Skip to main content

Orthogonal neutrosophic 2-metric spaces

Abstract

In this study, we introduce the notion of an orthogonal neutrosophic 2-metric space and prove the common fixed-point theorem on an orthogonal neutrosophic 2-metric space. From the obtained results, we give an example to support our results.

1 Introduction

Nowadays, a fuzzy concept has become the subject of several research works. Finding the fuzzy equivalents of the classical set theory is one of the advancements made to the basic theory of fuzzy sets provided by Zadeh [1]. Following that, the use of a fuzzy metric space in applied sciences including fixed-point theory, image and signal processing, medical imaging, and decision making occurred. The concept of intuitionistic fuzzy metric spaces was first proposed by Park [2]. The domains of population dynamics [3] computer programming [4], chaos control [5], nonlinear dynamical system [6], and medicine [7] are only a few examples of the scientific and technological fields that have utilized it. Gahler [8] presented a study on a 2-metric space. Schweizer and Sklar [9] explored the statistical metric spaces. The concept of intuitionistic fuzzy sets was presented by Atanassov [10] and Çoker [11] and the concept of intuitionistic fuzzy topological was discussed in [12]. In [13] the authors introduced the concepts of intuitionistic fuzzy 2-normed spaces and in [14] intuitionistic fuzzy 2-metric spaces.

Bera and Mahapatra [15] established the neutrosophic soft linear space. The neutrosophic normed linear space was established by Bera and Mahapatra [16]. The concept of an orthogonal neutrosophic metric space was introduced by Ishtiaq et al. [17] who proved several fixed-point results in the context of an orthogonal neutrosophic metric space. The contraction mapping was used to prove common fixed-point results in the context of a neutrosophic metric space established by Jeyaraman and Sowndrarajan [18]. Several fixed-point results in weak and rational \((\alpha -\psi )\)-contractions in an ordered 2-metric space were established by Fathollahi et al. [19]. Many authors like Salama and Alblowi [20] worked on neutrosophic topological spaces and Al-omeri et al. [21] worked on a neutrosophic cone metric space, etc. Mursaleen and Lohani [22] introduced the idea of an intuitionistic 2-normed space and an intuitionistic 2-metric space. Ali Asghar and Aftab Hussain [23] established the basic properties of N2MSs and demonstrated some fixed-point findings. Umar Ishtiaq [24] introduced the notion of ONMSs and investigated some fixed-point results. The idea of orthogonality has several applications in mathematics. The notion of orthogonality in a metric space was established by Eshagi Gordji, Ramezani, De la Sen and Cho [25] and also expanded the findings in the setting of a metric space with new orthogonality and proved fixed-point theorems.

The main objectives of this study are as follows:

  1. (i)

    To introduce the concept of an orthogonal neutrosophic 2-metric space (ON2MS).

  2. (ii)

    To prove common fixed-point results on the orthogonal neutrosophic 2-metric space.

  3. (iii)

    To enhance the literature of an intuitionistic fuzzy 2-metric space and a neutrosophic metric space.

  4. (iv)

    To prove the uniqueness of the solution of integral equations.

Now, we provide some basic definitions to help to understand the main section.

2 Preliminaries

Here, “con-t-nm” means continuous triangular-norm, “con-t-conm” means continuous-triangular-conorm, “NMS” means neutrosophic metric space, “N2MS” means neutrosophic 2-metric space, “ON2MS” means orthogonal neutrosophic 2-metric space. Some basic definitions are given below:

Definition 2.1

[26] Let \(\ast \colon [0, 1]\times [0, 1]\rightarrow [0, 1]\) be a con-t-nm on a binary operation, then:

  1. (I)

    is associative and commutative;

  2. (II)

    is continuous;

  3. (III)

    \(\mu \ast 1=\mu \) for all \(\mu \in [0, 1]\);

  4. (IV)

    \(\mu \ast \alpha \leq \eta \ast \gamma \), when \(\mu \leq \eta \) and \(\alpha \leq \gamma \) for all \(\mu , \alpha , \eta , \gamma \in [0, 1]\).

Definition 2.2

Let \(+\colon [0, 1]\times [0, 1]\rightarrow [0, 1]\) be a con-t-conm on a binary operation, then it satisfies (I), (II), (IV), and

  1. (III)

    \(\mu +0=\mu \) for all \(\mu \in [0, 1]\).

Definition 2.3

Let Φ be the universe. A neutrosophic set (NS) \(\mathcal{A}\) in Φ is characterized by a truth membership function \(\mathcal{Q}_{\mathcal{A}}\), an indeterminacy membership function \(\mathcal{F}_{\mathcal{A}}\), and a falsity membership function \(\mathcal{G}_{\mathcal{A}}\), where \(\mathcal{Q}_{\mathcal{A}}\), \(\mathcal{F}_{\mathcal{A}}\), and \(\mathcal{G}_{\mathcal{A}}\) are real standard elements of \([0, 1]\). This can be written as:

$$\begin{aligned} \mathcal{A}= \bigl\{ \bigl\langle \nu , \bigl(\mathcal{Q}_{\mathcal{A}}(\nu ), \mathcal{F}_{\mathcal{A}}(\nu ), \mathcal{G}_{\mathcal{A}}(\nu ) \bigr) \bigr\rangle :\nu \in \varPhi , \mathcal{Q}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}}, \mathcal{G}_{\mathcal{A}}\in \,]^{-}0, 1^{+}[ \bigr\} . \end{aligned}$$

There is no restriction on the sum of \(\mathcal{Q}_{\mathcal{A}}(\nu )\), \(\mathcal{F}_{\mathcal{A}}(\nu )\), and \(\mathcal{G}_{\mathcal{A}}(\nu )\) and so \(0^{-}\leq \mathcal{Q}_{\mathcal{A}}(\nu )+ \mathcal{F}_{\mathcal{A}}( \nu )+ \mathcal{G}_{\mathcal{A}}(\nu )\leq 3^{+}\).

Definition 2.4

[27] Let \(\varPhi \neq \emptyset \). A 6-tuple \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +)\), where is a con-t-nm, + is a con-t-conm, \(\mathcal{Q}\), \(\mathcal{F}\), and \(\mathcal{G}\) are neutrosophic sets on \(\varPhi \times \varPhi \times (0, \infty )\). If \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +)\), satisfies the conditions below for all \(\nu , \varrho , \mathfrak{z}\in \varPhi \), and \(\wp , \mathfrak{s}>0\):

  1. (N1)

    \(\mathcal{Q}(\nu , \varrho , \wp )+\mathcal{F}(\nu , \varrho , \wp )+ \mathcal{G}(\nu , \varrho , \wp )\leq 3\);

  2. (N2)

    \(0\leq \mathcal{Q}(\nu , \varrho , \wp )\leq 1\);

  3. (N3)

    \(\mathcal{Q}(\nu , \varrho , \wp )=1\) if and only if \(\nu =\varrho \);

  4. (N4)

    \(\mathcal{Q}(\nu , \varrho , \wp )=\mathcal{Q}(\varrho , \nu , \wp )\);

  5. (N5)

    \(\mathcal{Q}(\nu , \varsigma , \wp +\mathfrak{s})\geq \mathcal{Q}( \nu , \varrho , \wp )\ast \mathcal{Q}(\varrho , \varsigma , \mathfrak{s})\);

  6. (N6)

    \(\mathcal{Q}(\nu , \varrho , \cdot )\colon [0, \infty )\rightarrow [0, 1]\) is continuous;

  7. (N7)

    \(\lim_{\wp \rightarrow \infty}\mathcal{Q}(\nu , \varrho , \wp )=1\);

  8. (N8)

    \(0\leq \mathcal{F}(\nu , \varrho , \wp )\leq 1\);

  9. (N9)

    \(\mathcal{F}(\nu , \varrho , \wp )=0\) if and only if \(\nu =\varrho \);

  10. (N10)

    \(\mathcal{F}(\nu , \varrho , \wp )=\mathcal{F}(\varrho , \nu , \wp )\);

  11. (N11)

    \(\mathcal{F}(\nu , \varsigma , \wp +\mathfrak{s})\leq \mathcal{F}( \nu , \varrho , \wp )+\mathcal{F}(\varrho , \varsigma , \mathfrak{s})\);

  12. (N12)

    \(\mathcal{F}(\nu , \varrho , \cdot )\colon [0, \infty )\rightarrow [0, 1]\) is continuous;

  13. (N13)

    \(\lim_{\wp \rightarrow \infty}\mathcal{F}(\nu , \varrho , \wp )=0\);

  14. (N14)

    \(0\leq \mathcal{G}(\nu , \varrho , \wp )\leq 1\);

  15. (N15)

    \(\mathcal{F}(\nu , \varrho , \wp )=0\) if and only if \(\nu =\varrho \);

  16. (N16)

    \(\mathcal{G}(\nu , \varrho , \wp )=\mathcal{G}(\varrho , \nu , \wp )\);

  17. (N17)

    \(\mathcal{G}(\nu , \varsigma , \wp +\mathfrak{s})\leq \mathcal{G}( \nu , \varrho , \wp )+\mathcal{G}(\varrho , \varsigma , \mathfrak{s})\);

  18. (N18)

    \(\mathcal{G}(\nu , \varrho , \cdot )\colon [0, \infty )\rightarrow [0, 1]\) is continuous;

  19. (N19)

    \(\lim_{\wp \rightarrow \infty}\mathcal{G}(\nu , \varrho , \wp )=0\);

  20. (N20)

    if \(\wp \leq 0\), then \(\mathcal{Q}(\nu , \varrho , \wp )=0\), \(\mathcal{F}(\nu , \varrho , \wp )=1\), \(\mathcal{G}(\nu , \varrho , \wp )=1\).

Then, \((\mathcal{Q}, \mathcal{F}, \mathcal{G})\) is a neutrosophic metric and \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +)\) is a NMS.

Definition 2.5

[28] The 5-tuple \((\varPhi , \mathcal{Q}, \mathcal{F}, \ast , +)\) is called an intuitionistic fuzzy 2-metric space if Φ is any nonvoid set, is a con-t-nm, + is a con-t-conm, and \(\mathcal{Q}\), \(\mathcal{F}\) are fuzzy sets on \(\varPhi \times \varPhi \times \varPhi \times (0, \infty )\), then it satisfies for all \(\nu , \varrho , \varsigma , \mathfrak{w}\in \varPhi \), and \(\mathfrak{s}, \wp >0\):

  1. (a)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )+\mathcal{F}(\nu , \varrho , \varsigma , \wp )\leq 1\);

  2. (b)

    Let ν, ϱ of Φ, there exists an element ς of Φ such that \(0\leq \mathcal{Q}(\nu , \varrho , \varsigma , \wp )\leq 1\);

  3. (c)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )=1\) if at least two of ν, ϱ, ς are equal;

  4. (d)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )=\mathcal{Q}(\nu , \varsigma , \varrho , \wp )=\mathcal{Q}(\varrho , \varsigma , \nu , \wp )\) for all ν, ϱ, ς in Φ;

  5. (e)

    \(\mathcal{Q}(\nu , \varrho , \mathfrak{w}, \wp )\ast \mathcal{Q}(\nu , \mathfrak{w}, \varsigma , \mathfrak{s})\ast \mathcal{Q}(\mathfrak{w}, \varrho , \varsigma , \mathfrak{h})\leq \mathcal{Q}(\nu , \varrho , \varsigma , \wp +\mathfrak{s}+\mathfrak{h})\) for all \(\nu , \varrho , \varsigma , \mathfrak{w}\in \varPhi \);

  6. (f)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \cdot )\colon (0, \infty ) \rightarrow (0, 1]\) is continuous;

  7. (g)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )<1\);

  8. (h)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )=0\) if at least two of ν, ϱ, ς are equal;

  9. (i)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )=\mathcal{F}(\nu , \varsigma , \varrho , \wp )=\mathcal{F}(\varrho , \varsigma , \nu , \wp )\) for all ν, ϱ, ς in Φ;

  10. (j)

    \(\mathcal{F}(\nu , \varrho , \mathfrak{w}, \wp )+\mathcal{F}(\nu , \mathfrak{w}, \varsigma , \mathfrak{s})+\mathcal{F}(\mathfrak{w}, \varrho , \varsigma , \mathfrak{h})\geq \mathcal{F}(\nu , \varrho , \varsigma , \wp +\mathfrak{s}+\mathfrak{h})\);

  11. (k)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \cdot )\colon (0, \infty ) \rightarrow (0, 1]\) is continuous.

