsigma }\mu '(q) \bigl( \mu ( \varsigma ) - \mu (q) \bigr)^{ n-\pi ^{*} -1 } \biggl( \frac{1}{\mu '(q)} \frac{\mathrm{d}}{\mathrm{d}q} \biggr)^{n}w^{*}(q) \, \mathrm{d}q. $$
(8)

Note again that in the case of \(\mu (\varsigma )=\varsigma \), the μ-Caputo FD (8) reduces to the classical Caputo derivative (5). Some properties of the mentioned operators are given in the following lemmas.

Lemma 2.1

([7, 24, 30, 35]) Let \(\pi ^{*}\), \(\varrho ^{*}\), and \(\beta ^{*} \) be positive and \(\mu \in \mathcal{C}^{n}(\mathbb{I})\) be a mapping with \(\mu '(\varsigma )> 0\). Then,

  1. (i1)

    \({}^{RL}\mathcal{I}_{s_{0}}^{ \pi ^{*};\mu } ( {}^{RL} \mathcal{I}_{s_{0}}^{ \varrho ^{*};\mu } w^{*} ) (\varsigma ) = ( {}^{RL}\mathcal{I}_{s_{0}}^{ \pi ^{*} + \varrho ^{*}; \mu } w^{*} ) (\varsigma )\);

  2. (i2)

    \({}^{RL}\mathcal{I}_{s_{0}}^{ \pi ^{*}; \mu } ( \mu (\varsigma ) - \mu (s_{0}))^{\beta ^{*}} = \frac{ \Gamma (\beta ^{*} + 1 ) }{ \Gamma ( \pi ^{*} + \beta ^{*} + 1 )} ( \mu (\varsigma )- \mu (s_{0}))^{ \pi ^{*} + \beta ^{*} } \);

  3. (i3)

    \({}^{\mathcal{C}}D_{s_{0}}^{ \pi ^{*}; \mu } ( \mu (\varsigma ) - \mu (s_{0}))^{ \beta ^{*}} = \frac{ \Gamma (\beta ^{*} + 1 ) }{ \Gamma ( \beta ^{*} - \pi ^{*} + 1 )} (\mu (\varsigma ) - \mu (s_{0}))^{\beta ^{*} - \pi ^{*} }\), \((\beta ^{*} > \pi ^{*}) \);

  4. (i4)

    \({}^{RL}D_{s_{0}}^{ \pi ^{*};\mu } ( {}^{RL}\mathcal{I}_{s_{0}}^{ \varrho ^{*};\mu } w^{*} ) (\varsigma ) = ( {}^{RL} \mathcal{I}_{s_{0}}^{\varrho ^{*} - \pi ^{*}; \mu } w^{*} ) ( \varsigma ) \), \((\pi ^{*} < \varrho ^{*} ) \).

Lemma 2.2

([7]) Let \(\pi ^{*} \in ( n-1, n)\) and \(\mu \in \mathcal{C}^{n}(\mathbb{I})\) be a function with \(\mu '(\varsigma )> 0\) for every \(\varsigma \in \mathbb{I}\). Then, for any \(w^{*} \in \mathcal{C}^{n-1} (\mathbb{I})\),

$$ {}^{RL}\mathcal{I}_{s_{0}}^{\pi ^{*};\mu } \bigl( {}^{\mathcal{C}}D_{s_{0}}^{ \pi ^{*} ;\mu } w^{*} \bigr) ( \varsigma ) = w^{*}(\varsigma ) - \sum_{j=0}^{n-1} \frac{ (\delta _{\mu})^{j} w^{*}(s_{0})}{ j!} \bigl(\mu (\varsigma ) - \mu (s_{0}) \bigr)^{j} ,\quad \biggl(\delta _{\mu }= \frac{1}{\mu '(\varsigma )} \frac{\mathrm{d}}{\mathrm{d}\varsigma} \biggr). $$

From the previous lemma, the authors in [7] have considered the series solution of the homogeneous equation \(({}^{\mathcal{C}}D_{s_{0}}^{\pi ^{*};\mu } w^{*} )(\varsigma ) =0\) as

$$\begin{aligned} w^{*}(\varsigma ) &= \sum_{j=0}^{n-1} \tilde{k}_{j}^{*} \bigl(\mu (\varsigma ) - \mu (s_{0})\bigr)^{j} \\ &= \tilde{k}_{0}^{*} + \tilde{k}_{1}^{*} \bigl(\mu (\varsigma ) - \mu (s_{0})\bigr) + \tilde{k}_{2}^{*} \bigl(\mu (\varsigma ) - \mu (s_{0})\bigr)^{2} + \cdots + \tilde{k}_{n-1}^{*} \bigl(\mu (\varsigma ) - \mu (s_{0})\bigr)^{ n-1 }, \end{aligned}$$

where \(n-1 < \pi ^{*} < n\) and \(\tilde{k}_{0}^{*} , \tilde{k}_{1}^{*} , \dots , \tilde{k}_{n-1}^{*} \in \mathfrak{R}\).

Let \((\mathfrak{D}, \|\cdot \|)\) be a normed space. The classes \(\mathbb{P}_{\mathbb{CL}}(\mathfrak{D})\), \(\mathbb{P}_{\mathbb{BN}} (\mathfrak{D})\), \(\mathbb{P}_{\mathbb{CP}}(\mathfrak{D})\), and \(\mathbb{P}_{\mathbb{CV}}(\mathfrak{D})\) are, respectively, closed, bounded, compact, and convex subsets of \(\mathfrak{D}\).

Definition 2.3

([21, 23]) Let \((X,d,s)\) be a b-metric space and \(T:X\rightarrow X\). Then, T is said to be a convex F-contraction if there exists \(F : (0,\infty )\to \mathfrak{R}\) such that

  1. (i)

    F is strictly increasing on \((0,\infty )\);

  2. (ii)

    for each sequence \(\lbrace \alpha _{n}\rbrace \) of positive numbers, if \(\lim_{n\to \infty} F(\alpha _{n})=-\infty \), then \(\lim_{n\to \infty}\alpha _{n}=0\);

  3. (iii)

    there exists \(k\in (0, \frac{1}{1+\log _{2}s})\) with property \(\lim_{\alpha \to 0^{+}}\alpha ^{k} F(\alpha )=0\);

  4. (iv)

    there exists \(\tau >0\), \(\lambda \in [0,1)\) with

    $$\begin{aligned} \tau + F(d_{n})\leq F\bigl(\lambda d_{n}+(1-\lambda )d_{n-1}\bigr), \end{aligned}$$
    (9)

    for all \(d_{n}>0\), where \(n\in \mathbb{N}\).

To obtain the desired results, the following theorems are crucial.

Theorem 2.4

([21]) Suppose that \((X, d, s)\) is a b-complete b-metric space and T is a continuous convex F-contraction on X. Then, T has a fixed point (FP) in X.

Theorem 2.5

([41]) Let \((X, d, s >1)\) be a complete b-metric space and \(\mathfrak{F} : X \to CB (X)\). Assume that there exists a strictly increasing function \(\mathbb{F} : (0,\infty )\to (-\infty ,+\infty )\) and \(\tau > 0\) such that

$$\begin{aligned} 2\tau + \mathbb{F}\bigl(s. H (\mathfrak{F}\iota , \mathfrak{F}\nu )\bigr)\leq \mathbb{F}\bigl(d (\iota , \nu )\bigr), \end{aligned}$$
(10)

for all \(\iota , \nu \in X\) with \(\mathfrak{F}\iota \neq \mathfrak{F}\nu \). Then, \(\mathfrak{F}\) has a FP.

