Skip to main content

On some new quantum trapezoid-type inequalities for q-differentiable coordinated convex functions

Abstract

In this paper, we establish several new inequalities for q-differentiable coordinated convex functions that are related to the right side of Hermite–Hadamard inequalities for coordinated convex functions. We also show that the inequalities proved in this paper generalize the results given in earlier works. Moreover, we give some examples in order to demonstrate our main results.

1 Introduction

The Hermite–Hadamard inequality is a classical inequality stated as: If \(f:[a,b]\rightarrow \mathbb{R}\) is a convex function, then

$$\begin{aligned} f \biggl( \frac{a+b}{2} \biggr) \leq \frac{1}{b-a} \int _{a}^{b}{f(x)} \,dx \leq \frac{f(a)+f(b)}{2}. \end{aligned}$$
(1.1)

The double inequality (1.1) was introduced by Hermite [1] in 1883 and was investigated by Hadamard [2] in 1893.

Definition 1.1

([3])

A function \(f : \bigtriangleup \to \mathbb{R}\) is said to be coordinated convex, if the partial mappings

$$\begin{aligned} f_{x} : [c,d]\ni v \mapsto f(x,v)\in \mathbb{R}\quad \text{and}\quad f_{y} : [a,b]\ni u \mapsto f(u,y)\in \mathbb{R} \end{aligned}$$

are convex for all \(x \in (a,b)\) and \(y\in (c,d)\).

A formal definition for coordinated convex functions may be stated as follows:

Definition 1.2

A function \(f:\bigtriangleup \rightarrow \mathbb{R}\) is said to be coordinated convex, if

$$\begin{aligned} f \bigl(tx+(1-t)z,\lambda y+(1-\lambda )w \bigr)& \leq t\lambda f(x,y)+t(1- \lambda )f(x,w)+(1-t)\lambda f(z,y) \\ & \quad{}+(1-t) (1-\lambda )f(z,w) \end{aligned}$$
(1.2)

holds for all \(t,\lambda \in {}[ 0,1]\) and \((x,y), (z,w)\in \bigtriangleup \).

Dragomir [3] presented the Hermite–Hadamard-type inequalities for coordinated convex functions in 2001 as follows:

Theorem 1.1

If \(f:\bigtriangleup \to \mathbb{R}\) is a coordinated convex function, then we have

$$\begin{aligned} &f \biggl( \frac {a+b}{2},\frac {c+d}{2} \biggr) \\ &\quad \leq \frac {1}{2} \biggl[ \frac {1}{b-a} \int _{a}^{b}{f \biggl( x, \frac {c+d}{2} \biggr) } \,dx +\frac {1}{d-c} \int _{c}^{d}{f \biggl( \frac {a+b}{2},y \biggr) } \,dy \biggr] \\ &\quad \leq \frac {1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d}{f(x,y)} \,dy \,dx \\ &\quad \leq \frac{1}{4} \biggl[\frac {1}{(b-a)} \int _{a}^{b}{f ( x,c )+f ( x,d ) } \,dx \\ &\quad \quad{}+ \frac {1}{d-c} \int _{c}^{d}{f ( a,y )+f ( b,y ) } \,dy \biggr] \\ &\quad \leq \frac {1}{4} \bigl[ f(a,c)+f(b,c)+f(a,d)+f(b,d) \bigr] . \end{aligned}$$
(1.3)

In 2012, Sarikaya and Set [4] proved some inequalities that give estimations between the middle and the rightmost terms in (1.3).