Definition 2.6

The 6-tuple \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +)\) is said to be a N2MS if Φ is any nonempty set, is a con-t-nm, + is a con-t-conm, and \(\mathcal{Q}\), \(\mathcal{F}\), \(\mathcal{G}\) are neutrosophic sets on \(\varPhi \times \varPhi \times \varPhi \times (0, \infty )\), then it satisfies for all \(\nu , \varrho , \varsigma , \mathfrak{w}\in \varPhi \), and \(\mathfrak{s}, \wp >0\);

  1. (N2MS1)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )+\mathcal{F}(\nu , \varrho , \varsigma , \wp )+\mathcal{G}(\nu , \varrho , \varsigma , \wp )\leq 3\);

  2. (N2MS2)

    Let ν, ϱ of Φ, there exists an element ς of Φ such that \(0\leq \mathcal{Q}(\nu , \varrho , \varsigma , \wp )\leq 1\);

  3. (N2MS3)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )=1\) if at least two of ν, ϱ, ς are equal;

  4. (N2MS4)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )=\mathcal{Q}(\nu , \varsigma , \varrho , \wp )=\mathcal{Q}(\varrho , \varsigma , \nu , \wp )\);

  5. (N2MS5)

    \(\mathcal{Q}(\nu , \varrho , \mathfrak{w}, \wp )\ast \mathcal{Q}(\nu , \mathfrak{w}, \varsigma , \mathfrak{s})\ast \mathcal{Q}(\mathfrak{w}, \varrho , \varsigma , \mathfrak{h})\leq \mathcal{Q}(\nu , \varrho , \varsigma , \wp +\mathfrak{s}+\mathfrak{h})\);

  6. (N2MS6)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \cdot )\colon (0, \infty ) \rightarrow (0, 1]\) is continuous for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  7. (N2MS7)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )\leq 1\);

  8. (N2MS8)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )=0\) if at least two of ν, ϱ, ς are equal;

  9. (N2MS9)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )=\mathcal{F}(\nu , \varsigma , \varrho , \wp )=\mathcal{F}(\varrho , \varsigma , \nu , \wp )\);

  10. (N2MS10)

    \(\mathcal{F}(\nu , \varrho , \mathfrak{w}, \wp )+\mathcal{F}(\nu , \mathfrak{w}, \varsigma , \mathfrak{s})+\mathcal{F}(\mathfrak{w}, \varrho , \varsigma , \mathfrak{h})\geq \mathcal{F}(\nu , \varrho , \varsigma , \wp +\mathfrak{s}+\mathfrak{h})\);

  11. (N2MS11)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \cdot )\colon (0, \infty ) \rightarrow (0, 1]\) is continuous;

  12. (N2MS12)

    \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )\leq 1\);

  13. (N2MS13)

    \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )=0\) if at least two of ν, ϱ, ς are equal;

  14. (N2MS14)

    \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )=\mathcal{G}(\nu , \varsigma , \varrho , \wp )=\mathcal{G}(\varrho , \varsigma , \nu , \wp )\);

  15. (N2MS15)

    \(\mathcal{G}(\nu , \varrho , \mathfrak{w}, \wp )+\mathcal{G}(\nu , \mathfrak{w}, \varsigma , \mathfrak{s})+\mathcal{G}(\mathfrak{w}, \varrho , \varsigma , \mathfrak{h})\geq \mathcal{G}(\nu , \varrho , \varsigma , \wp +\mathfrak{s}+\mathfrak{h})\);

  16. (N2MS16)

    \(\mathcal{G}(\nu , \varrho , \varsigma , \cdot )\colon (0, \infty ) \rightarrow (0, 1]\) is continuous.

Here, the functions \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )\), \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )\), and \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )\) denotes the degree of nearness, the degree of nonnearness, and the degree of naturalness between ν, ϱ, and ς with respect to , respectively.

Now, we define the notion of ON2MS

Definition 2.7

The 6-tuple \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) is said to be a ON2MS if Φ is any nonempty set, is a con-t-nm, + is a con-t-conm, and \(\mathcal{Q}\), \(\mathcal{F}\), \(\mathcal{G}\) are neutrosophic sets on \(\varPhi \times \varPhi \times \varPhi \times (0, \infty )\), then it satisfies for all \(\nu , \varrho , \varsigma , \mathfrak{w}\in \varPhi \) and \(\mathfrak{s}, \wp >0\);

  1. (ON2MS1)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )+\mathcal{F}(\nu , \varrho , \varsigma , \wp )+\mathcal{G}(\nu , \varrho , \varsigma , \wp )\leq 3\) for all \(\nu , \varrho , \varsigma \in \varPhi \), \(\wp >0\) such that \(\nu \perp \varrho \perp \varsigma \);

  2. (ON2MS2)

    Let ν, ϱ of Φ, there exists an element ς of Φ such that \(0\leq \mathcal{Q}(\nu , \varrho , \varsigma , \wp )\leq 1\) such that \(\nu \perp \varrho \perp \varsigma \);

  3. (ON2MS3)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )=1\) if at least two of ν, ϱ, ς are equal such that \(\nu \perp \varrho \perp \varsigma \);

  4. (ON2MS4)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )=\mathcal{Q}(\nu , \varsigma , \varrho , \wp )=\mathcal{Q}(\varrho , \varsigma , \nu , \wp )\) for all ν, ϱ, ς in Φ such that \(\nu \perp \varrho \perp \varsigma \);

  5. (ON2MS5)

    \(\mathcal{Q}(\nu , \varrho , \mathfrak{w}, \wp )\ast \mathcal{Q}(\nu , \mathfrak{w}, \varsigma , \mathfrak{s})\ast \mathcal{Q}(\mathfrak{w}, \varrho , \varsigma , \mathfrak{h})\leq \mathcal{Q}(\nu , \varrho , \varsigma , \wp +\mathfrak{s}+\mathfrak{h})\) for all \(\nu , \varrho , \varsigma , \mathfrak{w}\in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  6. (ON2MS6)

    \(\mathcal{Q}(\nu , \varrho , \varsigma , \cdot )\colon (0, \infty ) \rightarrow (0, 1]\) is continuous for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  7. (ON2MS7)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )\leq 1\), for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  8. (ON2MS8)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )=0\) if at least two of ν, ϱ, ς are equal for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  9. (ON2MS9)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )=\mathcal{F}(\nu , \varsigma , \varrho , \wp )=\mathcal{F}(\varrho , \varsigma , \nu , \wp )\) for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  10. (ON2MS10)

    \(\mathcal{F}(\nu , \varrho , \mathfrak{w}, \wp )+\mathcal{F}(\nu , \mathfrak{w}, \varsigma , \mathfrak{s})+\mathcal{F}(\mathfrak{w}, \varrho , \varsigma , \mathfrak{h})\geq \mathcal{F}(\nu , \varrho , \varsigma , \wp +\mathfrak{s}+\mathfrak{h})\), for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  11. (ON2MS11)

    \(\mathcal{F}(\nu , \varrho , \varsigma , \cdot )\colon (0, \infty ) \rightarrow (0, 1]\) is continuous for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  12. (ON2MS12)

    \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )\leq 1\), for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  13. (ON2MS13)

    \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )=0\) if at least two of ν, ϱ, ς are equal for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  14. (ON2MS14)

    \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )=\mathcal{G}(\nu , \varsigma , \varrho , \wp )=\mathcal{G}(\varrho , \varsigma , \nu , \wp )\) for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  15. (ON2MS15)

    \(\mathcal{G}(\nu , \varrho , \mathfrak{w}, \wp )+\mathcal{G}(\nu , \mathfrak{w}, \varsigma , \mathfrak{s})+\mathcal{G}(\mathfrak{w}, \varrho , \varsigma , \mathfrak{h})\geq \mathcal{G}(\nu , \varrho , \varsigma , \wp +\mathfrak{s}+\mathfrak{h})\), for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \);

  16. (ON2MS16)

    \(\mathcal{G}(\nu , \varrho , \varsigma , \cdot )\colon (0, \infty ) \rightarrow (0, 1]\) is continuous for all \(\nu , \varrho , \varsigma \in \varPhi \) such that \(\nu \perp \varrho \perp \varsigma \).

Definition 2.8

Suppose \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) is a ON2MS. Suppose \(\mathfrak{h}\in (0, 1)\), \(\wp >0\) and \(\nu \in \varPhi \). The set \(\mathbb{B}(\nu , \mathfrak{h}, \wp )=\{\varrho \in \varPhi \colon \mathcal{Q}(\nu , \varrho , \varsigma , \wp )>1-\mathfrak{h}, \mathcal{F}(\nu , \varrho , \varsigma , \wp )<\mathfrak{h}\text{ and } \mathcal{G}(\nu , \varrho , \varsigma , \wp )<\mathfrak{h}\text{ for all } \varsigma \in \varPhi \}\) is called the open ball with center ν and radius \(\mathfrak{h}\) with respect to .

Definition 2.9

Suppose \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) is a ON2MS. Then, an open set of \(\mathcal{U}\subset \varPhi \) of its points is the center of a open ball contained in \(\mathcal{U}\). The open set in a N2MS \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) is represented by \(\mathbb{U}\).

Definition 2.10

Assume \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) is a ON2MS. A sequence \((\nu _{\mathfrak{n}})\) in Φ is a Cauchy one if for each \(\epsilon >0\) and each \(\wp >0\), there exist \(\mathfrak{n}^{*}\in \mathbb{N}\) such that \(\mathcal{Q}(\nu _{\mathfrak{n}}, \nu _{\mathfrak{m}}, \mathfrak{h}, \wp )>1-\mathfrak{h}\), \(\mathcal{F}(\nu _{\mathfrak{n}}, \nu _{ \mathfrak{m}}, \mathfrak{h}, \wp )<\mathfrak{h}\) and \(\mathcal{G}(\nu _{\mathfrak{n}}, \nu _{\mathfrak{m}}, \mathfrak{h}, \wp )<\mathfrak{h}\) for all \(\mathfrak{n}, \mathfrak{m}\geq \mathfrak{n}^{*}\) for all \(\mathfrak{h}\in \varPhi \).

Definition 2.11

Suppose \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) is a ON2MS. A sequence \(\nu =(\nu _{\imath})\) is convergent to \(\mathfrak{l}\in \varPhi \), with respect to the ON2MS if, for every \(\epsilon >0\) and \(\wp >0\), there exist \(\imath _{0}\in \mathbb{N}\) such that \(\mathcal{Q}(\nu _{\imath}, \mathfrak{l}, \mathfrak{h}, \wp )>1- \epsilon \), \(\mathcal{F}(\nu _{\imath}, \mathfrak{l}, \mathfrak{h}, \wp )<\epsilon \), and \(\mathcal{G}(\nu _{\imath}, \mathfrak{l}, \mathfrak{h}, \wp ) \epsilon \) for all \(\imath \geq \imath _{0}\) and for all \(\mathfrak{h}\in \varPhi \). In this case, we write \((\mathcal{Q}, \mathcal{F}, \mathcal{G})_{2}-\lim \nu =\mathfrak{l}\) (or) \(\nu _{\imath} \xrightarrow{(\mathcal{Q}, \mathcal{F}, \mathcal{G})_{2}}\mathfrak{l}\) as \(\imath \rightarrow \infty \).

Definition 2.12

Let \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) be a ON2MS. Define \(\tau _{(\mathcal{Q}, \mathcal{F}, \mathcal{G})_{2}}=\varUpsilon \subset \varPhi \colon \) for each \(\nu \in \varPhi \), there exist \(\wp >0\) and \(\mathfrak{h}\in (0, 1)\) such that \(\mathbb{B}(\nu , \mathfrak{h}, \wp )\subset \varPhi \}\). Then, \(\tau _{(\mathcal{Q}, \mathcal{F}, \mathcal{G})_{2}}\) is a topology on \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\).

Definition 2.13

Let \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) be a ON2MS. If each Cauchy sequence converges with respect to \(\varsigma (\mathcal{Q}, \mathcal{F}, \mathcal{G})_{2}\) then it is called complete.

Theorem 2.1

Every open ball \(\mathbb{B}(\nu , \mathfrak{h}, \wp )\) in ON2MS is an open set.

Proof

Consider \(\mathbb{B}(\nu , \mathfrak{h}, \wp )\) to be an open ball with center ν and radius \(\mathfrak{h}\). Assume \(\varrho \in \mathbb{B}(\nu , \mathfrak{h}, \wp )\). Therefore, \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )>1-\mathfrak{h}\), \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )<\mathfrak{h}\), and \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )<\mathfrak{h}\) for each \(\varsigma \in \Xi \). There exists \(\frac{\wp}{3}\in (0, \wp )\) such that \(\mathcal{Q}(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3})>1- \mathfrak{h}\), \(\mathcal{F}(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3})< \mathfrak{h}\), and \(\mathcal{G}(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3})< \mathfrak{h}\), due to \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )>1-\mathfrak{h}\). If we take \(\mathfrak{h}_{0}=\mathcal{Q}(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3})\), then for \(\mathfrak{h}_{0}>1-\mathfrak{h}\), \(\epsilon \in (0, 1)\) will exist such that \(\mathfrak{h}_{0}>1-\epsilon >1-\mathfrak{h}\). Given \(\mathfrak{h}_{0}\) and ϵ such that \(\mathfrak{h}_{0}>1-\epsilon \), then \(\{\mathfrak{h}_{\mathfrak{i}}\}^{6}_{\mathfrak{i}=1}\in (0, 1)\) such that \(\mathfrak{h}_{0}\ast \mathfrak{h}_{1}\ast \mathfrak{h}_{2}>1- \epsilon \), \((1-\mathfrak{h}_{0})+(1-\mathfrak{h}_{3})+(1-\mathfrak{h}_{4}) \leq \epsilon \), and \((1-\mathfrak{h}_{0})+(1-\mathfrak{h}_{5})+(1-\mathfrak{h}_{6})\leq \epsilon \). Choose \(\mathfrak{h}_{7}=\max \{\mathfrak{h}_{\mathfrak{i}}\}^{6}_{ \mathfrak{i}=1}\). Consider \(\mathbb{B}(\varrho , 1-\mathfrak{h}_{7}, \frac{\wp}{3})\). To show that \(\mathbb{B}(\varrho , 1-\mathfrak{h}_{7}, \frac{\wp}{3})\subset \mathbb{B}(\nu , \mathfrak{h}, \wp )\), consider \(\mathfrak{v}\in \mathbb{B}(\varrho , 1-\mathfrak{h}_{7}, \frac{\wp}{3})\), then \(\mathcal{Q}(\nu , \mathfrak{p}, \varsigma , \frac{\wp}{3})> \mathfrak{h}_{7}\), \(\mathcal{F}(\nu , \mathfrak{p}, \varsigma , \frac{\wp}{3})<\mathfrak{h}_{7}\), and \(\mathcal{Q}(\nu , \mathfrak{p}, \varsigma , \frac{\wp}{3})< \mathfrak{h}_{7}\) and \(\mathcal{F}(\mathfrak{p}, \varrho , \varsigma , \frac{\wp}{3})> \mathfrak{h}_{7}\), \(\mathcal{F}(\mathfrak{p}, \varrho , \varsigma , \frac{\wp}{3})<\mathfrak{h}_{7}\), and \(\mathcal{G}(\mathfrak{p}, \varrho , \varsigma , \frac{\wp}{3})< \mathfrak{h}_{7}\). Then,

$$\begin{aligned}& \begin{aligned} \mathcal{Q}(\nu , \varrho , \varsigma , \wp )&\geq \mathcal{Q} \biggl(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3} \biggr)\ast \mathcal{Q} \biggl(\nu , \mathfrak{p}, \varsigma , \frac{\wp}{3} \biggr)\ast \mathcal{Q} \biggl( \mathfrak{p}, \varrho , \varsigma , \frac{\wp}{3} \biggr) \\ &\geq \mathfrak{h}_{0}\ast \mathfrak{h}_{7}\ast \mathfrak{h}_{7}\geq \mathfrak{h}_{0}\ast \mathfrak{h}_{1}\ast \mathfrak{h}_{2}\geq 1- \epsilon >1- \mathfrak{h}, \end{aligned} \\& \begin{aligned} \mathcal{F}(\nu , \varrho , \varsigma , \wp )&\geq \mathcal{F} \biggl(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3} \biggr)\ast \mathcal{F} \biggl(\nu , \mathfrak{p}, \varsigma , \frac{\wp}{3} \biggr)\ast \mathcal{F} \biggl( \mathfrak{p}, \varrho , \varsigma , \frac{\wp}{3} \biggr) \\ &\geq (1-\mathfrak{h}_{0})+(1-\mathfrak{h}_{7})+(1- \mathfrak{h}_{7}) \\ &\geq (1-\mathfrak{h}_{0})+(1-\mathfrak{h}_{1})+(1- \mathfrak{h}_{2}) \leq \epsilon < \mathfrak{h}, \end{aligned} \\& \begin{aligned} \mathcal{G}(\nu , \varrho , \varsigma , \wp )&\geq \mathcal{Q} \biggl(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3} \biggr)\ast \mathcal{Q} \biggl(\nu , \mathfrak{p}, \varsigma , \frac{\wp}{3} \biggr)\ast \mathcal{Q} \biggl( \mathfrak{p}, \varrho , \varsigma , \frac{\wp}{3} \biggr) \\ &\leq (1-\mathfrak{h}_{0})+(1-\mathfrak{h}_{7})+(1- \mathfrak{h}_{7}) \\ &\leq (1-\mathfrak{h}_{0})+(1-\mathfrak{h}_{1})+(1- \mathfrak{h}_{2}) \leq \epsilon < \mathfrak{h}. \end{aligned} \end{aligned}$$