3 Main results

Here, we derive some conditions for the existence of at least one solution to problems (1) and (2). In respect of achieving the goals, let \(\mathfrak{D}=\{w^{*}(\varsigma ): w^{*}(\varsigma )\in C(\mathbb{I}, \mathfrak{R})\}\) and \(d: \mathfrak{D}\times \mathfrak{D}\rightarrow [0,\infty )\) be given by

$$ d\bigl(w^{*},\rho ^{*}\bigr)= \bigl\Vert w^{*}- \rho ^{*} \bigr\Vert ^{2}=\sup_{\varsigma \in \mathbb{I}} \bigl\vert w^{*}(\varsigma )-\rho ^{*}(\varsigma ) \bigr\vert ^{2}. $$

Evidently, \((\mathfrak{D},\|\cdot\|)\) is a complete b-metric space with \(\upsilon =2\) but is not a metric space.

Lemma 3.1

([22]) Let \(\Phi ^{*} \in C(\mathbb{I},\mathfrak{R})\). Then, \(w^{*}(\varsigma )\in \mathfrak{D}\) is a solution for the boundary value problem (BVP)

$$ \textstyle\begin{cases} ^{\mathcal{C}}D_{0}^{\pi ^{*},\mu}w^{*}(\varsigma )= \Phi ^{*}( \varsigma ), \quad \varsigma \in \mathbb{I} ; \\ w^{*}(s_{0})=0, \\ w^{*}(T)=\sum_{i=1}^{n}\beta _{i}^{RL}I_{0}^{p_{i},\mu}w^{*}( \zeta _{i}) \end{cases} $$
(11)

if and only if \(w^{*}(\varsigma )\) is a solution for

$$ w^{*}(\varsigma )= ^{RL}I_{0}^{\pi ^{*},\mu}\Phi ^{*}(\varsigma )- \frac{(\mu (\varsigma )-\mu (s_{0}))}{\Lambda} \Biggl[{}^{RL} I_{0}^{ \pi ^{*},\mu}\Phi ^{*}(T)-\sum _{i=1}^{n}\beta _{i}^{RL}I_{0}^{p_{i}+ \pi ^{*},\mu} \Phi ^{*}(\zeta _{i}) \Biggr], $$
(12)

where \(\Lambda =(\mu (T)-\mu (s_{0}))-\sum_{i=1}^{n}\beta _{i} \frac{\xi ^{p_{i}+1}}{\Gamma (p_{i}+2)}\neq 0\).

Throughout this work, we apply

$$ ^{RL}I_{0}^{\pi ^{*},\mu}\mathfrak{h}\bigl(\varsigma ,w^{*}(\varsigma )\bigr)= \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{\varsigma}\mu '(q) \bigl( \mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1}\mathfrak{h}\bigl(q,w^{*}(q) \bigr) \,\mathrm{d}q $$
(13)

and

$$ ^{RL}I_{0}^{p_{i}+\pi ^{*},\mu}\mathfrak{h}\bigl(\zeta _{i},w^{*}(\zeta _{i})\bigr)= \frac{1}{\Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}} \mu '(q) \bigl(\mu ( \zeta _{i})-\mu (q)\bigr)^{p_{i}+\pi ^{*}-1}\mathfrak{h} \bigl(q,w^{*}(q)\bigr) \,\mathrm{d}q, $$
(14)

where \(\zeta _{i}\in \mathbb{I}\), \(i=1,2,\ldots,{n}\).

Let \(\mathfrak{D}=C(\mathbb{I},\mathfrak{R})\). Define the operator \(\mathfrak{T}:\mathfrak{D}\to \mathfrak{D}\) by

$$\begin{aligned} \mathfrak{T}w^{*}(\varsigma )&=^{RL}I_{0}^{\pi ^{*},\mu} \mathfrak{h}\bigl( \varsigma ,w^{*}(\varsigma )\bigr) \\ &\quad{} -\frac{(\mu (\varsigma )-\mu (s_{0}))}{\Lambda} \Biggl[{}^{RL} I_{0}^{ \pi ^{*},\mu} \mathfrak{h}\bigl(T,w^{*}(T)\bigr)-\sum_{i=1}^{n} \beta _{i}^{RL}I_{0}^{p_{i} +\pi ^{*},\mu}\mathfrak{h} \bigl(\zeta _{i},w^{*}(\zeta _{i})\bigr) \Biggr]. \end{aligned}$$
(15)

The BVP (11) has a solution if \(\mathfrak{T}\) has a FP.

Note that in the following theorem we prove that \(\Omega _{1}\) is represented as

$$\begin{aligned} \Omega _{1} & = \frac{( \vert \mu (T)-\mu (s_{0}) \vert )^{\pi ^{*}}}{\Gamma (\pi ^{*}+1)} + \frac{( \vert (\mu (T)-\mu (s_{0})) \vert )^{\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (\pi ^{*}+1)} \\ &\quad{} +\sum _{i=1}^{n} \beta _{i} \frac{n( \vert (\mu (T)-\mu (s_{0})) \vert )^{p_{i}+\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (p_{i}+\pi ^{*}+1)}. \end{aligned}$$
(16)

Theorem 3.2

Let \(\mathfrak{h}: \mathbb{I} \times \mathfrak{D}\rightarrow \mathfrak{D}\) be a continuous function. Suppose also that

$$\begin{aligned} \bigl\vert \mathfrak{h}\bigl(\varsigma ,w^{*}_{1}( \varsigma )\bigr)-\mathfrak{h}\bigl( \varsigma ,w^{*}_{2}( \varsigma )\bigr) \bigr\vert \leq \frac{\lambda ^{*}}{\sqrt{2\theta}} \bigl\vert w^{*}_{1}-w^{*}_{2} \bigr\vert , \end{aligned}$$

for all \(w^{*}_{1},w^{*}_{2}\in \mathfrak{D}\), \(\lambda ^{*}=\frac{1}{\Omega _{1}}\), and \(\theta >0\). Then, at least one solution of (1) exists.

Proof

First, we show that \(\mathfrak{T}\) is continuous. Let \(\lbrace w^{*}_{n}\rbrace \in C(\mathbb{I},\mathfrak{R})\) be a sequence that \(w^{*}_{n}\to w^{*}\in C(\mathbb{I},\mathfrak{R})\). For all \(\varsigma \in \mathbb{I}\), we have

$$\begin{aligned} & \bigl\vert \mathfrak{T}w^{*}_{n}(\varsigma )- \mathfrak{T}w^{*}(\varsigma ) \bigr\vert \\ &\quad \leq \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{\varsigma} \mu '(q) \bigl(\mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1} \bigl\vert \mathfrak{h} \bigl(q,w^{*}_{n}(q)\bigr)- \mathfrak{h}\bigl(q,w^{*}(q) \bigr) \bigr\vert \,\mathrm{d}q \\ &\qquad{} + \frac{ \vert (\mu (\varsigma )-\mu (s_{0})) \vert }{ \vert \Lambda \vert \Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1} \bigl\vert \mathfrak{h}\bigl(q,w^{*}_{n}(q) \bigr)-\mathfrak{h}\bigl(q,w^{*}(q)\bigr) \bigr\vert \,\mathrm{d}q \\ &\qquad{} + \sum_{i=1}^{n}\beta _{i} \frac{ \vert (\mu (\varsigma )-\mu (s_{0})) \vert }{ \vert \Lambda \vert \Gamma (p_{i}+\pi ^{*})} \\ &\qquad{} \times \int _{s_{0}}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+ \pi ^{*}-1} \bigl\vert \mathfrak{h} \bigl(q,w^{*}_{n}(q)\bigr) -\mathfrak{h}\bigl(q,w^{*}(q) \bigr) \bigr\vert \,\mathrm{d}q. \end{aligned}$$

Put, \(\mathfrak{h}(q,w^{*}_{n}(q))=\mathfrak{h}_{w^{*}_{n}}(q)\) and \(\mathfrak{h}(q,w^{*}_{n}(q))=\mathfrak{h}_{w^{*}}(q)\). Then,

$$\begin{aligned} \bigl\vert \mathfrak{h}_{w^{*}_{n}}(q) -\mathfrak{h}_{w^{*}}(q) \bigr\vert \leq \frac{\lambda ^{*}}{\sqrt{2\theta}} \bigl\vert w^{*}_{n}-w^{*} \bigr\vert . \end{aligned}$$