Theorem 1.2

Let \(f:\bigtriangleup \to \mathbb{R}\) be a partially differentiable function on \((a,b)\times (a,b)\). If \(\vert \frac {\partial ^{2}{}f}{\partial t \partial s} \vert \) is coordinated convex on , then the following inequality holds:

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4}+ \frac{1}{(b-a)(d-c)} \int _{a}^{b} \int _{c}^{d} f(x,y) \,ds \,dt -A \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{16} \biggl[ \frac{ \vert \frac {\partial ^{2}{}}{\partial t \partial s}f(a,c) \vert + \vert \frac {\partial ^{2}{}}{\partial t \partial s}f(a,b) \vert + \vert \frac {\partial ^{2}{}}{\partial t \partial s}f(b,c) \vert + \vert \frac {\partial ^{2}{}}{\partial t \partial s}f(b,d) \vert }{4} \biggr], \end{aligned}$$
(1.4)

where

$$\begin{aligned} A=\frac{1}{2} \biggl[\frac{1}{b-a} \int _{a}^{b} f(x,c)+f(x,d) \,dx + \frac{1}{d-c} \int _{c}^{d} f(a,y)+f(b,y) \,dx \biggr]. \end{aligned}$$

On the other hand, the concept of quantum calculus (sometimes called q-calculus) is known as the study of calculus with no limits. Note that q-calculus can be reduced to ordinary calculus if we take \(\lim_{q\rightarrow 1}\). In 1910, Jackson [5] introduced the definite q-integral known as the q-Jackson integral. Quantum calculus has many applications in several mathematical areas such as combinatorics, number theory, orthogonal polynomials, basic hypergeometric functions, mechanics, quantum theory, and the theory of relativity, see for instance [611] and the references therein. The book by Kac and Cheung [12] covers the fundamental knowledge and also the basic theoretical concepts of quantum calculus.

2 Preliminaries

Throughout this paper, we let \(\bigtriangleup :=[a,b]\times {}[ c,d]\subseteq \mathbb{R}\), \(0< q<1\) and \(0< q_{i}<1\) for \(i=1,2\). Also, here and below, we use the following notation:

$$\begin{aligned}{} [n]_{q}:= \textstyle\begin{cases} \frac {1-q^{n}}{1-q}=1+q+\cdots +q^{n-2}+q^{n-1},& \text{if } n\in \mathbb{R}\mathbbm{^{+}}, \\ 0,& \text{if } n=0. \end{cases}\displaystyle \end{aligned}$$

In 2013, Tariboon and Ntouyas [13] defined the aq-derivative and aq-integral of a function on finite intervals and proved some of its properties.

Definition 2.1

([13])

Let \(f:[a,b]\rightarrow \mathbb{R}\) be a continuous function. Then, the aq-derivative of f at \(x\in (a,b]\) is defined by

$$\begin{aligned} {}_{a}D_{q}f(x)= \frac{f ( x ) -f ( qx+(1-q)a ) }{(1-q)(x-a)}. \end{aligned}$$

The aq-integral is defined by

$$\begin{aligned} \int _{a}^{x}{f(t)} \,{}_{a}d_{q}t=(1-q) (x-a)\sum_{n=0}^{\infty }{q^{n}f \bigl( q^{n}x+ \bigl( 1-q^{n} \bigr) a \bigr) }. \end{aligned}$$

In [14], Alp et al. proved the following quantum Hermite–Hadamard inequality for convex functions using the quantum integrals:

Theorem 2.1

If \(f:[a,b]\rightarrow \mathbb{R}\) is a convex function, then we have

$$\begin{aligned} f \biggl( \frac{qa+b}{1+q} \biggr) \leq \frac{1}{b-a} \int _{a}^{b}f ( x ) \,{}_{a}d_{q}x \leq \frac{qf ( a ) +f ( b ) }{1+q}. \end{aligned}$$
(2.1)

In 2020, Bermudo et al. [15] defined the q-derivative and q-integral of a function on finite intervals that are called bq-calculus

Definition 2.2

([15])

Let \(f:[a,b]\rightarrow \mathbb{R}\) be a continuous function. Then, the bq-derivative of f at \(x\in {}[ a,b)\) is defined by

$$ {}^{b}D_{q}f(x)= \frac{f ( qx+(1-q)b ) -f ( x ) }{(1-q)(b-x)}. $$

The bq-integral is defined by

$$ \int _{x}^{b}{f(t)} \,{}^{b}d_{q}t=(1-q) (b-x)\sum_{n=0}^{\infty }{q^{n}f \bigl( q^{n}x+ \bigl( 1-q^{n} \bigr) b \bigr) }. $$