We obtain \(\mathfrak{v}\in \mathbb{B}(\nu , \mathfrak{h}, \wp )\) and \(\mathbb{B}(\varrho , 1-\mathfrak{h}_{7}, \frac{\wp}{3})\subset \mathbb{B}(\nu , \mathfrak{h}, \wp )\). □

Theorem 2.2

Every ON2MS is Hausdorff.

Proof

Let \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +)\) be a N2MS. Let ν and ϱ be points in Φ. Then, \(0<\mathcal{Q}(\nu , \varrho , \varsigma , \wp )<1\), \(0<\mathcal{F}( \nu , \varrho , \varsigma , \wp )<1\), and \(0<\mathcal{G}(\nu , \varrho , \varsigma , \wp )<1\) for every \(\varsigma \in \varPhi \). Put \(\mathfrak{h}_{1}=\mathcal{Q}(\nu , \varrho , \varsigma _{1}, \wp )\), \(1- \mathfrak{h}_{2}=\mathcal{F}(\nu , \varrho , \varsigma _{1}, \wp )\), and \(1-\mathfrak{h}_{3}=\mathcal{G}(\nu , \varrho , \varsigma _{1}, \wp )\), \(\mathfrak{h}_{4}=\mathcal{Q}(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3})\), \(1-\mathfrak{h}_{5}=\mathcal{F}(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3})\), \(1-\mathfrak{h}_{6}=\mathcal{G}(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3})\) and \(\mathfrak{h}=\max \{\mathfrak{h}_{1}, 1-\mathfrak{h}_{2}, 1- \mathfrak{h}_{3}, \mathfrak{h}_{4}, 1-\mathfrak{h}_{5}, 1- \mathfrak{h}_{6}\}\). For each \(\mathfrak{h}_{0}\in (\mathfrak{h}, 1)\) there exist \(\mathfrak{h}_{7}\) and \(\mathfrak{h}_{8}\) such that \(\mathfrak{h}_{4}\ast \mathfrak{h}_{7}\ast \mathfrak{h}_{7}\geq \mathfrak{h}_{0}\) and \((1-\mathfrak{h}_{5})\ast (1-\mathfrak{h}_{8})\ast (1-\mathfrak{h}_{8}) \leq 1-\mathfrak{h}_{0}\). Put \(\mathfrak{h}_{9}=\max \{\mathfrak{h}_{7}, \mathfrak{h}_{8}\}\) and consider the open balls \(\mathbb{B}(\nu , 1-\mathfrak{h}_{9}, \frac{\wp}{3})\) and \(\mathbb{B}(\varrho , 1-\mathfrak{h}_{9}, \frac{\wp}{3})\). Then, clearly

$$\begin{aligned} \varrho \mathbb{B} \biggl(\nu , 1-\mathfrak{h}_{9}, \frac{\wp}{3} \biggr)\cap \mathbb{B} \biggl(\varrho , 1- \mathfrak{h}_{9}, \frac{\wp}{3} \biggr)=\emptyset . \end{aligned}$$

If there is \(\mathfrak{p}\in \mathbb{B}(\nu , 1-\mathfrak{h}_{9}, \frac{\wp}{3}) \cap \mathbb{B}(\varrho , 1-\mathfrak{h}_{9}, \frac{\wp}{3})= \emptyset \), then

$$\begin{aligned} \mathfrak{h}_{1}&=\mathcal{Q}(\nu , \varrho , \varsigma _{1}, \wp ) \geq \mathcal{Q} \biggl(\nu , \mathfrak{p}, \varsigma _{1}, \frac{\wp}{3} \biggr) \ast \mathcal{Q} \biggl( \mathfrak{p}, \varrho , \varsigma _{1}, \frac{\wp}{3} \biggr) \ast \mathcal{Q} \biggl(\nu , \varrho , \mathfrak{p}, \frac{\wp}{3} \biggr) \\ &\geq \mathfrak{h}_{4}\ast \mathfrak{h}_{9}\ast \mathfrak{h}_{9}\geq \mathfrak{h}_{4}\ast \mathfrak{h}_{7}\ast \mathfrak{h}_{7}\geq \mathfrak{h}_{0}>\mathfrak{h}_{1} \end{aligned}$$

and similarly, \(1-\mathfrak{h}_{2}<1-\mathfrak{h}_{2}\), is its contrary. Hence, \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +)\) is Hausdorff. □

3 Main results

Lemma 1

If \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) is a N2MS. Then, \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )\) is nondecreasing, \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )\) is nonincreasing, and \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )\) is nonincreasing for all \(\nu , \varrho , \varsigma \in \varPhi \).

Proof

Let \(\mathfrak{s}, \wp >0\) be any points such that \(\wp >\mathfrak{s}\cdot \wp =\mathfrak{s}+\frac{\wp -\mathfrak{s}}{2}+ \frac{\wp -\mathfrak{s}}{2}\). Hence, we have

$$\begin{aligned} \mathcal{Y}(\nu , \varrho , \varsigma , \wp )&=\mathcal{Y} \biggl(\nu , \varrho , \varsigma , \mathfrak{s}+\frac{\wp -\mathfrak{s}}{2}+ \frac{\wp -\mathfrak{s}}{2} \biggr), \\ &\leq \mathcal{Y}(\nu , \varrho , \varsigma , \mathfrak{s})+ \mathcal{Y} \biggl( \nu , \varsigma , \varsigma , \frac{\wp -\mathfrak{s}}{2} \biggr)+ \mathcal{Y} \biggl( \varsigma , \varrho , \varsigma , \frac{\wp -\mathfrak{s}}{2} \biggr)=\mathcal{Y}(\nu , \varrho , \varsigma , \mathfrak{s}) \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\nu , \varrho , \varsigma , \wp )&=\psi \biggl(\nu , \varrho , \varsigma , \mathfrak{s}+\frac{\wp -\mathfrak{s}}{2}+ \frac{\wp -\mathfrak{s}}{2} \biggr), \\ &\leq \mathcal{G}(\nu , \varrho , \varsigma , \mathfrak{s})+\psi \biggl( \nu , \varsigma , \varsigma , \frac{\wp -\mathfrak{s}}{2} \biggr)+ \mathcal{G} \biggl( \varsigma , \varrho , \varsigma , \frac{\wp -\mathfrak{s}}{2} \biggr)=\mathcal{G}(\nu , \varrho , \varsigma , \mathfrak{s}). \end{aligned}$$

Similarly, \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )>\mathcal{Q}(\nu , \varrho , \varsigma , \mathfrak{s})\). □

From Lemma 1, let \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) be a ON2MS with the following conditions:

$$\begin{aligned} \lim_{\wp \rightarrow \infty}\mathcal{Q}(\nu , \varrho , \varsigma , \wp )=1, \qquad \lim_{\wp \rightarrow \infty}\mathcal{F}(\nu , \varrho , \varsigma , \wp )=0 \quad \text{and}\quad \lim_{\wp \rightarrow \infty}\mathcal{G}(\nu , \varrho , \varsigma , \wp )=0. \end{aligned}$$

Lemma 2

Let \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) be a ON2MS. If there exists \(\ell \in (0, 1)\) such that \(\mathcal{Q}(\nu , \varrho , \varsigma , \ell \wp +0)\geq \mathcal{Q}( \nu , \varrho , \varsigma , \wp )\), \(\mathcal{F}(\nu , \varrho , \varsigma , \ell \wp +0)\leq \mathcal{F}(\nu , \varrho , \varsigma , \wp )\), and \(\mathcal{G}(\nu , \varrho , \varsigma , \ell \wp +0)\leq \mathcal{G}( \nu , \varrho , \varsigma , \wp )\) for all \(\nu , \varrho , \varsigma \in \varPhi \) with \(\varsigma \neq \nu \), \(\varsigma \neq \varrho \), and \(\wp >0\), then \(\nu =\varrho \).

Proof

Since

$$\begin{aligned}& \mathcal{Q}(\nu , \varrho , \varsigma , \wp )\geq \mathcal{Q}(\nu , \varrho , \varsigma , \ell \wp +0)\geq \mathcal{Q}(\nu ,\varrho , \varsigma , \wp ), \\& \mathcal{F}(\nu , \varrho , \varsigma , \wp )\leq \mathcal{F}(\nu , \varrho , \varsigma , \ell \wp +0)\leq \mathcal{F}(\nu , \varrho , \varsigma , \wp ) \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\nu , \varrho , \varsigma , \wp )\leq \mathcal{G}(\nu , \varrho , \varsigma , \ell \wp +0)\leq \mathcal{G}(\nu , \varrho , \varsigma , \wp ), \end{aligned}$$

for all \(\wp >0\), \(\mathcal{Q}(\nu , \varrho , \varsigma , \cdot )\), \(\mathcal{F}( \nu , \varrho , \varsigma , \cdot )\), and \(\mathcal{G}(\nu , \varrho , \varsigma , \cdot )\) are constant. Since \(\lim_{\wp \rightarrow \infty}\mathcal{Q}(\nu , \varrho , \varsigma , \wp )=1\), \(\lim_{\wp \rightarrow \infty}\mathcal{F}(\nu , \varrho , \varsigma , \wp )=0\) and \(\lim_{\wp \rightarrow \infty}\mathcal{G}(\nu , \varrho , \varsigma , \wp )=0\), then \(\mathcal{Q}(\nu , \varrho , \varsigma , \wp )=1\), \(\mathcal{F}(\nu , \varrho , \varsigma , \wp )=0\) and \(\mathcal{G}(\nu , \varrho , \varsigma , \wp )=0\). Consequently, for all \(\wp >0\). Hence, \(\nu =0\) because \(\varsigma \neq \nu \), \(\varsigma \neq \varrho \). □

Lemma 3

Let \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) be a ON2MS and let \(\lim_{\wp \rightarrow \infty}\nu _{\mathfrak{n}}=\nu \), \(\lim_{\wp \rightarrow \infty}\varrho _{\mathfrak{n}}=\varrho \). Then, it satisfies for all \(\tau \in \varPhi \) and \(\wp \geq 0\):

  1. (1)
    $$\begin{aligned}& \lim_{\mathfrak{n}\rightarrow \infty}\inf \mathcal{Q}(\nu _{ \mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\geq \mathcal{Q}( \nu , \varrho , \tau , \wp ), \\& \lim_{\mathfrak{n}\rightarrow \infty} \sup \mathcal{F}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\leq \mathcal{F}(\nu , \varrho , \tau , \wp ) \end{aligned}$$

    and

    $$\begin{aligned} \lim_{\mathfrak{n}\rightarrow \infty}\sup \mathcal{G}(\nu _{ \mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\leq \mathcal{G}( \nu , \varrho , \tau , \wp ). \end{aligned}$$
  2. (2)
    $$\begin{aligned}& \mathcal{Q}(\nu , \varrho , \tau , \wp )\geq \lim_{\mathfrak{n} \rightarrow \infty}\sup \mathcal{Q}(\nu _{\mathfrak{n}}, \varrho _{ \mathfrak{n}}, \tau , \wp ), \\& \mathcal{F}(\nu , \varrho , \tau , \wp +0)\leq \lim_{\mathfrak{n}\rightarrow \infty} \inf \mathcal{F}(\nu _{ \mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp ) \end{aligned}$$

    and

    $$\begin{aligned} \mathcal{G}(\nu , \varrho , \tau , \wp +0)\leq \lim_{\mathfrak{n} \rightarrow \infty} \inf \mathcal{G}(\nu _{\mathfrak{n}}, \varrho _{ \mathfrak{n}}, \tau , \wp ). \end{aligned}$$