Now, \(w^{*}_{n}\rightarrow w^{*}\) as \(n\rightarrow \infty \) implies \(\mathfrak{h}_{w^{*}_{n}}(q)\rightarrow \mathfrak{h}_{w^{*}}(q)\), \(q\in \mathbb{I}\). Let \(\aleph >0\) such that for \(q\in \mathbb{I}\), we have \(|\mathfrak{h}_{w^{*}_{n}}(q)|\leq \aleph \) and \(|\mathfrak{h}_{w^{*}}(q)|\leq \aleph \). Thus,

$$\begin{aligned} \mu '(q) \bigl(\mu (j)-\mu (q)\bigr)^{\pi ^{*}-1} \bigl\vert \mathfrak{h}_{w^{*}_{n}}(q) - \mathfrak{h}_{w^{*}}(q) \bigr\vert &\leq \mu '(q) \bigl(\mu (j)-\mu (q)\bigr)^{\pi ^{*}-1} \bigl( \bigl\vert \mathfrak{h}_{w^{*}_{n}}(q) \bigr\vert + \bigl\vert \mathfrak{h}_{w^{*}}(q) \bigr\vert \bigr) \\ &\leq 2\aleph \mu '(q) \bigl(\mu (j)-\mu (q)\bigr)^{\pi ^{*}-1}, \end{aligned}$$

where \(j=\varsigma , T\), \(\xi _{i}\in \mathbb{I}\). For each \(j\in \mathbb{I}\), \(2\aleph \mu '(q) (\mu (j)-\mu (q))^{\pi ^{*}-1}\) is integrable. Therefore, applying the Lebesgue dominated convergence theorem, we obtain \(|\mathfrak{T}w^{*}_{n}(\varsigma )-\mathfrak{T}w^{*}(\varsigma )| \rightarrow 0\) as \(n\rightarrow \infty \). Hence, particularly \(\max_{\varsigma \in \mathbb{I}}|\mathfrak{T}w^{*}_{n}(\varsigma )- \mathfrak{T}w^{*}(\varsigma )|\rightarrow 0\), which implies \(\|\mathfrak{T}w^{*}_{n}-\mathfrak{T}w^{*}\|_{\mathfrak{D}} \rightarrow 0\). Hence, \(\mathfrak{T}\) is continuous.

Assume \(w^{*}_{1}, w^{*}_{2}\in \mathfrak{D}\). Then,

$$\begin{aligned} & \bigl\vert \mathfrak{T}w^{*}_{n}(\varsigma )- \mathfrak{T}w^{*}(\varsigma ) \bigr\vert \\ &\quad \leq \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{\varsigma} \mu '(q) \bigl(\mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1} \bigl\vert \mathfrak{h} \bigl(q,w^{*}_{n}(q)\bigr)- \mathfrak{h}\bigl(q,w^{*}(q) \bigr) \bigr\vert \,\mathrm{d}q \\ &\qquad{} + \frac{ \vert (\mu (\varsigma )-\mu (s_{0})) \vert }{ \vert \Lambda \vert \Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1} \bigl\vert \mathfrak{h}\bigl(q,w^{*}_{n}(q) \bigr)-\mathfrak{h}\bigl(q,w^{*}(q)\bigr) \bigr\vert \,\mathrm{d}q \\ &\qquad{} + \sum_{i=1}^{n}\beta _{i} \frac{ \vert (\mu (\varsigma )-\mu (s_{0})) \vert }{ \vert \Lambda \vert \Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+ \pi ^{*}-1} \\ &\qquad{}\times \bigl\vert \mathfrak{h} \bigl(q,w^{*}_{n}(q)\bigr) -\mathfrak{h}\bigl(q,w^{*}(q) \bigr) \bigr\vert \,\mathrm{d}q. \end{aligned}$$

Assume \(w^{*}_{1}, w^{*}_{2}\in \mathfrak{D}\). Then,

$$\begin{aligned} & \bigl\vert \mathfrak{T}w^{*}_{1}(\varsigma )- \mathfrak{T}w^{*}_{2}( \varsigma ) \bigr\vert \\ &\quad \leq \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{\varsigma} \mu '(q) \bigl(\mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1} \frac{\lambda ^{*}}{\sqrt{2\theta}} \bigl\vert w^{*}_{1}-w^{*}_{2} \bigr\vert \,\mathrm{d}q \\ &\qquad{} + \frac{ \vert (\mu (\varsigma )-\mu (s_{0})) \vert }{ \vert \Lambda \vert \Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1} \frac{\lambda ^{*}}{\sqrt{2\theta}} \bigl\vert w^{*}_{1}-w^{*}_{2} \bigr\vert \,\mathrm{d}q \\ &\qquad{} +\sum_{i=1}^{n}\beta _{i} \frac{ \vert (\mu (\varsigma )-\mu (s_{0})) \vert }{ \vert \Lambda \vert \Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+ \pi ^{*}-1}\frac{\lambda ^{*}}{\sqrt{2\theta}} \bigl\vert w^{*}_{1}-w^{*}_{2} \bigr\vert \,\mathrm{d}q \\ &\quad \leq \frac{\frac{\lambda ^{*}}{\sqrt{2\theta}} \Vert {w^{*}_{1}}-w^{*}_{2} \Vert ( \vert \mu (\varsigma )-\mu (s_{0}) \vert )^{\pi ^{*}}}{\Gamma (\pi ^{*}+1)} + \frac{\frac{\lambda ^{*}}{\sqrt{2\theta}} \Vert w^{*}_{1}-w^{*}_{2} \Vert ( \vert (\mu (\varsigma )-\mu (s_{0})) \vert )^{\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (\pi ^{*}+1)} \\ &\qquad{} +\sum_{i=1}^{n}\beta _{i} \frac{\frac{\lambda ^{*}}{\sqrt{2\theta}} \Vert {w^{*}_{1}}-w^{*}_{2} \Vert ( \vert (\mu (\varsigma )-\mu (q)) \vert )^{p_{i}+\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (p_{i}+\pi ^{*}+1)} \\ &\quad =\frac{\lambda ^{*}}{\sqrt{2\theta}} \Biggl\{ \frac{( \vert \mu (T) -\mu (s_{0}) \vert )^{\pi ^{*}}}{\Gamma (\pi ^{*}+1)}+ \frac{( \vert (\mu (T)-\mu (s_{0})) \vert )^{\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (\pi ^{*}+1)} \\ &\qquad{} +\sum_{i=1}^{n}\beta _{i} \frac{n( \vert (\mu (T)-\mu (s_{0})) \vert )^{p_{i}+\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (p_{i}+\pi ^{*}+1)} \Biggr\} \bigl\Vert {w^{*}_{1}}-w^{*}_{2} \bigr\Vert . \end{aligned}$$

Hence,

$$\begin{aligned} \bigl\Vert \mathfrak{T}w^{*}_{1}(\varsigma )- \mathfrak{T}w^{*}_{2}( \varsigma ) \bigr\Vert \leq \frac{\lambda ^{*}}{\sqrt{2\theta}}\Omega _{1} \bigl\Vert w^{*}_{1}-w^{*}_{2} \bigr\Vert . \end{aligned}$$

Therefore,

$$\begin{aligned} { \bigl\Vert \mathfrak{T}w^{*}_{1}(\varsigma )- \mathfrak{T}w^{*}_{2}( \varsigma ) \bigr\Vert }^{2}\leq \frac{{\lambda ^{*}}^{2}}{2\theta}{\Omega _{1}}^{2}{ \bigl\Vert w^{*}_{1}-w^{*}_{2} \bigr\Vert }^{2}. \end{aligned}$$