Bermudo et al. also proved the corresponding Hermite–Hadamard inequality for bq-integrals, as follows:

Theorem 2.2

If \(f:[a,b]\rightarrow \mathbb{R}\) is a convex function, then we have

$$\begin{aligned} f \biggl( \frac{a+qb}{1+q} \biggr) \leq \frac{1}{b-a} \int _{a}^{b}f ( x ) \,{}^{b}d_{q}x \leq \frac{f ( a ) +qf ( b ) }{1+q}. \end{aligned}$$
(2.2)

In [16] and [17], the authors provide q-integrations by parts as follows:

Lemma 2.1

For continuous functions \(h,f:[a,b]\to \mathbb{R}\), the following equality holds:

$$\begin{aligned} &\int _{0}^{c} h(t) \,{}_{a}D_{q}f \bigl(tb+(1-t)a \bigr) \,{}_{0}d_{q}t \\ &\quad =\frac{h(t)f(tb+(1-t)a)}{b-a}\bigg\vert _{0}^{c}- \int _{0}^{c} f \bigl(tb+(1-t)a \bigr)\, {}_{0}D_{q}h(t) \,{}_{0}d_{q}t. \end{aligned}$$
(2.3)

Lemma 2.2

For continuous functions \(h,f:[a,b]\to \mathbb{R}\), the following equality holds:

$$\begin{aligned} &\int _{0}^{c} h(t) \,{}^{b}D_{q}f \bigl(ta+(1-t)b \bigr) \,{}_{0}d_{q}t \\ &\quad = \int _{0}^{c} f \bigl(ta+(1-t)b \bigr)\, {}_{0}D_{q}h(t) \,{}_{0}d_{q}t- \frac{h(t)f(ta+(1-t)b)}{b-a}\bigg\vert _{0}^{c}. \end{aligned}$$
(2.4)

Several papers were devoted to generalizations and estimations of the left and right sides of the inequalities (2.1) and (2.2). In [18], Noor et al. proved some bounds for the right-hand side of the inequality (2.1), whereas Alp et al. proved some bounds for the left-hand side of the inequality (2.1) in [14]. In [19], by using convex functions, Budak proved some bounds for the left- and right-hand sides of the inequality (2.2).

In [20], Ali et al. proved the following new version of the quantum Hermite–Hadamard inequality involving the aq-integral and bq-integral. They also proved some inequalities for estimations of the left- and right-hand sides of this inequality.

Theorem 2.3

If \(f:[a,b]\rightarrow \mathbb{R}\) is a convex function, then we have

$$\begin{aligned} f \biggl( \frac{a+b}{2} \biggr) \leq \frac{1}{b-a} \biggl[ \int _{a}^{ \frac{a+b}{2}}{f(x)} \,{}_{a}d_{q}x+ \int _{\frac{a+b}{2}}^{b}{f(x)} \,{}^{b}d_{q}x \biggr] \leq \frac{f(a)+f(b)}{2}. \end{aligned}$$

Recently, Sitthiwirattham et al. [21] proved some new quantum Hermite–Hadamard inequalities for convex functions by using their new techniques.

Theorem 2.4

If \(f:[a,b]\to \mathbb{R}\) is a convex function, then we have

$$\begin{aligned} f \biggl(\frac{a+b}{2} \biggr)\leq \frac{1}{b-a} \biggl[ \int _{a}^{ \frac{a+b}{2}}{f(x)} \,{}^{\frac{a+b}{2}}d_{q}x+ \int _{\frac{a+b}{2}}^{b}{f(x)} \,{}_{\frac{a+b}{2}}d_{q}x \biggr]\leq \frac{f(a)+f(b)}{2}. \end{aligned}$$
(2.5)

On the other hand, in [22] Latif et al. and in [23] Budak et al. introduced the quantum integrals for functions of two variables

Definition 2.3

([22])