Proof

For all \(\tau \in \varPhi \) and \(\wp \geq 0\), we have

$$\begin{aligned} \begin{aligned} \mathcal{Q}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\geq{}& \mathcal{Q}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \nu , \wp _{1})\ast \mathcal{Q}(\nu _{\mathfrak{n}}, \nu , \tau , \wp _{2}) \ast \mathcal{Q}(\nu , \varrho _{\mathfrak{n}}, \tau , \wp ), \quad \wp _{1}+\wp _{2}=0 \\ \geq{}& \mathcal{Q}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \nu , \wp _{1})\ast \mathcal{Q}(\nu _{\mathfrak{n}}, \nu , \tau , \wp _{2}) \ast \mathcal{Q}(\nu , \varrho _{\mathfrak{n}}, \varrho , \wp _{3}) \\ &{}\ast \mathcal{Q}(\nu , \varrho , \tau , \wp _{4})\ast \mathcal{Q}( \varrho , \varrho _{\mathfrak{n}}, \tau , \wp ), \quad \wp _{3}+\wp _{4}=0, \end{aligned} \end{aligned}$$

which implies \(\lim_{\mathfrak{n}\rightarrow \infty}\mathcal{Q}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\geq 1\ast 1\ast 1\ast \mathcal{Q}(\nu , \varrho , \tau , \wp )\ast 1=\mathcal{Q}(\nu , \varrho , \tau , \wp )\), also

$$\begin{aligned} \mathcal{F}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\leq{}& \mathcal{F}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \nu , \wp _{1})+\mathcal{F}(\nu _{\mathfrak{n}}, \nu , \tau , \wp _{2})+ \mathcal{F}(\nu , \varrho _{\mathfrak{n}}, \tau , \wp ), \quad \wp _{1}+ \wp _{2}=0 \\ \leq{}& \mathcal{F}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \nu , \wp _{1})+\mathcal{F}(\nu _{\mathfrak{n}}, \nu , \tau , \wp _{2})+ \mathcal{F}(\nu , \varrho _{\mathfrak{n}}, \varrho , \wp _{3}) \\ &{}+\mathcal{F}(\nu , \varrho , \tau , \wp _{4})+\mathcal{F}(\varrho , \varrho _{\mathfrak{n}}, \tau , \wp ), \quad \wp _{3}+\wp _{4}=0, \end{aligned}$$

which implies

$$\begin{aligned} \lim_{\mathfrak{n}\rightarrow \infty}\sup \mathcal{F}(\nu _{ \mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\leq 0+0+0+ \mathcal{F}(\nu , \varrho , \tau , \wp )+0=\mathcal{F}(\nu , \varrho , \tau , \wp ) \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\leq{}& \mathcal{G}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \nu , \wp _{1})+\mathcal{G}(\nu _{\mathfrak{n}}, \nu , \tau , \wp _{2})+ \mathcal{G}(\nu , \varrho _{\mathfrak{n}}, \tau , \wp ), \quad \wp _{1}+ \wp _{2}=0 \\ \leq{}& \mathcal{G}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \nu , \wp _{1})+\mathcal{G}(\nu _{\mathfrak{n}}, \nu , \tau , \wp _{2})+ \mathcal{G}(\nu , \varrho _{\mathfrak{n}}, \varrho , \wp _{3}) \\ &{}+\mathcal{G}(\nu , \varrho , \tau , \wp _{4})+\mathcal{G}(\varrho , \varrho _{\mathfrak{n}}, \tau , \wp _{4}), \quad \wp _{3}+\wp _{4}=0, \end{aligned}$$

which implies \(\lim_{\mathfrak{n}\rightarrow \infty}\sup \mathcal{G}(\nu _{ \mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\leq 0+0+0+ \mathcal{G}(\nu , \varrho , \tau , \wp )+0=\mathcal{G}(\nu , \varrho , \tau , \wp )\).

Let \(\epsilon >0\) be given. For all \(\tau \in \nu \) and \(\wp >0\), we have

$$\begin{aligned} \mathcal{Q}(\nu , \varrho , \tau , \wp +2\epsilon )\geq{}& \mathcal{Q} \biggl( \nu , \varrho , \nu _{\mathfrak{n}}, \frac{\epsilon}{2} \biggr)\ast \mathcal{Q} \biggl(\nu , \nu _{\mathfrak{n}}, \tau , \frac{\epsilon}{2} \biggr) \ast \mathcal{Q}(\nu _{\mathfrak{n}}, \varrho , \tau , \wp +\epsilon ) \\ \geq{}& \mathcal{Q} \biggl(\nu , \varrho , \nu _{\mathfrak{n}}, \frac{\epsilon}{2} \biggr)\ast \mathcal{Q} \biggl(\nu , \nu _{\mathfrak{n}}, \tau , \frac{\epsilon}{2} \biggr)\ast \mathcal{Q} \biggl(\nu _{\mathfrak{n}}, \varrho , \varrho _{\mathfrak{n}}, \frac{\epsilon}{2} \biggr) \\ &{}\ast \mathcal{Q}( \nu _{ \mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp )\ast \mathcal{Q} \biggl( \varrho _{\mathfrak{n}}, \varrho , \tau , \frac{\epsilon}{2} \biggr). \end{aligned}$$

Consequently,

$$\begin{aligned} \mathcal{Q}(\nu , \varrho , \tau , \wp +2\epsilon )\geq \lim _{ \mathfrak{n}\rightarrow \infty}\sup \mathcal{Q}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp ). \end{aligned}$$

Letting \(\epsilon \rightarrow 0\), we have

$$\begin{aligned} \mathcal{Q}(\nu , \varrho , \tau , \wp +0)\geq \lim_{\mathfrak{n} \rightarrow \infty} \sup \mathcal{Q}(\nu _{\mathfrak{n}}, \varrho _{ \mathfrak{n}}, \tau , \wp ). \end{aligned}$$

Also, we have

$$\begin{aligned} \mathcal{F}(\nu , \varrho , \tau , \wp +2\epsilon )\leq{}& \mathcal{F} \biggl( \nu , \varrho , \nu _{\mathfrak{n}}, \frac{\epsilon}{2} \biggr)\diamond \mathcal{F} \biggl(\nu , \nu _{\mathfrak{n}}, \tau , \frac{\epsilon}{2} \biggr) \diamond \mathcal{F}(\nu _{\mathfrak{n}}, \varrho , \tau , \wp + \epsilon ) \\ \geq{}& \mathcal{F} \biggl(\nu , \varrho , \nu _{\mathfrak{n}}, \frac{\epsilon}{2} \biggr)\diamond \mathcal{F} \biggl(\nu , \nu _{\mathfrak{n}}, \tau , \frac{\epsilon}{2} \biggr)\diamond \mathcal{F}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp ) \\ &{}\diamond \mathcal{F} \biggl(\varrho _{\mathfrak{n}}, \varrho , \tau , \frac{\epsilon}{2} \biggr)\diamond \mathcal{F}(\nu _{\mathfrak{n}}, \varrho _{ \mathfrak{n}}, \tau , \wp )\diamond \mathcal{F} \biggl(\varrho _{ \mathfrak{n}}, \varrho , \tau , \frac{\epsilon}{2} \biggr). \end{aligned}$$

Consequently,

$$\begin{aligned} \mathcal{F}(\nu , \varrho , \tau , \wp +2\epsilon )\leq \lim _{ \mathfrak{n}\rightarrow \infty}\inf \mathcal{F}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp ). \end{aligned}$$

Letting \(\epsilon \rightarrow 0\), we have

$$\begin{aligned} \mathcal{F}(\nu , \varrho , \tau , \wp +0)\leq \lim_{\mathfrak{n} \rightarrow \infty} \inf \mathcal{F}(\nu _{\mathfrak{n}}, \varrho _{ \mathfrak{n}}, \tau , \wp ) \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\nu , \varrho , \tau , \wp +2\epsilon )\leq{}& \mathcal{G} \biggl( \nu , \varrho , \nu _{\mathfrak{n}}, \frac{\epsilon}{2} \biggr)\diamond \mathcal{G} \biggl(\nu , \nu _{\mathfrak{n}}, \tau , \frac{\epsilon}{2} \biggr) \diamond \mathcal{G}(\nu _{\mathfrak{n}}, \varrho , \tau , \wp + \epsilon ) \\ \geq{}& \mathcal{G} \biggl(\nu , \varrho , \nu _{\mathfrak{n}}, \frac{\epsilon}{2} \biggr)\diamond \mathcal{G} \biggl(\nu , \nu _{\mathfrak{n}}, \tau , \frac{\epsilon}{2} \biggr)\diamond \mathcal{G} \biggl(\nu _{\mathfrak{n}}, \varrho , \varrho _{\mathfrak{n}}, \frac{\epsilon}{2} \biggr)\diamond \mathcal{G}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp ) \\ &{}\diamond \mathcal{G} \biggl(\varrho _{\mathfrak{n}}, \varrho , \tau , \frac{\epsilon}{2} \biggr)\diamond \mathcal{G}(\nu _{\mathfrak{n}}, \varrho _{ \mathfrak{n}}, \tau , \wp )\diamond \mathcal{G} \biggl(\varrho _{ \mathfrak{n}}, \varrho , \tau , \frac{\epsilon}{2} \biggr). \end{aligned}$$

Consequently,

$$\begin{aligned} \mathcal{G}(\nu , \varrho , \tau , \wp +2\epsilon )\leq \lim _{ \mathfrak{n}\rightarrow \infty}\inf \mathcal{G}(\nu _{\mathfrak{n}}, \varrho _{\mathfrak{n}}, \tau , \wp ). \end{aligned}$$

Letting \(\epsilon \rightarrow 0\), we have

$$\begin{aligned} \mathcal{G}(\nu , \varrho , \tau , \wp +0)\leq \lim_{\mathfrak{n} \rightarrow \infty} \inf \mathcal{G}(\nu _{\mathfrak{n}}, \varrho _{ \mathfrak{n}}, \tau , \wp ). \end{aligned}$$

 □

Lemma 4

Let \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) be a N2MS. Let ϒ and Λ be a continuous self-map on Φ and \([\varUpsilon , \varLambda ]\) are compatible. Let \(\nu _{\mathfrak{n}}\) be a sequence in Φ such that \(\varUpsilon \nu _{\mathfrak{n}}\rightarrow \omega \) and \(\varLambda \nu _{\mathfrak{n}}\rightarrow \omega \). Then, \(\varUpsilon \varLambda \nu _{\mathfrak{n}}\rightarrow \varLambda \omega \).

Proof

Since ϒ, Λ are compatible maps, \(\varUpsilon \varLambda \nu _{\mathfrak{n}}\rightarrow \varUpsilon \omega \), \(\varLambda \varUpsilon \nu _{\mathfrak{n}}\rightarrow \varLambda \omega \) and so, \(\mathcal{Q}(\varUpsilon \varLambda \nu _{\mathfrak{n}}, \varUpsilon \omega , \tau , \frac{\wp}{3})\rightarrow 1\), \(\mathcal{F}(\varLambda \varUpsilon \nu _{\mathfrak{n}}, \varLambda \omega , \tau , \frac{\wp}{3})\rightarrow 0\) and \(\mathcal{G}(\varLambda \varUpsilon \nu _{\mathfrak{n}}, \varLambda \omega , \tau , \frac{\wp}{3})\rightarrow 0\) for all \(\tau \in \varPhi \) and \(\wp >0\),

$$\begin{aligned} \mathcal{Q}(\varUpsilon \varLambda \nu _{\mathfrak{n}}, \varLambda \omega , \tau , \wp )\geq{}& \mathcal{Q} \biggl(\varUpsilon \varLambda \nu _{ \mathfrak{n}}, \varLambda \omega , \varLambda \varUpsilon \nu _{ \mathfrak{n}}, \frac{\wp}{3} \biggr)\ast \mathcal{Q} \biggl( \varUpsilon \varLambda \nu _{\mathfrak{n}}, \varLambda \varUpsilon \nu _{\mathfrak{n}}, \tau , \frac{\wp}{3} \biggr) \\ &{}\ast \mathcal{Q} \biggl(\varLambda \varUpsilon \nu _{ \mathfrak{n}}, \varLambda \omega , \tau , \frac{\wp}{3} \biggr) \\ \geq{}& \mathcal{Q} \biggl(\varLambda \varUpsilon \nu _{\mathfrak{n}}, \varLambda \omega , \varUpsilon \varLambda \nu _{\mathfrak{n}}, \frac{\wp}{3} \biggr) \ast \mathcal{Q} \biggl(\varLambda \varUpsilon \nu _{ \mathfrak{n}}, \omega \varLambda \nu _{\mathfrak{n}}, \tau , \frac{\wp}{3} \biggr) \\ &{}\ast \mathcal{Q} \biggl(\varLambda \varUpsilon \nu _{ \mathfrak{n}}, \varLambda \omega , \tau , \frac{\wp}{3} \biggr)\rightarrow 1. \end{aligned}$$

Also, we have

$$\begin{aligned} \mathcal{F}(\varUpsilon \varLambda \nu _{\mathfrak{n}}, \varLambda \omega , \tau , \wp )\leq{}& \mathcal{F} \biggl(\varUpsilon \varLambda \nu _{ \mathfrak{n}}, \varLambda \omega , \varLambda \varUpsilon \nu _{ \mathfrak{n}}, \frac{\wp}{3} \biggr)+d\mathcal{F} \biggl(\varUpsilon \varLambda \nu _{\mathfrak{n}}, \varLambda \varUpsilon \nu _{\mathfrak{n}}, \tau , \frac{\wp}{3} \biggr) \\ &{}+\mathcal{F} \biggl(\varLambda \varUpsilon \nu _{ \mathfrak{n}}, \varLambda \omega , \tau , \frac{\wp}{3} \biggr) \\ \leq{}& \mathcal{F} \biggl(\varLambda \varUpsilon \nu _{\mathfrak{n}}, \varLambda \omega , \varUpsilon \varLambda \nu _{\mathfrak{n}}, \frac{\wp}{3} \biggr)+\mathcal{F} \biggl(\varLambda \varUpsilon \nu _{\mathfrak{n}}, \omega \varLambda \nu _{\mathfrak{n}}, \tau , \frac{\wp}{3} \biggr) \\ &{}+ \mathcal{F} \biggl(\varLambda \Omega \nu _{\mathfrak{n}}, \varLambda \omega , \tau , \frac{\wp}{3} \biggr)\rightarrow 0. \end{aligned}$$