Apply the assumptions to obtain

$$\begin{aligned} { \bigl\Vert \mathfrak{T}w^{*}_{1}(\varsigma )- \mathfrak{T}w^{*}_{2}( \varsigma ) \bigr\Vert }^{2}\leq \frac{1}{2\theta}{ \bigl\Vert w^{*}_{1}-w^{*}_{2} \bigr\Vert }^{2}. \end{aligned}$$

Hence,

$$\begin{aligned} \ln{ \bigl\Vert \mathfrak{T}w^{*}_{1}(\varsigma )- \mathfrak{T}w^{*}_{2}( \varsigma ) \bigr\Vert }^{2}\leq -\ln{\theta} +\ln \frac{{ \Vert w^{*}_{1}-w^{*}_{2} \Vert }^{2}}{2}. \end{aligned}$$

Therefore,

$$\begin{aligned} \ln \theta +\ln{ \bigl\Vert \mathfrak{T}w^{*}_{1}( \varsigma )-\mathfrak{T}w^{*}_{2}( \varsigma ) \bigr\Vert }^{2}\leq \ln \frac{{ \Vert w^{*}_{1}-w^{*}_{2} \Vert }^{2}}{2}. \end{aligned}$$

Now, define \(h: \mathbb{R^{+}}\to \mathfrak{R}\) by \(h(u)=\ln u\) and put \(\tau =\ln \theta \), \(\lambda =\frac{1}{2}\) and \(k=\frac{1}{3}\). Then, it is easy to show that \(\mathfrak{T}\) is a convex F-contraction. Thus, applying Theorem 2.4, \(\mathfrak{T}\) possesses \(w^{*}\in \mathfrak{D}\) as a FP that turns out to be a solution of BVP (1). The proof is complete. □

In the following, the existence of solutions of problem (2) will be discussed. Call function \(w^{*} \in C_{\mathfrak{D}}(\mathbb{I}, \mathfrak{D})\) the solution of (2) if it satisfies all the boundary conditions and \(w^{*}\in L^{1}(\mathbb{I})\) such that \(w^{*}(\varsigma )\in \mathfrak{J}(\varsigma , w^{*}(\varsigma ))\) for almost all \(\varsigma \in \mathbb{I}\) and

$$\begin{aligned} w^{*}(\varsigma )&= \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{ \varsigma}\mu '(q) \bigl(\mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1}w^{*}(q) \,\mathrm{d}q \\ &\quad{} -\frac{(\mu (\varsigma )-\mu (s_{0}))}{\Lambda} \Biggl[ \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1}w^{*}(q)\,\mathrm{d}q \\ &\quad{} +\sum_{i=1}^{n}\beta _{i} \frac{1}{\Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+ \pi ^{*}-1}w^{*}(q)\,\mathrm{d}q \Biggr], \end{aligned}$$
(17)

for all \(\varsigma \in \mathbb{I}\). For each \(w^{*}\in \mathfrak{D}\), we demonstrate the selections’ set of \(\mathfrak{J}\) by

$$ \mathfrak{S}_{\mathfrak{J}, w^{*}}=\bigl\{ w^{*}\in L^{1}( \mathbb{I}): w^{*}( \varsigma )\in \mathfrak{J}\bigl(\varsigma , w^{*}(\varsigma )\bigr) \text{ for all most all } \varsigma \in \mathbb{I} \bigr\} . $$

Now, consider \(\mathfrak{L}:\mathfrak{D}\to \mathbb{P}(\mathfrak{D})\) as

$$ \mathfrak{L}\bigl(w^{*}\bigr)=\bigl\{ \mathfrak{F}\in \mathfrak{D}: \text{there exists } w^{*}\in \mathfrak{S}_{\mathfrak{J}, w^{*}} \text{ such that } \mathfrak{F}(\varsigma )=\pi (\varsigma ) \text{ for all } \varsigma \in \mathbb{I} \bigr\} , $$
(18)

where

$$\begin{aligned} \pi (\varsigma )&=\frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{ \varsigma}\mu '(q) \bigl(\mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1}w^{*}(q) \,\mathrm{d}q \\ &\quad{} -\frac{(\mu (\varsigma )-\mu (s_{0}))}{\Lambda} \Biggl[ \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1}w^{*}(q)\,\mathrm{d}q \\ &\quad{} +\sum_{i=1}^{n}\beta _{i} \frac{1}{\Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+ \pi ^{*}-1}w^{*}(q)\,\mathrm{d}q \Biggr]. \end{aligned}$$
(19)

Theorem 3.3

Consider a set-valued map \(\mathfrak{J}:\mathbb{I}\times \mathfrak{D}\rightarrow \mathbb{P}_{ \mathbb{CP}}(\mathfrak{D})\). Suppose that:

  1. (i)

    \(\mathfrak{J}\) is bounded and integrable, and \(\mathfrak{J}(\cdot,w^{*}_{1}): \mathbb{I}\rightarrow \mathbb{P}_{ \mathbb{CP}}(\mathfrak{D})\) is measurable for \(w^{*}_{1}\in \mathfrak{D}\).

  2. (ii)

    There is a member \(\omega \in C(\mathbb{I}, [0,\infty ))\) such that

    $$ \mathbb{H}_{\mathrm{d}}\bigl(\mathfrak{J}\bigl(\varsigma ,w^{*}_{1} \bigr), \mathfrak{J}\bigl(a,\acute{w^{*}_{1}}\bigr)\bigr)\leq \frac{1}{\theta \sqrt{2}} \frac{\omega (\varsigma )\lambda ^{*}}{ \Vert \omega \Vert } \bigl\vert w^{*}_{1}- \acute{w^{*}_{1}} \bigr\vert , $$
    (20)

    for all \(\varsigma \in \mathbb{I}\) and \(w^{*}_{1},\acute{w^{*}_{1}}\in \mathfrak{D}\), where \(\lambda ^{*}=\frac{1}{\Omega _{1}}\).

Then, BVP (2) has a solution.

Proof

Eventually, the fixed point of \(\mathfrak{L}\) will be characterized as a solution of BVP (2). Since the set-valued map \(\varsigma \mapsto \mathfrak{J}(\varsigma , w^{*}(\varsigma ))\) is measurable closed-valued, there is a measurable selection of \(\mathfrak{J}\) and \(\mathfrak{S}_{\mathfrak{J},w^{*}}\) is nonempty. We aim to prove that \(\mathfrak{L}(w^{*})\) is a closed subset of \(\mathfrak{D}\). Consider a convergent sequence \(\{w^{*}_{n}\}\) of \(\mathfrak{L}(w^{*})\) tending to \(w^{*}\). Corresponding to every n, \(\Upsilon _{n}\in \mathfrak{S}_{\mathfrak{J},w^{*}}\) exists such that

$$\begin{aligned} w^{*}_{n}(\varsigma )&=\frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{ \varsigma}\mu '(q) \bigl(\mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1}\Upsilon _{n}(q) \,\mathrm{d}q \\ &\quad{} -\frac{(\mu (\varsigma )-\mu (s_{0}))}{\Lambda} \Biggl[ \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1}\Upsilon _{n}(q)\,\mathrm{d}q \\ &\quad{} +\sum_{i=1}^{n}\beta _{i} \frac{1}{\Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+ \pi ^{*}-1}\Upsilon _{n}(q) \,\mathrm{d}q \Biggr], \end{aligned}$$
(21)

for all \(\varsigma \in \mathbb{I}\). Note that since \(w^{*}_{n}\rightarrow w^{*}\) in \(L^{1}(\mathbb{I})\), the values of \(\mathfrak{J}\) are compact. Hence, \(\Upsilon \in \mathfrak{S}_{\mathfrak{J},w^{*}}\) and