For all \(\tau \in \Xi \) and \(\wp >0\), and

$$\begin{aligned} \mathcal{G}(\varUpsilon \varLambda \nu _{\mathfrak{n}}, \varLambda \omega , \tau , \wp )\leq{}& \mathcal{G} \biggl(\varUpsilon \varLambda \nu _{ \mathfrak{n}}, \varLambda \omega , \varLambda \varUpsilon \nu _{ \mathfrak{n}}, \frac{\wp}{3} \biggr)+\mathcal{G} \biggl(\varUpsilon \varLambda \nu _{ \mathfrak{n}}, \varLambda \varUpsilon \nu _{\mathfrak{n}}, \tau , \frac{\wp}{3} \biggr) \\ &{}+\mathcal{G} \biggl(\varLambda \varUpsilon \nu _{\mathfrak{n}}, \varLambda \omega , \tau , \frac{\wp}{3} \biggr) \\ \leq{}& \mathcal{G} \biggl(\varLambda \varUpsilon \nu _{\mathfrak{n}}, \varLambda \omega , \varUpsilon \varLambda \nu _{\mathfrak{n}}, \frac{\wp}{3} \biggr)+\mathcal{G} \biggl(\varLambda \varUpsilon \nu _{\mathfrak{n}}, \omega \varLambda \nu _{\mathfrak{n}}, \tau , \frac{\wp}{3} \biggr) \\ &{}+ \mathcal{G} \biggl(\varLambda \varUpsilon \nu _{\mathfrak{n}}, \varLambda \omega , \tau , \frac{\wp}{3} \biggr)\rightarrow 0. \end{aligned}$$

For all \(\tau \in \varPhi \) and \(\wp >0\). Hence, \(\varUpsilon \varLambda \nu _{\mathfrak{n}}\rightarrow \varLambda \omega \). □

Theorem 3.1

Let \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) be an orthogonal complete neutrosophic 2-metric space with “” as con-t-nm and “+” as con-t-conm. Let Θ and Γ be continuous self-mappings on Φ. Then, Θ and Γ have a unique common fixed point in Φ if and only if there exist two self-mappings ϒ, Λ of Φ satisfying:

  1. (1)

    \(\varUpsilon \varPhi \subset \varGamma \varPhi \), \(\varLambda \varPhi \subset \varTheta \varPhi \);

  2. (2)

    The pair \(\{\varUpsilon , \varTheta \}\) and \(\{\varLambda , \varGamma \}\) are compatible;

  3. (3)

    ϒ, Λ, Θ, Γ be -preserving;

  4. (4)

    There exists \(\ell \in (0, 1)\) such that for every \(\nu , \varrho , \varsigma \in \varPhi \) and \(\wp >0\),

    $$\begin{aligned}& \begin{aligned} \mathcal{Q}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )\geq{}& \min \bigl\{ \mathcal{Q}(\varTheta \nu , \varGamma \nu , \varsigma , \wp ), \mathcal{Q}(\varUpsilon \nu , \varTheta \nu , \varsigma , \wp ), \\ &{} \mathcal{Q}( \varLambda \varrho , \varGamma \varrho , \varsigma , \wp ), \mathcal{Q}( \varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp ) \bigr\} , \end{aligned} \\& \begin{aligned} \mathcal{F}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )\leq{}& \max \bigl\{ \mathcal{F}(\varTheta \nu , \varGamma \nu , \varsigma , \wp ), \mathcal{F}(\varUpsilon \nu , \varTheta \nu , \varsigma , \wp ), \\ &{}\mathcal{F}( \varLambda \varrho , \varGamma \varrho , \varsigma , \wp ), \mathcal{F}( \varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp ) \bigr\} , \end{aligned} \\& \begin{aligned} \mathcal{G}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )\leq{}& \max \bigl\{ \mathcal{F}(\varTheta \nu , \varGamma \nu , \varsigma , \wp ), \mathcal{F}(\varUpsilon \nu , \varTheta \nu , \varsigma , \wp ), \\ &{}\mathcal{F}( \varLambda \varrho , \varGamma \varrho , \varsigma , \wp ), \mathcal{F}( \varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp ) \bigr\} . \end{aligned} \end{aligned}$$

Then ϒ, Λ, Θ, and Γ have a unique common fixed point in Φ.

Proof

Suppose Θ and Γ have a unique common fixed point, say \(\mathfrak{r}\in \varPhi \). Define \(\varUpsilon \colon \varPhi \rightarrow \varPhi \) by \(\varUpsilon \nu =\mathfrak{r}\) for all \(\nu \in \varPhi \) and \(\varLambda \colon \varPhi \rightarrow \varPhi \) by \(\varLambda \nu =\mathfrak{r}\) for all \(\nu \in \varPhi \). Then, it satisfies(1)–(4)

Conversely, if there exist two self-mappings ϒ, Λ of ν this satisfies (1)–(4). From (1) if two sequences are \(\nu _{\mathfrak{n}}\) and \(\varrho _{\mathfrak{n}}\) of Φ such that \(\varrho _{2\mathfrak{n}-1}=\varGamma \nu _{2\mathfrak{n}-1}\) and \(\nu _{2\mathfrak{n}-1}=\varTheta \nu _{2\mathfrak{n}}=\varLambda \nu _{2\mathfrak{n}-1}\) for \(\mathfrak{n}=1, 2, 3\). Putting \(\nu =\nu _{2\mathfrak{n}}\) and \(\nu =\nu _{2\mathfrak{n}+1}\) in condition (4), for all \(\varsigma \in \varPhi \) and \(\wp >0\).

Since \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) is an orthogonal complete neutrosophic 2-metric space there exists \(\nu _{0}\in \varPhi \), such that

$$\begin{aligned}& \nu _{0}\perp \varrho , \quad \text{for all } \varrho \in \varPhi , \\& \text{i.e.},\ \nu _{0}\perp \varUpsilon \nu _{0} \quad \text{take} \\& \nu _{\mathfrak{n}}=\varUpsilon ^{\mathfrak{n}}\nu _{0}= \varUpsilon \nu _{\mathfrak{n}-1}, \quad \text{for all } \mathfrak{n}\in \mathcal{F}. \end{aligned}$$

Since ϒ is -preserving, \(\{\nu _{\mathfrak{n}}\}\) is an O-sequence. Now, since ϒ is an -contraction, we can obtain

$$\begin{aligned}& \begin{aligned} \mathcal{Q}(\varrho \nu _{2\mathfrak{n}+1}, \varrho \nu _{2 \mathfrak{n}+2}, \varsigma , \ell \wp )={}&\mathcal{Q}(\varUpsilon \nu _{2 \mathfrak{n}}, \varLambda \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \\ \geq {}&\min \bigl\{ \mathcal{Q}(\varTheta \nu _{2\mathfrak{n}}, \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{Q}(\varUpsilon \nu _{2\mathfrak{n}}, \varTheta \nu _{2\mathfrak{n}}, \varsigma , \wp ), \\ &{}\mathcal{Q}(\varLambda \varrho _{2\mathfrak{n}+1}, \varGamma \nu _{2 \mathfrak{n}+1}, \varsigma , \wp ), \mathcal{Q}(\varUpsilon \nu _{2 \mathfrak{n}}, \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ) \bigr\} \\ \geq {}&\min \bigl\{ \mathcal{Q}(\varrho \nu _{2\mathfrak{n}}, \varrho \nu _{2 \mathfrak{n}+1}, \varsigma , \ell \wp ), \mathcal{Q}(\varrho \nu _{2 \mathfrak{n}+1}, \varrho \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \bigr\} , \end{aligned} \\& \begin{aligned} \mathcal{F}(\varrho \nu _{2\mathfrak{n}+1}, \varrho \nu _{2 \mathfrak{n}+2}, \varsigma , \ell \wp )={}&\mathcal{F}(\varUpsilon \nu _{2 \mathfrak{n}}, \varLambda \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \\ \leq {}&\max \bigl\{ \mathcal{F}(\varTheta \nu _{2\mathfrak{n}}, \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{F}(\varUpsilon \nu _{2\mathfrak{n}}, \varTheta \nu _{2\mathfrak{n}}, \varsigma , \wp ), \\ &{}\mathcal{F}(\varLambda \varrho _{2\mathfrak{n}+1}, \varGamma \nu _{2 \mathfrak{n}+1}, \varsigma , \wp ), \mathcal{F}(\varUpsilon \nu _{2 \mathfrak{n}}, \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ) \bigr\} \\ \leq {}&\max \bigl\{ \mathcal{F}(\varrho \nu _{2\mathfrak{n}}, \varrho \nu _{2 \mathfrak{n}+1}, \varsigma , \ell \wp ), \mathcal{F}(\varrho \nu _{2 \mathfrak{n}+1}, \varrho \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \bigr\} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\varrho \nu _{2\mathfrak{n}+1}, \varrho \nu _{2 \mathfrak{n}+2}, \varsigma , \ell \wp )={}&\mathcal{G}(\varUpsilon \nu _{2 \mathfrak{n}}, \varLambda \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \\ \leq {}&\max \bigl\{ \mathcal{G}(\varTheta \nu _{2\mathfrak{n}}, \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{G}(\varUpsilon \nu _{2\mathfrak{n}}, \varTheta \nu _{2\mathfrak{n}}, \varsigma , \wp ), \\ &{}\mathcal{G}(\varLambda \varrho _{2\mathfrak{n}+1}, \varGamma \nu _{2 \mathfrak{n}+1}, \varsigma , \wp ), \mathcal{G}(\varUpsilon \nu _{2 \mathfrak{n}}, \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ) \bigr\} \\ \leq {}&\max \bigl\{ \mathcal{G}(\varrho \nu _{2\mathfrak{n}}, \varrho \nu _{2 \mathfrak{n}+1}, \varsigma , \ell \wp ), \mathcal{G}(\varrho \nu _{2 \mathfrak{n}+1}, \varrho \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \bigr\} , \end{aligned}$$

which implies that

$$\begin{aligned}& \mathcal{Q}(\varrho \nu _{2\mathfrak{n}+1}, \varrho \nu _{2 \mathfrak{n}+2}, \varsigma , \ell \wp )\geq \mathcal{Q}(\varrho \nu _{2 \mathfrak{n}+1}, \varrho \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ), \\& \mathcal{F}(\varrho \nu _{2\mathfrak{n}+1}, \varrho \nu _{2 \mathfrak{n}+2}, \varsigma , \ell \wp )\leq \mathcal{F}(\varrho \nu _{2 \mathfrak{n}+1}, \varrho \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\varrho \nu _{2\mathfrak{n}+1}, \varrho \nu _{2 \mathfrak{n}+2}, \varsigma , \ell \wp )&\leq \mathcal{G}(\varrho \nu _{2 \mathfrak{n}+1}, \varrho \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ). \end{aligned}$$

By using Lemma 1 and letting \(\nu =\nu _{2\mathfrak{n}+1}\) and \(\varrho =\nu _{2\mathfrak{n}+1}\) in condition (4), we have

$$\begin{aligned}& \mathcal{Q}(\varrho _{2\mathfrak{n}+2}, \varrho _{2\mathfrak{n}+3}, \varsigma , \ell \wp )\geq \mathcal{Q}(\varrho _{2\mathfrak{n}+1}, \varrho _{2\mathfrak{n}+1}, \varsigma , \wp ), \\& \mathcal{F}(\varrho _{2\mathfrak{n}+2}, \varrho _{2\mathfrak{n}+3}, \varsigma , \wp )\leq \mathcal{F}(\varrho _{2\mathfrak{n}+1}, \varrho _{2\mathfrak{n}+1}, \varsigma , \wp ) \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\varrho _{2\mathfrak{n}+2}, \varrho _{2\mathfrak{n}+3}, \varsigma , \wp )&\leq \mathcal{G}(\varrho _{2\mathfrak{n}+1}, \varrho _{2\mathfrak{n}+1}, \varsigma , \wp ), \end{aligned}$$

for all \(\varsigma \in \varPhi \) and \(\wp >0\).

In general, we obtain that for all \(\varsigma \in \varPhi \) and \(\wp >0\) and \(\mathfrak{n}=1, 2, 3, \ldots\) .

$$\begin{aligned}& \begin{aligned} &\mathcal{Q}(\varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \varsigma , \ell \wp )\geq \mathcal{Q}(\varrho _{\mathfrak{n}-1}, \varrho _{\mathfrak{n}}, \varsigma , \wp ), \\ &\mathcal{F}(\varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \varsigma , \ell \wp )\leq \mathcal{Q}(\varrho _{\mathfrak{n}-1}, \varrho _{\mathfrak{n}}, \varsigma , \wp ) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \varsigma , \ell \wp )\leq \mathcal{G}(\varrho _{\mathfrak{n}-1}, \varrho _{\mathfrak{n}}, \varsigma , \wp ). \end{aligned}$$

Thus, for all \(\varsigma \in \varPhi \) and \(\wp >0\), and \(\mathfrak{n}=1, 2, 3, \ldots \)

$$\begin{aligned}& \mathcal{Q}(\varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \varsigma , \ell \wp )\geq \mathcal{Q} \biggl(\varrho _{0}, \varrho _{1}, \varsigma , \frac{\wp}{\ell ^{\mathfrak{n}}} \biggr), \end{aligned}$$
(1)
$$\begin{aligned}& \mathcal{F}(\varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \varsigma , \ell \wp )\leq \mathcal{F} \biggl(\varrho _{0}, \varrho _{1}, \varsigma , \frac{\wp}{\ell ^{\mathfrak{n}}} \biggr), \end{aligned}$$
(2)
$$\begin{aligned}& \mathcal{G}(\varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \varsigma , \ell \wp )\leq \mathcal{G} \biggl(\varrho _{0}, \varrho _{1}, \varsigma , \frac{\wp}{\ell ^{\mathfrak{n}}} \biggr). \end{aligned}$$
(3)