$$\begin{aligned} w^{*}_{n}(\varsigma )\rightarrow w^{*}(\varsigma ) &= \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{\varsigma}\mu '(q) \bigl( \mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1}\Upsilon (q)\,\mathrm{d}q \\ &\quad{} -\frac{(\mu (\varsigma )-\mu (s_{0}))}{\Lambda} \Biggl[ \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1}\Upsilon (q)\,\mathrm{d}q \\ &\quad{} +\sum_{i=1}^{n}\beta _{i} \frac{1}{\Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+ \pi ^{*}-1}\Upsilon (q)\,\mathrm{d}q \Biggr], \end{aligned}$$
(22)

which implies \(w^{*}\in \mathfrak{L}(w^{*})\) and therefore the values of \(\mathfrak{L}\) are closed. Since \(\mathfrak{J}\) is compact-valued, it is indeed easy to show that \(\mathfrak{L}(w^{*})\) is bounded. For all \(w^{*},\acute{w^{*}}\in \mathfrak{D}\) and \(\mathfrak{F}^{*}_{1}\in \mathfrak{L}(\acute{w^{*}})\) choose \(\Upsilon _{1}\in \mathfrak{S}_{\mathfrak{J},\acute{w^{*}}}\) such that

$$\begin{aligned} \mathfrak{F}^{*}_{1}&=\frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{ \varsigma}\mu '(q) \bigl(\mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1}\Upsilon _{1}(q) \,\mathrm{d}q \\ &\quad{} -\frac{(\mu (\varsigma )-\mu (s_{0}))}{\Lambda} \Biggl[ \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1}\Upsilon _{1}(q)\,\mathrm{d}q \\ &\quad{} +\sum_{i=1}^{n}\beta _{i} \frac{1}{\Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+ \pi ^{*}-1}\Upsilon _{1}(q) \,\mathrm{d}q \Biggr], \end{aligned}$$
(23)

for all \(\varsigma \in \mathbb{I}\). Thus,

$$ \mathbb{H}_{d}(\mathfrak{J}\bigl(\varsigma ,w^{*}(\varsigma )\bigr), \mathfrak{J}\bigl(\varsigma ,\acute{w^{*}}(\varsigma )\bigr) \leq \frac{1}{\theta \sqrt{2}} \frac{\omega (\varsigma )\lambda ^{*}}{ \Vert \omega \Vert } \bigl\vert w^{*}_{1}- \acute{w^{*}_{1}} \bigr\vert , $$
(24)

for all \(w^{*},\acute{w^{*}}\in \mathfrak{D}\). Therefore, an element \(\pi \in \mathfrak{J}(\varsigma ,w^{*}(\varsigma ))\) exists such that

$$ \bigl\vert w^{*}_{1}(\varsigma )-\pi \bigr\vert \leq \frac{1}{\theta \sqrt{2}} \frac{\omega (\varsigma )\lambda ^{*}}{ \Vert \omega \Vert } \bigl\vert w^{*}_{1}- \acute{w^{*}_{1}} \bigr\vert . $$
(25)

Now, consider map \(\mathfrak{B}^{*}:\mathbb{I}\rightarrow \mathbb{P}(\mathfrak{D})\), which is defined by

$$\begin{aligned} \mathfrak{B}^{*}(\varsigma )=\biggl\{ \pi \in \mathfrak{D}: \bigl\vert w^{*}_{1}-\pi ( \varsigma ) \bigr\vert \leq \frac{1}{\theta \sqrt{2}} \frac{\omega (\varsigma )\lambda ^{*}}{ \Vert \omega \Vert } \bigl\vert w^{*}_{1}- \acute{w^{*}_{1}} \bigr\vert \biggr\} . \end{aligned}$$

Note that \(\mathfrak{B}^{*}(\cdot)\cap \mathfrak{J}(\varsigma ,w^{*}(\varsigma ))\) is measurable since \(w^{*}_{1}\) and \(\tau =\frac{1}{\theta \sqrt{2}} \frac{\omega (\varsigma )\lambda ^{*}}{\|\omega \|}|w^{*}_{1}- \acute{w^{*}_{1}}|\) are measurable. Now, let \(w^{*}_{2}\in \mathfrak{J}(\varsigma ,w^{*}(\varsigma ))\). Therefore,

$$ \bigl\vert w^{*}_{1}(\varsigma )-w^{*}_{2}( \varsigma ) \bigr\vert \leq \frac{1}{\theta \sqrt{2}} \frac{\omega (\varsigma )\lambda ^{*}}{ \Vert \omega \Vert } \bigl\vert w^{*}_{1}- \acute{w^{*}_{1}} \bigr\vert , $$
(26)

for all \(\varsigma \in \mathbb{I}\). Let us define \(\mathfrak{F}^{*}_{2}\in \mathfrak{L}(\varsigma )\) by

$$\begin{aligned} \mathfrak{F}^{*}_{2}(\varsigma )&=\frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{\varsigma}\mu '(q) \bigl(\mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1} \Upsilon _{2}(q)\,\mathrm{d}q \\ &\quad{} -\frac{(\mu (\varsigma )-\mu (s_{0}))}{\Lambda} \Biggl[ \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1}\Upsilon _{2}(q)\,\mathrm{d}q \\ &\quad{} +\sum_{i=1}^{n}\beta _{i} \frac{1}{\Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+ \pi ^{*}-1}\Upsilon _{2}(q) \,\mathrm{d}q \Biggr], \end{aligned}$$
(27)

for all \(\varsigma \in \mathbb{I}\) and put \(\|\omega \|=\sup_{a\in \mathbb{I}}|\omega (\varsigma )|\). Then,

$$\begin{aligned} \bigl\vert \mathfrak{F}^{*}_{1}-\mathfrak{F}^{*}_{2} \bigr\vert &\leq \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{\varsigma}\mu '(q) \bigl( \mu ( \varsigma )-\mu (q)\bigr)^{\pi ^{*}-1} \bigl\vert \Upsilon _{1}(q)- \Upsilon _{2}(q) \bigr\vert \,\mathrm{d}q \\ & \quad{} -\frac{(\mu (\varsigma )-\mu (s_{0}))}{\Lambda} \Biggl[ \frac{1}{\Gamma (\pi ^{*})} \int _{s_{0}}^{T}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{\pi ^{*}-1} \bigl\vert \Upsilon _{1}(q)-\Upsilon _{2}(q) \bigr\vert \,\mathrm{d}q \\ &\quad +\sum_{i=1}^{n}\beta _{i} \frac{1}{\Gamma (p_{i}+\pi ^{*})} \int _{s_{0}}^{\zeta _{i}} \mu '(q) \bigl(\mu ( \zeta _{i})-\mu (q)\bigr)^{p_{i}+\pi ^{*}-1} \bigl\vert \Upsilon _{1}(q)- \Upsilon _{2}(q) \bigr\vert \,\mathrm{d}q \Biggr] \\ &\leq \frac{( \vert \mu (T)-\mu (s_{0}) \vert )^{\pi ^{*}}}{\Gamma (\pi ^{*}+1)} \Vert \omega \Vert \frac{1}{\theta \sqrt{2}} \bigl\Vert w^{*}-\acute{w^{*}} \bigr\Vert \frac{\lambda ^{*}}{ \Vert \omega \Vert } \\ &\quad{} + \frac{( \vert (\mu (T)-\mu (s_{0})) \vert )^{\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (\pi ^{*}+1)} \Vert \omega \Vert \frac{1}{\theta \sqrt{2}} \bigl\Vert w^{*}-\acute{w^{*}} \bigr\Vert \frac{\lambda ^{*}}{ \Vert \omega \Vert } \\ &\quad{} +\sum_{i=1}^{n}\beta _{i} \frac{n( \vert (\mu (T)-\mu (s_{0})) \vert )^{p_{i}+\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (p_{i}+\pi ^{*}+1)} \Vert \omega \Vert \frac{1}{\theta \sqrt{2}} \bigl\Vert w^{*}-\acute{w^{*}} \bigr\Vert \frac{\lambda ^{*}}{ \Vert \omega \Vert } \\ &= \Biggl[ \frac{( \vert \mu (T)-\mu (s_{0}) \vert )^{\pi ^{*}}}{\Gamma (\pi ^{*}+1)}+ \frac{( \vert (\mu (T)-\mu (s_{0})) \vert )^{\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (\pi ^{*}+1)} \\ &\quad{} +\sum_{i=1}^{n}\beta _{i} \frac{n( \vert (\mu (T)-\mu (s_{0})) \vert )^{p_{i}+\pi ^{*}+1}}{ \vert \Lambda \vert \Gamma (p_{i}+\pi ^{*}+1)} \Biggr] \Vert \omega \Vert \frac{1}{\theta \sqrt{2}} \bigl\Vert w^{*}-\acute{w^{*}} \bigr\Vert \frac{\lambda ^{*}}{ \Vert \omega \Vert } \\ &=\Omega _{1} \Vert \omega \Vert \frac{1}{\theta \sqrt{2}} \bigl\Vert w^{*}- \acute{w^{*}} \bigr\Vert \frac{\lambda ^{*}}{ \Vert \omega \Vert } \\ &=\Omega _{1}\lambda ^{*}\frac{1}{\theta \sqrt{2}} \bigl\Vert w^{*}- \acute{w^{*}} \bigr\Vert . \end{aligned}$$
(28)

If \(\tau =\ln \theta \) and define \(\mathbb{F}(u)=\ln u\), then the inequality \(2\tau +\mathbb{F}(2\mathbb{H}_{\mathrm{d}}(\mathfrak{L}(w^{*}), \mathfrak{L}(\acute{w^{*}})))\leq \mathbb{F} (\|w^{*}-\acute{w^{*}}\|)\) holds for all \(w^{*},\acute{w^{*}}\in \mathfrak{D}\). As a conclusion, applying Theorem 2.5, \(\mathfrak{L}\) admits a FP that is the solution for BVP (2). □

4 Examples

In this section two examples are provided to illustrate the theoretical results.

Example 4.1

Consider BVP

$$ \textstyle\begin{cases} {}^{\mathcal{C}}D_{0}^{1.79,\exp (\varsigma +1)}w^{*}(\varsigma )= \frac{a\cos (\varsigma ) \vert w^{*}(\varsigma ) \vert }{340( \vert w^{*}(\varsigma ) \vert +1)},\quad \varsigma \in [0,1]; \\ w^{*}(0)=0, \\ w^{*}(1)=0.71{}^{RL}I_{0}^{1.69,\exp (\varsigma +1)}w^{*}(0.37)+0.85{}^{RL}I_{0}^{1.93, \exp (\varsigma +1)}w^{*}(0.39), \end{cases} $$

where \(\varsigma \in [0,1]\), \(\pi ^{*}= 1.79\), \(s_{0}=0\), \(T=1\), \(n=2\), \(p_{1}=1.69\), \(p_{2}=1.93\), \(\xi _{1}=0.37\), \(\xi _{2}=0.39\), \(\beta _{1}=0.71\), \(\beta _{2}=0.85\), and \(\mu =\exp (\varsigma +1)\). Here, \({}^{\mathcal{C}}D_{0}^{1.79, \exp (a+1)}\) and \({}^{RL}I_{0}^{p_{i}}\) are the FD of Caputo type of order 1.79 and the FI of R–L type of order \(p_{i}\), respectively. Then, we have \(\Lambda =1.6094\) and \(\Omega _{1}=5.0139\). Consider the continuous mapping \(\mathfrak{h}(\varsigma ,w^{*}(\varsigma ))= \frac{\varsigma \cos (\varsigma )\vert w^{*}(\varsigma )\vert}{340(\vert w^{*}(\varsigma )\vert +1)}\). Then,

$$\begin{aligned} \bigl\vert \mathfrak{h}\bigl(\varsigma ,w^{*}_{1}( \varsigma )\bigr)-\mathfrak{h}\bigl( \varsigma ,w^{*}_{2}( \varsigma )\bigr) \bigr\vert \leq \frac{\varsigma}{340} \bigl\vert w^{*}_{1}-w^{*}_{2} \bigr\vert \leq \frac{\sqrt{2}}{4\Omega _{1}} \bigl\vert w^{*}_{1}-w^{*}_{2} \bigr\vert . \end{aligned}$$

Now, by Theorem 3.2, the BVP has a solution.

Example 4.2

Consider BVP

$$ \textstyle\begin{cases} {}^{\mathcal{C}}D_{0}^{1.3,\exp (\varsigma /2)}w^{*}(\varsigma )\in [0,\frac{\exp (\sqrt[3]{\varsigma}+1)}{30}+ \frac{\sqrt{\pi}\cos (\coth (\varsigma ))}{2+\exp (\varsigma )}+ \frac{\varsigma \sin (\varsigma ) \vert w^{*}(\varsigma ) \vert }{126(\varsigma +7)} ], \quad \varsigma \in [0,3]; \\ w^{*}(0)=0, \\ w^{*}(3)=0.69{}^{RL}I_{0}^{1.37,\exp (2\varsigma )}w^{*}(0.37)+0.72{}^{RL}I_{0}^{1.82, \exp (2\varsigma )}w^{*}(0.38), \end{cases} $$

where \(\pi ^{*}= 1.3\), \(s_{0}=0\), \(T=3\), \(n=2\), \(p_{1}=1.37\), \(p_{2}=1.82\), \(\xi _{1}=0.37\), \(\xi _{2}=0.38\), \(\beta _{1}=0.69\), and \(\beta _{2}=0.72\). Here, \({}^{\mathcal{C}}D_{0}^{1.3,\exp (\varsigma /2)}\), \({}^{RL}I_{0}^{1.37,\exp (\varsigma /2)}\), and \({}^{RL}I_{0}^{1.82,\exp (\varsigma /2)}\) are the FD of Caputo type of order 0.3, the FIs of R–L type of order 1.37 and 1.82, respectively. Now, define the continuous set-valued mapping \(\mathfrak{J}:[0,3]\times \mathfrak{R}\rightarrow \mathfrak{R}\) by \(\mathfrak{J}(\varsigma , w^{*}(\varsigma ))= [\varsigma , \frac{\exp (\sqrt[3]{\varsigma}+1)}{30}+ \frac{\sqrt{\pi}\cos (\coth (\varsigma ))}{2+\exp (\varsigma )}+ \frac{\varsigma \sin (\varsigma )\vert w^{*}(\varsigma )\vert}{126(\varsigma +7)} ]\). For \(w^{*}_{1}, w^{*}_{2}\in \mathfrak{R}\) we have

$$\begin{aligned} \mathbb{H} \bigl(\mathfrak{J}\bigl(\varsigma ,w^{*}_{1}( \varsigma )\bigr)- \mathfrak{J}\bigl(\varsigma ,w^{*}_{2}( \varsigma )\bigr) \bigr) &\leq \frac{a}{63}\frac{1}{2} \bigl[ \bigl\vert \sin \bigl(w^{*}_{1}( \varsigma )\bigr)- \sin \bigl(w^{*}_{2}(\varsigma )\bigr) \bigr\vert \bigr] \\ &\leq \frac{1}{\theta \sqrt{2}\Omega _{1}} \bigl\vert w^{*}_{1}(\varsigma )-w^{*}_{2}( \varsigma ) \bigr\vert . \end{aligned}$$
(29)