To show that \(\{\varrho _{\mathfrak{n}}\}\) is a Cauchy sequence in Φ, let \(\mathfrak{m}>\mathfrak{n}\). Then, for all \(\varsigma \in \varPhi \) and \(\wp >\nu \), we obtain

$$\begin{aligned} \begin{aligned} \mathcal{Q}(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}}, \varsigma , \wp )\geq{}& \mathcal{Q} \biggl(\varrho _{\mathfrak{m}}, \varrho _{ \mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \frac{\wp}{3} \biggr)\ast \mathcal{Q} \biggl( \varrho _{\mathfrak{n}+1}, \varrho _{\mathfrak{n}}, \varsigma , \frac{\wp}{3} \biggr)\ast \mathcal{Q} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}+1}, \varsigma , \frac{\wp}{3} \biggr) \\ \geq{}& \mathcal{Q} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \frac{\wp}{3} \biggr)\ast \mathcal{Q} \biggl( \varrho _{ \mathfrak{n}+1}, \varrho _{\mathfrak{n}}, \varsigma , \frac{\wp}{3} \biggr) \ast \mathcal{Q} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}+1}, \varrho _{\mathfrak{n}+1}, \frac{\wp}{3} \biggr) \\ &{}\ast \mathcal{Q} \biggl(\varrho _{\mathfrak{n}+2}, \varrho _{\mathfrak{n}+1}, \varsigma , \frac{\wp}{3^{2}} \biggr)\ast \mathcal{Q} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}+2}, \varsigma , \frac{\wp}{3^{2}} \biggr)\ast \cdots \\ &{}\ast \mathcal{Q} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{m}-1}, \varsigma , \frac{\wp}{3^{\mathfrak{m}-\mathfrak{n}}} \biggr), \end{aligned} \\ \begin{aligned} \mathcal{F}(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}}, \varsigma , \wp )\leq{}& \mathcal{F} \biggl(\varrho _{\mathfrak{m}}, \varrho _{ \mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \frac{\wp}{3} \biggr)\ast \mathcal{F} \biggl( \varrho _{\mathfrak{n}+1}, \varrho _{\mathfrak{n}}, \varsigma , \frac{\wp}{3} \biggr)\ast \mathcal{F} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}+1}, \varsigma , \frac{\wp}{3} \biggr) \\ \leq{}& \mathcal{F} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \frac{\wp}{3} \biggr)\ast \mathcal{F} \biggl( \varrho _{ \mathfrak{n}+1}, \varrho _{\mathfrak{n}}, \varsigma , \frac{\wp}{3} \biggr) \ast \mathcal{F} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}+1}, \varrho _{\mathfrak{n}+1}, \frac{\wp}{3} \biggr) \\ &{}\ast \mathcal{F} \biggl(\varrho _{\mathfrak{n}+2}, \varrho _{\mathfrak{n}+1}, \varsigma , \frac{\wp}{3^{2}} \biggr)\ast \mathcal{F} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}+2}, \varsigma , \frac{\wp}{3^{2}} \biggr)\ast \cdots \\ &{}\ast \mathcal{F} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{m}-1}, \varsigma , \frac{\wp}{3^{\mathfrak{m}-\mathfrak{n}}} \biggr) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}}, \varsigma , \wp )\leq{}& \mathcal{G} \biggl(\varrho _{\mathfrak{m}}, \varrho _{ \mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \frac{\wp}{3} \biggr)\ast \mathcal{G} \biggl( \varrho _{\mathfrak{n}+1}, \varrho _{\mathfrak{n}}, \varsigma , \frac{\wp}{3} \biggr)\ast \mathcal{G} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}+1}, \varsigma , \frac{\wp}{3} \biggr) \\ \leq{}& \mathcal{G} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \frac{\wp}{3} \biggr)\ast \mathcal{G} \biggl( \varrho _{ \mathfrak{n}+1}, \varrho _{\mathfrak{n}}, \varsigma , \frac{\wp}{3} \biggr) \ast \mathcal{G} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}+1}, \varrho _{\mathfrak{n}+1}, \frac{\wp}{3} \biggr) \\ &{}\ast \mathcal{G} \biggl(\varrho _{\mathfrak{n}+2}, \varrho _{\mathfrak{n}+1}, \varsigma , \frac{\wp}{3^{2}} \biggr)\ast \mathcal{G} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}+2}, \varsigma , \frac{\wp}{3^{2}} \biggr)\ast \cdots \\ &{}\ast \mathcal{G} \biggl(\varrho _{\mathfrak{m}}, \varrho _{\mathfrak{m}-1}, \varsigma , \frac{\wp}{3^{\mathfrak{m}-\mathfrak{n}}} \biggr). \end{aligned}$$

Letting \(\mathfrak{m}, \mathfrak{n}\rightarrow \infty \), we have

$$\begin{aligned}& \begin{aligned} &\lim_{\mathfrak{n}\rightarrow \infty}\mathcal{Q}(\varrho _{ \mathfrak{m}}, \varrho _{\mathfrak{n}}, \varsigma , \wp )=1,\qquad \lim_{ \mathfrak{n}\rightarrow \infty} \mathcal{F}( \varrho _{\mathfrak{m}}, \varrho _{\mathfrak{n}}, \varsigma , \wp )=0 \quad \text{and} \\ &\lim_{\mathfrak{n}\rightarrow \infty}\mathcal{G}(\varrho _{ \mathfrak{m}}, \varrho _{\mathfrak{n}}, \varsigma , \wp )=0. \end{aligned} \end{aligned}$$

Thus, \(\{\varrho _{\mathfrak{n}}\}\) is a Cauchy sequence in Φ. By completeness of Φ there exist \(\mathfrak{r}\in \varPhi \) such that

$$\begin{aligned} \lim_{\mathfrak{n}\rightarrow \infty}\varrho _{\mathfrak{n}}= \mathfrak{r}, \qquad \lim_{\mathfrak{n}\rightarrow \infty}\varrho _{2 \mathfrak{n}-1}=\lim_{\mathfrak{n}\rightarrow \infty} \nu _{2 \mathfrak{n}-1}=\lim_{\mathfrak{n}\rightarrow \infty}\varUpsilon \nu _{2\mathfrak{n}-2}=\mathfrak{r} \end{aligned}$$

and

$$\begin{aligned} \lim_{\mathfrak{n}\rightarrow \infty}\varrho _{2\mathfrak{n}}=\lim _{ \mathfrak{n}\rightarrow \infty}\varTheta \nu _{2\mathfrak{n}}=\lim _{ \mathfrak{n}\rightarrow \infty}\varLambda \nu _{2\mathfrak{n}-1}= \mathfrak{r}. \end{aligned}$$

From Lemma 4, we have

$$\begin{aligned} \varUpsilon \varTheta \nu _{2\mathfrak{n}+1}=\varTheta \mathfrak{r} \quad \text{and}\quad \varLambda \varGamma \nu _{2\mathfrak{n}+1}= \varGamma \mathfrak{r}. \end{aligned}$$
(4)

Meanwhile, for all \(\varsigma \in \varPhi \) with \(\varsigma \neq \varTheta \mathfrak{r}\) and \(\varsigma \neq \varGamma \mathfrak{r}\) and \(\wp >0\), we have

$$\begin{aligned}& \begin{aligned} &\mathcal{Q}(\varUpsilon \varTheta \nu _{2\mathfrak{n}+1}, \varLambda \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \\ &\quad \geq \min \bigl\{ \mathcal{Q}( \varTheta \varTheta \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{Q}( \varUpsilon \varTheta \nu _{2\mathfrak{n}+1}, \varTheta \varTheta \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \\ &\qquad {}\mathcal{Q}( \varLambda \varGamma \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2 \mathfrak{n}+1}, \ell \varsigma , \wp ), \mathcal{Q}(\varUpsilon \varTheta \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2 \mathfrak{n}+1}, \varsigma , \wp ) \bigr\} , \end{aligned} \\& \begin{aligned} &\mathcal{F}(\varUpsilon \varTheta \nu _{2\mathfrak{n}+1}, \varLambda \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \\ &\quad \leq\max \bigl\{ \mathcal{F}( \varTheta \varTheta \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{F}( \varUpsilon \varTheta \nu _{2\mathfrak{n}+1}, \varTheta \varTheta \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \\ &\qquad {}\mathcal{F}( \varLambda \varGamma \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2 \mathfrak{n}+1}, \ell \varsigma , \wp ), \mathcal{F}(\varUpsilon \varTheta \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2 \mathfrak{n}+1}, \varsigma , \wp ) \bigr\} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} &\mathcal{G}(\varUpsilon \varTheta \nu _{2\mathfrak{n}+1}, \varLambda \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \ell \wp ) \\ &\quad \leq \max \bigl\{ \mathcal{G}( \varTheta \varTheta \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{G}(\varUpsilon \varTheta \nu _{2\mathfrak{n}+1}, \varTheta \varTheta \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \\ &\qquad {}\mathcal{G}( \varLambda \varGamma \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2 \mathfrak{n}+1}, \ell \varsigma , \wp ), \mathcal{G}(\varUpsilon \varTheta \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2 \mathfrak{n}+1}, \varsigma , \wp ) \bigr\} . \end{aligned}$$

Taking the limit as \(\mathfrak{n}\rightarrow \infty \) and using (4), we have for all \(\varsigma \in \varPhi \) with \(\varsigma \neq \varTheta \mathfrak{r}\) and \(\varsigma \neq \varGamma \mathfrak{r}\) and \(\wp >0\),

$$\begin{aligned}& \begin{aligned} &\mathcal{Q}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \ell \wp +0) \\ &\quad \geq \min \bigl\{ \mathcal{Q}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}( \varTheta \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}( \varTheta \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\quad =\mathcal{Q}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \end{aligned} \\& \begin{aligned} &\mathcal{F}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \ell \wp +0) \\ &\quad \leq \max \bigl\{ \mathcal{F}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}( \varTheta \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ), \mathcal{F}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}( \varTheta \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\quad =\mathcal{F}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} &\mathcal{G}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \ell \wp +0) \\ &\quad \leq \max \bigl\{ \mathcal{G}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}( \varTheta \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varTheta \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\quad =\mathcal{G}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ). \end{aligned}$$

By Lemma 2, we have

$$\begin{aligned} \varTheta \mathfrak{r}=\varGamma \mathfrak{r}. \end{aligned}$$
(5)

From condition (4), we obtain for all \(\varsigma \in \varPhi \) with \(\varsigma \neq \varUpsilon \mathfrak{r}\), \(\varsigma \neq \varGamma \mathfrak{r}\) and \(\wp >0\),

$$\begin{aligned}& \begin{aligned} \mathcal{Q}(\varUpsilon \mathfrak{r}, \varLambda \varGamma \nu _{2 \mathfrak{n}+1}, \varsigma , \ell \wp )\geq{} &\min \bigl\{ \mathcal{Q}( \varTheta \mathfrak{r}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{Q}(\varUpsilon _{\mathfrak{r}}, \varTheta _{\mathfrak{r}}, \varsigma , \wp ) \\ &{}\mathcal{Q}(\varLambda \varGamma \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{Q}( \varUpsilon \mathfrak{r}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ) \bigr\} , \end{aligned} \\& \begin{aligned} \mathcal{F}(\varUpsilon \mathfrak{r}, \varLambda \varGamma \nu _{2 \mathfrak{n}+1}, \varsigma , \ell \wp )\leq {}&\max \bigl\{ \mathcal{F}( \varTheta \mathfrak{r}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{F}(\varUpsilon _{\mathfrak{r}}, \varTheta _{\mathfrak{r}}, \varsigma , \wp ) \\ &{}\mathcal{F}(\varLambda \varGamma \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{F}( \varUpsilon \mathfrak{r}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ) \bigr\} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\varUpsilon \mathfrak{r}, \varLambda \varGamma \nu _{2 \mathfrak{n}+1}, \varsigma , \ell \wp )\leq{} &\max \bigl\{ \mathcal{G}( \varTheta \mathfrak{r}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{G}(\varUpsilon _{\mathfrak{r}}, \varTheta _{\mathfrak{r}}, \varsigma , \wp ) \\ &{}\mathcal{G}(\varLambda \varGamma \nu _{2\mathfrak{n}+1}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ), \mathcal{G}( \varUpsilon \mathfrak{r}, \varGamma \varGamma \nu _{2\mathfrak{n}+1}, \varsigma , \wp ) \bigr\} . \end{aligned}$$

Let \(\mathfrak{n}\rightarrow \infty \), by condition (4), and Lemma 3, for all \(\varsigma \in \varPhi \)

$$\begin{aligned}& \begin{aligned} \mathcal{Q}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \ell \wp +0)\geq{}& \min \bigl\{ \mathcal{Q}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}( \varUpsilon \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ), \\ &{}\mathcal{Q}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ ={}&\mathcal{Q}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \end{aligned} \\& \begin{aligned} \mathcal{F}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \ell \wp +0)\leq{}& \max \bigl\{ \mathcal{F}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}( \varUpsilon \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ), \\ &{}\mathcal{F}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ ={}&\mathcal{F}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \ell \wp +0)\leq{}& \max \bigl\{ \mathcal{G}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}( \varUpsilon \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ), \\ &{}\mathcal{G}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ ={}&\mathcal{G}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ). \end{aligned}$$

By Lemma 2, we have

$$\begin{aligned} \varUpsilon \mathfrak{r}=\varGamma \mathfrak{r}. \end{aligned}$$
(6)

For all \(\varsigma \in \varPhi \) with \(\varsigma \neq \varUpsilon \mathfrak{r}\) and \(\varsigma \neq \varLambda \mathfrak{r}\) and \(\wp >0\), we have

$$\begin{aligned} \begin{aligned} &\mathcal{Q}(\varUpsilon \mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \ell \wp ) \\ &\quad \geq \min \bigl\{ \mathcal{Q}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r},\varsigma , \wp ), \mathcal{Q}( \varLambda \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\quad \geq \min \bigl\{ \mathcal{Q}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r},\varsigma , \wp ), \mathcal{Q}(\varLambda \mathfrak{r}, \varUpsilon \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\quad =\mathcal{Q}(\varUpsilon \mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ), \end{aligned} \\ \begin{aligned} &\mathcal{F}(\varUpsilon \mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \ell \wp ) \\ &\quad \leq \max \bigl\{ \mathcal{F}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r},\varsigma , \wp ), \mathcal{F}( \varLambda \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\quad \leq \max \bigl\{ \mathcal{F}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r},\varsigma , \wp ), \mathcal{F}(\varLambda \mathfrak{r}, \varUpsilon \mathfrak{r}, \varsigma , \wp ), \mathcal{F}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\quad =\mathcal{F}(\varUpsilon \mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} &\mathcal{G}(\varUpsilon \mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \ell \wp ) \\ &\quad \leq \max \bigl\{ \mathcal{G}(\varTheta \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}( \varLambda \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} , \\ &\quad \leq \max \bigl\{ \mathcal{G}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varUpsilon \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varLambda \mathfrak{r}, \varUpsilon \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varGamma \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\quad =\mathcal{G}(\varUpsilon \mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ). \end{aligned}$$