Then, we have \(\mathbb{H}_{d} (\mathfrak{J}(\varsigma ,w^{*}_{1}(\varsigma ))- \mathfrak{J}(a,w^{*}_{2}(\varsigma )) )\leq \omega (\varsigma ) \vert w^{*}_{1}(\varsigma )-w^{*}_{2}(\varsigma )\vert \frac{1}{\Omega _{1}}\). Thus, \(\Omega _{1}=27.2258\), \(\Lambda =3.4493\), and \(\lambda ^{*}=0.0367\). Consider \(\mathfrak{L}:\mathfrak{D}\to \mathcal{P}(\mathfrak{D})\) as

$$ \mathfrak{L}\bigl(w^{*}\bigr)=\bigl\{ \mathfrak{F}\in \mathfrak{D}: \text{there exists}~w^{*}\in \mathfrak{S}_{\mathfrak{J},w^{*}}~ \text{such that}~ \mathfrak{F}(z)= \pi (z)~ \text{for all}~ \varsigma \in [0,3] \bigr\} , $$
(30)

where

$$\begin{aligned} \pi (\varsigma )&=\frac{1}{\Gamma (1.3)} \int _{0}^{\varsigma} \mu '(q) \bigl(\mu ( \varsigma )-\mu (q)\bigr)^{0,3}\Upsilon (q)\,\mathrm{d}q \\ &\quad{} -\frac{(\mu (\varsigma )-1)}{3.4493} \Biggl[\frac{1}{\Gamma (1.3)} \int _{0}^{3}\mu '(q) \bigl(\mu (T)- \mu (q)\bigr)^{0.3}\Upsilon (q) \,\mathrm{d}q \\ &\quad{} +\sum_{0}^{2}\beta _{i} \frac{1}{\Gamma (p_{i}+1.3)} \int _{0}^{\zeta _{i}}\mu '(q) \bigl(\mu (\zeta _{i})-\mu (q)\bigr)^{p_{i}+0.3}w^{*}(q) \,\mathrm{d}q \Biggr]. \end{aligned}$$
(31)

Now, by Theorem 3.3, the BVP has a solution.

The importance of the μ-Caputo derivative can be seen in the following example.

Example 4.3

Here, we study a model explained by a fractional differential equation, and we show how fractional derivatives with respect to another function may be helpful. The significant and historical model to describe population growth is the Malthusian law, which was proposed in 1798 by the English economist Thomas Malthus. It is given by \(N^{\prime}(t) = \lambda N(t)\), where λ is the population growth rate (equal to the difference between the birth and mortality rates), sometimes called the Malthusian parameter, and \(N(t)\) is the number of individuals in a population at time t. It is assumed that λ is constant, and so if \(N_{0}\) denotes the initial population size, then the solution to this Cauchy problem is the exponential function \(N(t) = N_{0} \exp(\lambda t)\).

Consider the FDE obtained from the Malthusian law of population growth, by replacing the first-order derivative by the μ-Caputo fractional derivative with respect to μ as \(CD^{\alpha ,\mu}_{0^{+}} N(t) = \lambda N(t)\). From [7], the solution of this FDE, together with the initial condition \(N(0) = N_{0}\), is the function

$$\begin{aligned} N(t) = N_{0}E_{\alpha}\bigl(\lambda \bigl(\mu (t)-\mu (0)\bigr)^{\alpha }\bigr). \end{aligned}$$
(32)

For \(\mu (x) = x\), with the usual Caputo fractional derivative, we obtain \(N(t) = N_{0}E\alpha (\lambda t^{\alpha})\) (see [8]), and it was proven that the FDE was more efficient in modeling the population growth than the ODE. This work further exemplifies that, when considering function N as given by (32), a better accuracy on the model is obtained. The purpose is to determine the best-fitting curve N (that is, find the parameters λ and α) by minimizing the sum of the squares of the offsets of the points from the curve. For more details and aspects of the numerical process see [7] and [27].

5 Conclusion

In this manuscript, applying some F-contraction, convex F-contraction, and some fixed-point theorems, the existence of solutions of a μ-Caputo FDE and an inclusion problem equipped with nonlocal μ-integral boundary conditions have been investigated. Some examples have also been provided to illustrate the results. Among the important problems that can be investigated in the continuation of this research, we can refer to topics such as: checking the existence and uniqueness of boundary value problems with different boundary and initial conditions and checking their application in important subjects such as insurance, economics, and modeling many important diseases.

One other possible extension is to consider the fractional order as a function of time \(\pi ^{*}\), and determine the order that fits closer to the mathematical model. These and other questions will be treated in the future.

References

  1. Abdo, M.S., Panchal, S.K., Saeed, A.M.: Fractional boundary value problem with ψ-Caputo fractional derivative. Proc. Indian Acad. Sci. Math. Sci. 129(5), 65 (2019)

    Article  MathSciNet  Google Scholar 

  2. Afshari, H., Roomi, V., Kalantari, S.: The existence of solutions of the inclusion problems involving Caputo and Hadamard fractional derivatives by applying some new contractions. J. Nonlinear Convex Anal. 23(6), 1213–1229 (2022)

    MathSciNet  Google Scholar 

  3. Afshari, H., Roomi, V., Kalantari, S.: Existence of solutions of some boundary value problems with impulsive conditions and ABC-fractional order. Filomat 37(11), 3639–3648 (2023). https://doi.org/10.2298/FIL2311639A

    Article  MathSciNet  Google Scholar 

  4. Afshari, H., Roomi, V., Nosrati, M.: Existence and uniqueness for a fractional differential equation involving Atangana-Baleanu derivative by using a new contraction. Lett. Nonlinear Anal. Appl. 1(2), 52–56 (2023)

    Google Scholar 

  5. Aghajani, A., Pourhadi, E., Rivero, M., Trujillo, J.: Application of Perov’s fixed point theorem to Fredholm type integrodifferential equations in two variables. Math. Slovaca 66(5), 1207–1216 (2016). https://doi.org/10.1515/ms-2016-0216

    Article  MathSciNet  Google Scholar 

  6. Ali, A., Khan, N., Israr, S.: On establishing qualitative theory to nonlinear boundary value problem of fractional differential equations. Math. Sci. 15, 395–403 (2021). https://doi.org/10.1007/s40096-021-00384-7

    Article  MathSciNet  Google Scholar 

  7. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. Almeida, R., Bastos, N.R.O., Teresa, M., Monteiro, T.: Modelling some real phenomena by fractional differential equations. https://arxiv.org/abs/1511.06202https://doi.org/10.1002/mma.3818

  9. Almeida, R., Malinowska, A.B., Teresa, M., Monteiro, T.: Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 41, 336–352 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Baleanu, D., Iqbal, M.Q., Hussain, A., Etemad, S., Rezapour, S.: On solutions of fractional multi-term sequential problems via some special categories of functions and (AEP)-property. Adv. Differ. Equ. 2021, 197 (2021)

    Article  MathSciNet  Google Scholar 

  11. Berhail, A., Tabouche, N., Alzabut, J., Samei, M.E.: Using the Hilfer–Katugampola fractional derivative in initial-value Mathieu fractional differential equations with application to a particle in the plane. Adv. Cont. Discr. Mod. 2022, 44 (2023). https://doi.org/10.1186/s13662-022-03716-6

    Article  MathSciNet  Google Scholar 

  12. Bhairat, S.P., Samei, M.E.: Non existence of global solutions for a Hilfer–Katugampola fractional differential problem. Partial Differ. Equ. Appl. Math. 7, 100495 (2023). https://doi.org/10.1016/j.padiff.2023.100495.

    Article  Google Scholar 

  13. Boutiara, A., Benbachir, M., Alzabut, J., Samei, M.E.: Monotone iterative and upper–lower solution techniques for solving the nonlinear ψ–Caputo fractional boundary value problem. Fractal Fract. 2021(5), 194 (2021). https://doi.org/10.3390/fractalfract5040194

    Article  Google Scholar 

  14. Boutiara, A., Matar, M.M., Alzabut, J., Samei, M.E., Khan, H.: On ABC coupled Langevin fractional differential equations constrained by Perov’s fixed point in generalized Banach spaces. AIMS Math. 8(5), 12109–12132 (2023). https://doi.org/10.3934/math.2023610

    Article  MathSciNet  Google Scholar 

  15. Derbazi, C., Baitiche, Z., Benchohra, M.: Coupled system of ψ–Caputo fractional differential equations without and with delay in generalized Banach spaces. Results Nonlinear Anal. 5(1), 42–61 (2022). https://doi.org/10.53006/rna.1007501

    Article  Google Scholar 

  16. Derbazi, C., Baitiche, Z., Feckan, M.: Some new uniqueness and Ulam stability results for a class of multi-terms fractional differential equations in the framework of generalized Caputo fractional derivative using the Φ-fractional Bielecki-type norm. Turk. J. Math. 45(5), 30 (2021). https://doi.org/10.3906/mat-2011-92.

    Article  Google Scholar 

  17. Derbazi, C., Baitiche, Z., Zada, A.: Existence and uniqueness of positive solutions for fractional relaxation equation in terms of ψ-Caputo fractional derivative. Int. J. Nonlinear Sci. Numer. Simul. (2021). https://doi.org/10.1515/ijnsns-2020-0228

    Article  Google Scholar 

  18. Derbazi, Ch., Baitiche, Z., Benchohra, M., Cabada, A.: Initial value problem for nonlinear fractional differential equations with ψ-Caputo derivative via monotone iterative technique. Axioms 9(2), 57 (2020). https://doi.org/10.3390/axioms9020057

    Article  Google Scholar 

  19. Foukrach, D., Bouriah, S., Benchohra, M., Karapinar, E.: Some new results for ψ-Hilfer fractional pantograph-type differential equation depending on ψ-Riemann-Liouville integral. J. Anal. 30, 195–219 (2022). https://doi.org/10.1007/s41478-021-00339-0

    Article  MathSciNet  Google Scholar 

  20. Haddouchi, F., Samei, M.E., Rezapour, Sh.: Study of a sequential-Hilfer fractional integro-differential equations with nonlocal BCs. J. Pseudo-Differ. Oper. Appl. 14(4), 61 (2023). https://doi.org/10.1007/s11868-023-00555-1

    Article  MathSciNet  Google Scholar 

  21. Huang, H., Mitrovic, Z.D., Zoto, K., Radenovic, S.: On convex F-contraction in b-metric spaces. Axioms 10(2), 71 (2021). https://doi.org/10.3390/axioms10020071

    Article  Google Scholar 

  22. Iqbal, M.Q., Hussain, A.: Existence criteria via \(\alpha -\psi \)-contractive mappings of φ-fractional differential nonlocal boundary value problems. Adv. Differ. Equ. 350 (2021). https://doi.org/10.1186/s13662-021-03496-5.

    Article  MathSciNet  Google Scholar 

  23. Karapinar, E., Sedghi, S., Shobe, N.: Solving existence problems via F-contraction in modified b-metric spaces. TWMS J. Appl. Eng. Math. 12(4), 1526–1535 (2022)

    Google Scholar 

  24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  25. Lazreg, J.E., Benkhettou, N., Benchora, M., Karapinar, E.: Neutral functional sequential differential equations with Caputo fractional derivative on time scales. Fixed Point Theory Algorithms Sci. Eng. 2022, 6 (2022). https://doi.org/10.1186/s13663-022-00716-9

    Article  MathSciNet  Google Scholar 

  26. Ledesma, T.C.E., Nyamoradi, N.: \((k,\psi )\)-Hilfer variational problem. J. Elliptic Parabolic Equ. 8 681–709 (2022). https://doi.org/10.1007/s41808-022-00173-w

    Article  MathSciNet  Google Scholar 

  27. Malthus, T.R.: An Essay on the Principle of Population, 6th edn. John Murray, London (1826)

    Google Scholar 

  28. Mehravaran, H., Amiri Kayvanloo, H., Allahyari, R.: Measures of noncompactness in the space of regulated functions \(C(J,R)\) and its application to some nonlinear infinite systems of fractional differential equations. Math. Sci. 2022(3), 223–232 (2022). https://doi.org/10.1007/s40096-022-00464-2

    Article  MathSciNet  Google Scholar 

  29. Ntouyas, S.K., tariboon, J., Sudsutad, W.: Boundary value problems for Riemann-Liouville fractional differential inclusions with nonlocal Hadamard fractional integral conditions. Mediterr. J. Math. 13, 939–954 (2016). https://doi.org/10.1007/s00009-015-0543-1

    Article  MathSciNet  Google Scholar 

  30. Osler, T.J.: Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 18(3), 658–674 (1970). http://www.jstor.org/stable/2099520

    Article  MathSciNet  Google Scholar 

  31. Rezapour, Sh., Ntouyas, S.K., Iqbal, M.Q., Hussain, A., Etemad, S., Tariboon, J.: An analytical survey on the solutions of the generalized double-order ϕ-integro-differential equation. J. Funct. Spaces 2021, 6667757 (2021). https://doi.org/10.1155/2021/6667757

    Article  Google Scholar 

  32. Roomi, V., Afshari, H., Kalantari, S.: Some existence results for fractional differential inclusions via fixed point theorems. Fixed Point Theory 23(2), 673–688 (2022). https://doi.org/10.24193/fpt-ro.2022.2.15

    Article  MathSciNet  Google Scholar 

  33. Salim, A., Benchohra, M., Karapinar, E.: Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations. Adv. Differ. Equ. 2020, 601 (2020). https://doi.org/10.1186/s13662-020-03063-4.

    Article  MathSciNet  Google Scholar 

  34. Samet, B., Aydi, H.: Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving ψ-Caputo fractional derivative. J. Inequal. Appl. 2018, 286 (2018). https://doi.org/10.1186/s13660-018-1850-4.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  35. Samko, G., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Science Publishers (1993)

    Google Scholar 

  36. Sousa, J., da Vanterler, C., Kucche, K.D., De Oliveira, E.C.: Stability of ψ-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 88, 73–80 (2019). https://doi.org/10.1016/j.aml.2018.08.013

    Article  MathSciNet  Google Scholar 

  37. Tariboon, J., Ntouyas, S.K., Sudsutad, W.: Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations. Bound. Value Probl. 2014, 253 (2014). https://doi.org/10.1186/s13661-014-0253-9

    Article  MathSciNet  Google Scholar 

  38. Thabet, S.T.M., Vivas-Cortez, M., Kedim, I., Samei, M.E., Ayari, M.I.: Solvability of a ϱ-Hilfer fractional snap dynamic system on unbounded domains. Fractals Fract. 7(8), 607 (2023). https://doi.org/10.3390/fractalfract7080607

    Article  Google Scholar 

  39. Vivek, D., Elsayed, E.M., Kanagarajan, K.: Theory and analysis of partial differential equations with a ψ-Caputo fractional derivative. Rocky Mt. J. Math. 49(4), 1355–1370 (2019). https://doi.org/10.1216/RMJ-2019-49-4-1355

    Article  MathSciNet  Google Scholar 

  40. Webb, J.R.L.: Initial value problems for Caputo fractional equations with singular nonlinearities. Electron. J. Differ. Equ. 2019, 117, (2019). http://ejde.math.txstate.edu

    MathSciNet  Google Scholar 

  41. Younis, M., Fabiano, N., Pantovic, M., Radenovic, S.: Some critical remarks of recent results on F-contractions in b-metric spaces. Math. Anal. Contemp. Appl. 4(2), 1–10 (2022). https://doi.org/10.30495/maca.2022.1948245.1043. ISSN 2716-9898

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of the manuscript and their valuable comments that have improved the manuscript significantly.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

V. Roomi: Formal analysis, Writing review, Editing, H. Afshari: Conceptualization, Investigation, S. Kalantari: Conceptualization, Investigation, Writing original draft.

Corresponding authors

Correspondence to Vahid Roomi or Hojjat Afshari.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roomi, V., Afshari, H. & Kalantari, S. Some existence results for a differential equation and an inclusion of fractional order via (convex) F-contraction mapping. J Inequal Appl 2024, 28 (2024). https://doi.org/10.1186/s13660-024-03102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-024-03102-8

Keywords