By Lemma 2,

$$\begin{aligned} \varUpsilon \mathfrak{r}=\varLambda \mathfrak{r}. \end{aligned}$$
(7)

It follows that \(\varUpsilon \mathfrak{r}=\varLambda \mathfrak{r}=\varTheta \mathfrak{r}=\varGamma \mathfrak{r}\). For all \(\varsigma \in \varPhi \) with \(\varsigma \neq \varLambda \mathfrak{r}\) and \(\varsigma \neq \mathfrak{r}\), and \(\wp >0\),

$$\begin{aligned} \mathcal{Q}(\varUpsilon \nu _{2\mathfrak{n}}, \varLambda \mathfrak{r}, \varsigma , \ell \wp )\geq{}& \min \bigl\{ \mathcal{Q}(\varTheta \nu _{2 \mathfrak{n}}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}( \varUpsilon \nu _{2\mathfrak{n}}, \varTheta \nu _{2\mathfrak{n}}, \varsigma , \wp ) \\ &{}\mathcal{Q}(\varLambda \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}(\varUpsilon \nu _{2\mathfrak{n}}, \varGamma _{\mathfrak{r}}, \varsigma , \wp ) \bigr\} , \\ \mathcal{F}(\varUpsilon \nu _{2\mathfrak{n}}, \varLambda \mathfrak{r}, \varsigma , \ell \wp )\leq{}& \max \bigl\{ \mathcal{F}(\varTheta \nu _{2 \mathfrak{n}}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}( \varUpsilon \nu _{2\mathfrak{n}}, \varTheta \nu _{2\mathfrak{n}}, \varsigma , \wp ) \\ &{}\mathcal{F}(\varLambda \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}(\varUpsilon \nu _{2\mathfrak{n}}, \varGamma _{\mathfrak{r}}, \varsigma , \wp ) \bigr\} \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\varUpsilon \nu _{2\mathfrak{n}}, \varLambda \mathfrak{r}, \varsigma , \ell \wp )\leq{}& \max \bigl\{ \mathcal{G}(\varTheta \nu _{2 \mathfrak{n}}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}( \varUpsilon \nu _{2\mathfrak{n}}, \varTheta \nu _{2\mathfrak{n}}, \varsigma , \wp ) \\ &{}\mathcal{G}(\varLambda \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varUpsilon \nu _{2\mathfrak{n}}, \varGamma _{\mathfrak{r}}, \varsigma , \wp ) \bigr\} . \end{aligned}$$

Taking the limit as \(\mathfrak{n}\rightarrow \infty \) and using (4) and Lemma 3, we have for all \(\varsigma \in \varPhi \) we \(\varsigma \neq \varLambda \mathfrak{r}\), \(\varsigma \neq \mathfrak{r}\) and \(\wp >0\)

$$\begin{aligned} \begin{aligned} \mathcal{Q}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \ell \wp +0)&\geq \min \bigl\{ \mathcal{Q}(\mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}(\mathfrak{r}, \mathfrak{r}, \mathfrak{r}, \wp ), \mathcal{Q}( \varLambda \mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}( \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\geq \mathcal{Q}(\mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp )\geq \mathcal{Q}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ), \end{aligned} \\ \begin{aligned} \mathcal{F}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \ell \wp +0)&\leq \max \bigl\{ \mathcal{F}(\mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{F}(\mathfrak{r}, \mathfrak{r}, \mathfrak{r}, \wp ), \mathcal{F}( \varLambda \mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ), \mathcal{F}( \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\leq \mathcal{F}(\mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp )\leq \mathcal{F}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \ell \wp +0)&\leq \max \bigl\{ \mathcal{G}(\mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\mathfrak{r}, \mathfrak{r}, \mathfrak{r}, \wp ), \mathcal{G}( \varLambda \mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ), \mathcal{G}( \mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp ) \bigr\} \\ &\leq \mathcal{G}(\mathfrak{r}, \varGamma \mathfrak{r}, \varsigma , \wp )\leq \mathcal{G}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ). \end{aligned}$$

Hence, we have

$$\begin{aligned} \mathcal{Q}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \ell \wp )\geq \mathcal{Q}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ), \qquad \mathcal{F}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \ell \wp )\leq \mathcal{F}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ) \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \ell \wp )\leq \mathcal{G}(\mathfrak{r}, \varLambda \mathfrak{r}, \varsigma , \wp ). \end{aligned}$$

Therefore, \(\varLambda \mathfrak{r}=\mathfrak{r}\). Thus, \(\mathfrak{r}=\varUpsilon \mathfrak{r}=\varLambda \mathfrak{r}= \varTheta \mathfrak{r}=\varGamma \mathfrak{r}\). Hence, \(\mathfrak{r}\) is a common fixed point of ϒ, Λ, Θ, and Γ.

Let \(\mathfrak{p}\) be another common fixed point of ϒ, Λ, Θ, and Γ for all \(\varsigma \in \varPhi \) with \(\varsigma \neq \mathfrak{r}\), \(\varsigma \neq \mathfrak{p}\), and \(\wp >0\), we have

$$\begin{aligned}& \nu _{0}\perp \nu ^{*}, \\& \nu _{0}\perp \varrho ^{*}. \end{aligned}$$

Since, Γ is -preserving, one writes

$$\begin{aligned}& \varUpsilon ^{\mathfrak{n}}\nu _{0}\perp \varUpsilon ^{\mathfrak{n}} \nu ^{*}, \\& \varUpsilon ^{\mathfrak{n}}\nu _{0}\perp \varUpsilon ^{\mathfrak{n}} \varrho ^{*}. \end{aligned}$$

Now,

$$\begin{aligned}& \begin{aligned} \mathcal{Q}(\mathfrak{r}, \mathfrak{p}, \varsigma , \ell \wp )={}& \mathcal{Q}( \varUpsilon \mathfrak{r}, \varLambda \mathfrak{p}, \varsigma , \ell \wp ) \\ \geq{}& \min \bigl\{ \mathcal{Q}(\varTheta \mathfrak{r}, \varGamma \mathfrak{p}, \varsigma , \wp ), \mathcal{Q}(\varUpsilon \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ), \mathcal{Q}(\varLambda \mathfrak{p}, \varGamma \mathfrak{p}, \varsigma , \wp ), \\ &{}\mathcal{Q}( \varUpsilon \mathfrak{r}, \varGamma \mathfrak{p}, \varsigma , \wp ) \bigr\} \\ \geq{}& \min \bigl\{ \mathcal{Q}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ), \mathcal{Q}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ), \mathcal{Q}( \mathfrak{p}, \mathfrak{p}, \varsigma , \wp ), \mathcal{Q}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ) \bigr\} \\ \geq{}& \mathcal{Q}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ), \end{aligned} \\& \begin{aligned} \mathcal{F}(\mathfrak{r}, \mathfrak{p}, \varsigma , \ell \wp )={}& \mathcal{F}( \varUpsilon \mathfrak{r}, \varLambda \mathfrak{p}, \varsigma , \ell \wp ) \\ \leq{}& \max \bigl\{ \mathcal{F}(\varTheta \mathfrak{r}, \varGamma \mathfrak{p}, \varsigma , \wp ), \mathcal{F}(\varUpsilon \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ), \mathcal{F}(\varLambda \mathfrak{p}, \varGamma \mathfrak{p}, \varsigma , \wp ), \\ &{} \mathcal{F}( \varUpsilon \mathfrak{r}, \varGamma \mathfrak{p}, \varsigma , \wp ) \bigr\} \\ \leq{}& \max \bigl\{ \mathcal{F}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ), \mathcal{F}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ), \mathcal{F}( \mathfrak{p}, \mathfrak{p}, \varsigma , \wp ), \mathcal{F}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ) \bigr\} \\ \leq{}& \mathcal{F}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ) \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\mathfrak{r}, \mathfrak{p}, \varsigma , \ell \wp )={}& \mathcal{G}( \varUpsilon \mathfrak{r}, \varLambda \mathfrak{p}, \varsigma , \ell \wp ) \\ \leq{}& \max \bigl\{ \mathcal{G}(\varTheta \mathfrak{r}, \varGamma \mathfrak{p}, \varsigma , \wp ), \mathcal{G}(\varUpsilon \mathfrak{r}, \varTheta \mathfrak{r}, \varsigma , \wp ), \mathcal{G}(\varLambda \mathfrak{p}, \varGamma \mathfrak{p}, \varsigma , \wp ), \\ &{}\mathcal{G}( \varUpsilon \mathfrak{r}, \varGamma \mathfrak{p}, \varsigma , \wp ) \bigr\} \\ \leq{}& \max \bigl\{ \mathcal{G}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ), \mathcal{G}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ), \mathcal{G}( \mathfrak{p}, \mathfrak{p}, \varsigma , \wp ), \mathcal{G}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ) \bigr\} \\ \leq{}& \mathcal{G}(\mathfrak{r}, \mathfrak{p}, \varsigma , \wp ), \end{aligned}$$

which implies that

$$\begin{aligned}& \mathcal{Q}(\mathfrak{r}, \mathfrak{p}, \varsigma , \ell \wp )\geq \mathcal{Q}( \mathfrak{r}, \mathfrak{p}, \varsigma , \ell \wp ), \\& \mathcal{F}(\mathfrak{r}, \mathfrak{p}, \varsigma , \ell \wp )\leq \mathcal{F}( \mathfrak{r}, \mathfrak{p}, \varsigma , \ell \wp ) \end{aligned}$$

and

$$\begin{aligned} \mathcal{G}(\mathfrak{r}, \mathfrak{p}, \varsigma , \ell \wp )\leq \mathcal{G}( \mathfrak{r}, \mathfrak{p}, \varsigma , \ell \wp ). \end{aligned}$$

Hence, \(\mathfrak{r}=\mathfrak{p}\). □

Example 3.2

Let \(\varPhi =[-1, 2]\) and define a binary relation by \(\nu \perp \varrho \perp \varsigma \Longleftrightarrow \nu +\varrho + \varsigma \geq 0\). Define \(\mathcal{Q}\), \(\mathcal{F}\), \(\mathcal{G}\) by,

$$\begin{aligned}& \mathcal{Q}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )= \textstyle\begin{cases} 1 ,&\text{if } \nu =\varrho =\varsigma , \\ \frac{\ell \wp}{\ell \wp +\min \{\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp \}} ,&\text{if otherwise}, \end{cases}\displaystyle \\& \mathcal{F}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )= \textstyle\begin{cases} 0 ,&\text{if } \nu =\varrho =\varsigma , \\ 1- \frac{\ell \wp}{\ell \wp +\max \{\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp \}} ,&\text{if otherwise}, \end{cases}\displaystyle \\& \mathcal{G}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )= \textstyle\begin{cases} 0 ,&\text{if } \nu =\varrho =\varsigma , \\ \frac{\ell \wp +\max \{\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp \}}{\ell \wp} ,&\text{if otherwise}. \end{cases}\displaystyle \end{aligned}$$

With CTN \(\mu \ast \alpha =\mu \cdot \alpha \) and CTCN \(\mu +\alpha =\max \{\mu +\alpha \}\), \((\varPhi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +, \perp )\) is an O-complete N2MS. Also, observe that \(\lim_{\mathfrak{n}\rightarrow \infty}\mathcal{Q}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )=1\), \(\lim_{\mathfrak{n} \rightarrow \infty}\mathcal{F}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )=0\) and \(\lim_{\mathfrak{n}\rightarrow \infty}\mathcal{G}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )=0\) \(\forall \nu , \varrho \), \(\varsigma \in \varPhi \).

Define \(\varUpsilon , \varLambda , \varTheta , \varGamma \colon \varPhi \rightarrow \varPhi \)

$$\begin{aligned} \varUpsilon \nu =\nu ^{2},\qquad \varLambda \nu =\nu ,\qquad \varTheta \nu =4\nu ^{4}-3,\qquad \varGamma \nu =4\nu ^{2}-3. \end{aligned}$$

From this, we obtain

$$\begin{aligned}& \mathcal{Q}(\varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \varsigma , \ell \wp )\geq \mathcal{Q}(\varrho _{\mathfrak{n}-1}, \varrho _{\mathfrak{n}}, \varsigma , \wp ), \\& \mathcal{F}(\varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \varsigma , \ell \wp )\leq \mathcal{Q}(\varrho _{\mathfrak{n}-1}, \varrho _{\mathfrak{n}}, \varsigma , \wp ), \\& \mathcal{G}(\varrho _{\mathfrak{n}}, \varrho _{\mathfrak{n}+1}, \varsigma , \ell \wp )\geq \mathcal{Q}(\varrho _{\mathfrak{n}-1}, \varrho _{\mathfrak{n}}, \varsigma , \wp ). \end{aligned}$$

This implies

$$\begin{aligned}& \lim_{\mathfrak{n}\rightarrow \infty}\mathcal{Q}(\varrho _{ \mathfrak{m}}, \varrho _{\mathfrak{n}}, \varsigma , \wp )=1, \qquad \lim_{\mathfrak{n}\rightarrow \infty} \mathcal{F}(\varrho _{ \mathfrak{m}}, \varrho _{\mathfrak{n}}, \varsigma , \wp )=0 \quad \text{and} \\& \lim_{\mathfrak{n}\rightarrow \infty}\mathcal{G}(\varrho _{ \mathfrak{m}}, \varrho _{\mathfrak{n}}, \varsigma , \wp )=0 \quad \text{for all } \nu , \varrho , \varsigma \in \varPhi . \end{aligned}$$

All the conditions of the above theorem are satisfied and 1 is a common fixed point of ϒ, Λ, Θ, and Γ.

4 Application

In this section, we given an application to the Fredholm integral equation as below:

Suppose \(\mathcal{I}=\mathcal{C}([\rho , \pi ], \mathbb{R})\) is the set of real-valued continuous functions defined on \([\rho , \pi ]\).

Consider the integral equation,

$$\begin{aligned}& \mathit{d}(\varpi )=\mathfrak{f}(\varpi )+\delta \int _{\rho}^{\pi} \mathcal{U}_{1}( \varpi , \theta )\mathfrak{k}(\varpi )\,\mathit{d} \theta \quad \text{for all } \theta , \varpi \in [\rho , \pi ], \end{aligned}$$
(8)
$$\begin{aligned}& \mathit{d}(\varpi )=\mathfrak{f}(\varpi )+\delta \int _{\rho}^{\pi} \mathcal{U}_{1}( \varpi , \theta )\mathfrak{k}(\varpi )\,\mathit{d} \theta \quad \text{for all } \theta , \varpi \in [\rho , \pi ], \end{aligned}$$
(9)

where \(\delta >0\), \(\mathfrak{f}(\varpi )\) is a neutrosophic function of \(\varpi \colon \varpi \in [\rho , \pi ]\) and \(\mathcal{U}_{1}, \mathcal{U}_{2}\colon \mathcal{C}([\rho , \pi ] \times \mathbb{R})\rightarrow \mathbb{R}^{+}\). Define the binary relation on \(\mathcal{X}\) by \(\mathfrak{x}\perp \mathfrak{y}\perp \mathfrak{z}\) iff \(\mathfrak{x}+\mathfrak{y}+\mathfrak{z}\geq 0\) and define \(\mathcal{Q}\), \(\mathcal{F}\) and \(\mathcal{G}\) by

$$\begin{aligned}& \mathcal{Q}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )=\min \biggl\{ \frac{\ell \wp}{\ell \wp +\min \{\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp \}} \biggr\} \quad \forall \nu , \varrho , \varsigma \in \Phi \text{ and } \wp >0, \\& \mathcal{F}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )=\max \biggl\{ 1- \frac{\ell \wp}{\ell \wp +\max \{\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp \}} \biggr\} \quad \forall \nu , \varrho , \varsigma \in \Phi \text{ and } \wp >0, \\& \mathcal{G}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp )=\max \biggl\{ \frac{\max \{\varUpsilon \nu , \varLambda \varrho , \varsigma , \ell \wp \}}{\ell \wp} \biggr\} \quad \forall \nu , \varrho , \varsigma \in \Phi \text{ and } \wp >0. \end{aligned}$$

With con-t-nm and con-t-conm defined by \(\rho \ast \pi =\rho \cdot \pi \) and \(\rho +\pi =\max \{\rho , \pi \}\), then \((\Phi , \mathcal{Q}, \mathcal{F}, \mathcal{G}, \ast , +)\) is a O-complete N2MS. Consider \(\int _{\rho}^{\pi}\mathit{d}\theta \leq \ell \wp <1\). Then, the neutrosophic integral equations (8) and (9) have a unique common solution.

Proof

Define \(\varUpsilon , \varLambda \colon \Phi \rightarrow \Phi \) by

$$\begin{aligned}& \mathit{d}(\varpi )=\mathfrak{f}(\varpi )+\delta \int _{\rho}^{\pi} \mathcal{U}_{1}( \varpi , \theta )\mathfrak{k}(\varpi )\,\mathit{d} \theta \quad \text{for all } \theta , \varpi \in [\rho , \pi ], \end{aligned}$$
(10)
$$\begin{aligned}& \mathit{d}(\varpi )=\mathfrak{f}(\varpi )+\delta \int _{\rho}^{\pi} \mathcal{U}_{1}( \varpi , \theta )\mathfrak{k}(\varpi )\,\mathit{d} \theta \quad \text{for all } \theta , \varpi \in [\rho , \pi ]. \end{aligned}$$
(11)

The survival of a fixed of the operator \(\mathcal{U}\) has come to the survival of solution of a neutrosophic integral equation,

$$\begin{aligned} &\mathcal{Q} \bigl(\varUpsilon \nu (\varpi ), \varLambda \varrho (\varpi ), \varsigma \varpi , \ell \wp \bigr) \\ &\quad=\sup_{\varpi \in [\rho , \pi ]} \frac{\ell \wp}{\ell \wp +\min (\varUpsilon \nu (\varpi ), \varLambda \varrho (\varpi ), \varsigma \varpi , \ell \wp )} \\ &\quad=\sup_{\varpi \in [\rho , \pi ]} {\ell \wp} \big/\biggl(\ell \wp + \biggl\vert \mathfrak{f}(\varpi )+\delta \int _{\rho}^{\pi}\mathcal{U}_{1}( \varpi , \theta )\varUpsilon \nu (\varpi )-\varsigma \varpi -\wp -\mathfrak{f}( \varpi ) \\ &\qquad{} -\delta \int _{\rho}^{\pi}\mathcal{U}_{2}(\varpi , \theta )\varLambda \varrho (\varpi )-\varsigma \varpi -\wp \biggr\vert \biggr) \\ &\quad\geq \sup_{\varpi \in [\rho , \pi ]} \frac{\ell \wp}{\ell \wp + \vert \varUpsilon \nu (\varpi )-\varLambda \varrho (\varpi )- \varsigma \varpi -\wp ) \vert } \\ &\quad\geq \mathcal{Q}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \wp ), \\ &\mathcal{F} \bigl(\varUpsilon \nu (\varpi ), \varLambda \varrho (\varpi ), \varsigma \varpi , \ell \wp \bigr) \\ &\quad=1-\sup_{\varpi \in [\rho , \pi ]} \frac{\ell \wp}{\ell \wp +\max (\varUpsilon \nu (\varpi ), \varLambda \varrho (\varpi ), \varsigma \varpi , \ell \wp )} \\ &\quad=1-\sup_{\varpi \in [\rho , \pi ]} {\ell \wp} \big/\biggl(\ell \wp + \biggl\vert \mathfrak{f}(\varpi )+\delta \int _{\rho}^{\pi}\mathcal{U}_{1}( \varpi , \theta )\varUpsilon \nu (\varpi )-\varsigma \varpi -\wp -\mathfrak{f}( \varpi ) \\ &\qquad{} -\delta \int _{\rho}^{\pi}\mathcal{U}_{2}(\varpi , \theta )\varLambda \varrho (\varpi )-\varsigma \varpi -\wp \biggr\vert \biggr) \\ &\quad\leq 1-\sup_{\varpi \in [\rho , \pi ]} \frac{\ell \wp}{\ell \wp + \vert \varUpsilon \nu (\varpi )-\varLambda \varrho (\varpi )- \varsigma \varpi -\wp ) \vert } \\ &\quad\leq \mathcal{F}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \wp ) \end{aligned}$$

and

$$\begin{aligned} &\mathcal{G} \bigl(\varUpsilon \nu (\varpi ), \varLambda \varrho (\varpi ), \varsigma \varpi , \ell \wp \bigr) \\ &\quad=\sup_{\varpi \in [\rho , \pi ]} \frac{\ell \wp}{\ell \wp +\max (\varUpsilon \nu (\varpi ), \varLambda \varrho (\varpi ), \varsigma \varpi , \ell \wp )} \\ &\quad=\sup_{\varpi \in [\rho , \pi ]} {\ell \wp} / \biggl(\ell \wp + \biggl\vert \mathfrak{f}(\varpi )+\delta \int _{\rho}^{\pi}\mathcal{U}_{1}( \varpi , \theta )\varUpsilon \nu (\varpi )-\varsigma \varpi -\wp -\mathfrak{f}( \varpi ) \\ &\qquad{} -\delta \int _{\rho}^{\pi}\mathcal{U}_{2}(\varpi , \theta )\varLambda \varrho (\varpi )-\varsigma \varpi -\wp \biggr\vert \biggr) \\ &\quad\leq \sup_{\varpi \in [\rho , \pi ]} \frac{\ell \wp}{\ell \wp + \vert \varUpsilon \nu (\varpi )-\varLambda \varrho (\varpi )- \varsigma \varpi -\wp ) \vert } \\ &\quad\leq \mathcal{F}(\varUpsilon \nu , \varLambda \varrho , \varsigma , \wp ). \end{aligned}$$

Hence, all the conditions of Theorem 3.1 are satisfied. Hence, ϒ and Λ have a unique common solution. □

5 Conclusion

We introduced the notion of a neutrosophic metric space to an orthogonal neutrosophic 2-metric space that deals with greater ambiguity and uncertainty in engineering and research studies. Finally, we obtained the common fixed-point theorem in an orthogonal neutrosophic 2-metric space.

Availability of data and materials

Not applicable.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Park, J.H.: Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 22(5), 1039–1064 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barros, L.C., Bassanezi, R.C., Tonelli, P.A.: Fuzzy modelling in population dynamics. Ecol. Model. 128, 27–33 (2000). https://doi.org/10.1016/S0304-3800(99)00223-9

    Article  Google Scholar 

  4. Fradkov, A.L., Evans, R.J.: Control of chaos: methods and applications in engineering. Chaos Solitons Fractals 29, 33–56 (2005). https://doi.org/10.1016/j.arcontrol.2005.01.001

    Article  Google Scholar 

  5. Giles, R.: A computer program for fuzzy reasoning. Fuzzy Sets Syst. 4, 221–234 (1980). https://doi.org/10.1016/0165-0114(80)90012-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Hong, L., Sun, J.Q.: Bifurcations of fuzzy nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 1, 1–12 (2006). https://doi.org/10.1016/j.cnsns.2004.11.001

    Article  MathSciNet  MATH  Google Scholar 

  7. Barro, S., Marin, R.: Fuzzy Logic in Medicine. Physica-Verlag, Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1804-8

    Book  MATH  Google Scholar 

  8. Gähler, S.: 2-metrische Räume und ihre topologische Struktur. Math. Nachr. 26, 115–148 (1963). https://doi.org/10.1002/mana.19630260109

    Article  MathSciNet  MATH  Google Scholar 

  9. Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313–334 (1960). https://doi.org/10.2140/pjm.1960.10.313

    Article  MathSciNet  MATH  Google Scholar 

  10. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MATH  Google Scholar 

  11. Çoker, D.: An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst. 88, 81–99 (1997). https://doi.org/10.1016/S0165-0114(96)00076-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Abbas, S.E.: On intuitionistic fuzzy compactness. Inf. Sci. 173, 75–91 (2005). https://doi.org/10.1016/j.ins.2004.07.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Mursaleen, M., Lohani, Q.M.D.: Intuitionistic fuzzy 2-normed space and some related concepts. Chaos Solitons Fractals 42, 224–234 (2009). https://doi.org/10.1016/j.chaos.2008.11.006

    Article  MathSciNet  MATH  Google Scholar 

  14. Mursaleen, M., Lohani, Q.M.D., Mohiuddine, S.A.: Intuitionistic fuzzy 2-metric space and its completion. Chaos Solitons Fractals 42, 1258–1265 (2009). https://doi.org/10.1016/j.chaos.2009.03.025

    Article  MathSciNet  MATH  Google Scholar 

  15. Bera, T., Mahapatra, N.K.: On neutrosophic soft linear spaces. Fuzzy Inf. Eng. 9(3), 299–324 (2017)

    Article  Google Scholar 

  16. Bera, T., Mahapatra, N.K.: Neutrosophic soft normed linear spaces. Neutrosophic Sets Syst. 23, 52–71 (2018)

    Google Scholar 

  17. Ishtiaq, U., Javed, K., Uddin, F., de la Sen, M., Ahmed, K., Ali, M.U.: Fixed point results in orthogonal neutrosophic metric spaces. Complexity 2021, Article ID 2809657 (2021)

    Article  Google Scholar 

  18. Jeyaraman, M., Sowndrarajan, S.: Common fixed point results in neutrosophic metric spaces. Neutrosophic Sets Syst. 42, 208–220 (2021)

    Google Scholar 

  19. Fathollahi, S., Hussain, N., Khan, L.A.: Fixed point results for modified weak and rational \((\alpha -\psi )\)-contractions in ordered 2-metric spaces. Fixed Point Theory Appl. 2014, Article ID 6 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Salama, A.A., Alblowi, S.A.: Neutrosophic set and neutrosophic topological spaces. IOSR J. Math. 3(4), 31–35 (2012)

    Article  Google Scholar 

  21. Al-Omeri, W.F., Jafari, S., Smarandache, F.: \((\Phi , \Psi )\)-Weak contractions in neutrosophic cone metric spaces via fixed point theorems. Math. Probl. Eng. 2020, Article ID 9216805 (2020)

    Article  MathSciNet  Google Scholar 

  22. Riaz, M., Ishtiaq, U., Park, C., Ahmad, K., Uddin, F.: Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Math. 7(8), 14756–14784 (2022). https://doi.org/10.3934/math.2022811

    Article  MathSciNet  Google Scholar 

  23. Asghar, A., Hussain, A., Ahmad, K., Ishtiaq, U., Al Sulami, H., Hussain, N.: On neutrosophic 2-metric spaces with application. J. Funct. Spaces 2023, Article ID 9057107 (2023). https://doi.org/10.1155/2023/9057107

    Article  MathSciNet  Google Scholar 

  24. Ishtiaq, U., Javed, K., Uddin, F., de la Sen, M., Ahmed, K., Usman Ali, M.: Fixed point results in orthogonal neutrosophic metric spaces. Complexity 2021, Article ID 2809657 (2021). https://doi.org/10.1155/2021/2809657

    Article  Google Scholar 

  25. Eshaghi Gordji, M., Ramezani, M., De la Sen, M., Cho, Y.: On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 18, 569–578 (2017). https://doi.org/10.24193/fpt-ro.2017.2.45

    Article  MathSciNet  MATH  Google Scholar 

  26. Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313–334 (1960). https://doi.org/10.2140/pjm.1960.10.313

    Article  MathSciNet  MATH  Google Scholar 

  27. Kirişci, M., Simsek, N.: Neutrosophic metric spaces. Math. Sci. 14, 241–248 (2020). https://doi.org/10.1007/s40096-020-00335-8

    Article  MathSciNet  Google Scholar 

  28. Mursaleen, M., Lohani, Q.M.D.: Baire’s and Cantor’s theorems in intuitionistic fuzzy 2-metric spaces. Chaos Solitons Fractals 42, 2254–2259 (2009). https://doi.org/10.1016/j.chaos.2009.03.134

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors extend their appreciation to Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia for funding this research work through the project number (PSAU/2023/01/33030).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Reny George.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janardhanan, G., Mani, G., Ege, O. et al. Orthogonal neutrosophic 2-metric spaces. J Inequal Appl 2023, 112 (2023). https://doi.org/10.1186/s13660-023-03024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-03024-x

Mathematics Subject Classification

Keywords