Suppose that \(f:\bigtriangleup \rightarrow \mathbb{R}\) is a function of two variables. Then, the definite integral is given by

$$\begin{aligned} \int _{a}^{x} \int _{c}^{y}f(t,s) {\,{}_{c}d_{q_{2}}s} {\,{}_{a}d_{q_{1}}}t& =(1-q_{1}) (1-q_{2}) (x-a) (y-c) \\ &\quad{} \times \sum_{n=0}^{\infty }\sum _{m=0}^{\infty }{q_{1}^{n}q_{2}^{m}f \bigl(q_{1}^{n}x+ \bigl(1-q_{1}^{n} \bigr)a,q_{2}^{m}y+ \bigl(1-q_{2}^{m} \bigr)c \bigr)}. \end{aligned}$$

Definition 2.4

([23])

Suppose that \(f:\bigtriangleup \rightarrow \mathbb{R}\) is a function of two variables. Then, the definite integrals are given by

$$\begin{aligned}& \begin{aligned} \int _{a}^{x} \int _{y}^{d}f(t,s) {\,{}^{d}d_{q_{2}}s} {\,{}_{a}d_{q_{1}}}t& =(1-q_{1}) (1-q_{2}) (x-a) (d-y) \\ &\quad{} \times \sum_{n=0}^{\infty }\sum _{m=0}^{\infty }{q_{1}^{n}q_{2}^{m}f \bigl(q_{1}^{n}x+ \bigl(1-q_{1}^{n} \bigr)a,q_{2}^{m}y+ \bigl(1-q_{2}^{m} \bigr)d \bigr)}, \end{aligned} \\& \begin{aligned} \int _{x}^{b} \int _{c}^{y}f(t,s) {\,{}_{c}d_{q_{2}}s} \ {}^{b}d_{q_{1}}t& =(1-q_{1}) (1-q_{2}) (b-x) (y-c) \\ &\quad{} \times \sum_{n=0}^{\infty }\sum _{m=0}^{\infty }{q_{1}^{n}q_{2}^{m}f \bigl(q_{1}^{n}x+ \bigl(1-q_{1}^{n} \bigr)b,q_{2}^{m}y+ \bigl(1-q_{2}^{m} \bigr)c \bigr)} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \int _{x}^{b} \int _{y}^{d}f(t,s) {\,{}^{d}d_{q_{2}}s} {\ {}^{b}d_{q_{1}}t}& =(1-q_{1}) (1-q_{2}) (b-x) (d-y) \\ &\quad{} \times \sum_{n=0}^{\infty }\sum _{m=0}^{\infty }{q_{1}^{n}q_{2}^{m}f \bigl(q_{1}^{n}x+ \bigl(1-q_{1}^{n} \bigr)b,q_{2}^{m}y+ \bigl(1-q_{2}^{m} \bigr)d \bigr)}. \end{aligned}$$

In the papers [22] and [23], by using these integrals, the authors also proved the Hermite–Hadamard inequalities for coordinated convex functions. By using the concepts given in Definition 2.3 and Definition 2.4, many authors proved several important inequalities [2428].

In [22] Latif et al. and in [29] Budak et al. introduced the following \(q_{1},q_{2}\)-derivatives for functions of two variables

Definition 2.5

([22])

Let \(f:\bigtriangleup \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} \) be a continuous function of two variables. Then, the partial aq-, cq-, and \({}_{a,c}q\)-derivatives at \(( x,y ) \in \bigtriangleup \) can be given as follows:

$$\begin{aligned}& \frac{{}_{a}\partial _{q_{1}}f ( x,y ) }{{}_{a}\partial _{q_{1}}x} = \frac{f ( q_{1}x+ ( 1-q_{1} ) a,y ) -f ( x,y ) }{ ( 1-q_{1} ) ( x-a ) }, \quad x\neq b, \\& \frac{{}_{c}\partial _{q_{2}}f ( x,y ) }{{}_{c}\partial _{q_{2}}y} = \frac{f ( x,q_{2}y+ ( 1-q_{2} ) c ) -f ( x,y ) }{ ( 1-q_{2} ) ( y-c ) }, \quad y\neq c, \\& \frac{{}_{a,c}\partial _{q_{1},q_{2}}^{2}f ( x,y ) }{{}_{a} \partial _{q_{1}}x\,{}_{c}\partial _{q_{2}}y} = \frac{1}{ ( x-a ) ( y-c ) ( 1-q_{1} ) ( 1-q_{2} ) } \\& \hphantom{\frac{{}_{a,c}\partial _{q_{1},q_{2}}^{2}f ( x,y ) }{{}_{a} \partial _{q_{1}}x\,{}_{c}\partial _{q_{2}}y} = {}}{} \times \bigl[ f \bigl(q_{1}x+ ( 1-q_{1} ) a,q_{2}y+ ( 1-q_{2} ) c \bigr) \\& \hphantom{\frac{{}_{a,c}\partial _{q_{1},q_{2}}^{2}f ( x,y ) }{{}_{a} \partial _{q_{1}}x\,{}_{c}\partial _{q_{2}}y} = {}}{} - f \bigl( q_{1}x+ ( 1-q_{1} ) a,y \bigr) -f \bigl( x,q_{2}y+ ( 1-q_{2} ) c \bigr) +f ( x,y ) \bigr], \\& \hphantom{\frac{{}_{a,c}\partial _{q_{1},q_{2}}^{2}f ( x,y ) }{{}_{a} \partial _{q_{1}}x\,{}_{c}\partial _{q_{2}}y} = {}}x\neq a, y\neq c. \end{aligned}$$

Definition 2.6

([29])

Let \(f:\bigtriangleup \subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R} \) be a continuous function of two variables. Then, the partial bq, dq, \({}_{a}^{d}q\), \({}_{c}^{b}q\), and \({}^{b,d}q\)-derivatives at \(( x,y ) \in \bigtriangleup \) can be given as follows:

$$\begin{aligned}& \frac{^{b}\partial _{q_{1}}f ( x,y ) }{^{b}\partial _{q_{1}}x} = \frac{f ( q_{1}x+ ( 1-q_{1} ) b,y ) -f ( x,y ) }{ ( 1-q_{1} ) ( b-x ) }, \quad x\neq b, \\& \frac{^{d}\partial _{q_{2}}f ( x,y ) }{^{b}\partial _{q_{2}}y} = \frac{f ( x,q_{2}y+ ( 1-q_{2} ) d ) -f ( x,y ) }{ ( 1-q_{2} ) ( d-y ) },\quad y\neq d, \\& \begin{aligned} \frac{{}_{a}^{d}\partial _{q_{1},q_{2}}^{2}f ( x,y ) }{{}_{a}\partial _{q_{1}}x\,{}^{d}\partial _{q_{2}}y} & = \frac{1}{ ( x-a ) ( d-y ) ( 1-q_{1} ) ( 1-q_{2} ) } \\ &\quad{} \times \bigl[ f \bigl(q_{1}x+ ( 1-q_{1} ) a,q_{2}y+ ( 1-q_{2} ) d \bigr) \\ &\quad{} - f \bigl( q_{1}x+ ( 1-q_{1} ) a,y \bigr) -f \bigl( x,q_{2}y+ ( 1-q_{2} ) d \bigr) +f ( x,y ) \bigr] , \\ &\quad x\neq a, y\neq d, \end{aligned} \\& \begin{aligned} \frac{{}_{c}^{b}\partial _{q_{1},q_{2}}^{2}f ( x,y ) }{^{b} \partial _{q_{1}}x_{ c}\partial _{q_{2}}y} & = \frac{1}{ ( b-x ) ( y-c ) ( 1-q_{1} ) ( 1-q_{2} ) } \\ &\quad{} \times \bigl[ f \bigl( q_{1}x+ ( 1-q_{1} ) b,q_{2}y+ ( 1-q_{2} ) c \bigr) \\ &\quad{} - f \bigl( q_{1}x+ ( 1-q_{1} ) b,y \bigr) -f \bigl( x,q_{2}y+ ( 1-q_{2} ) c \bigr) +f ( x,y ) \bigr] , \\ &\quad x\neq b, y\neq c, \end{aligned} \\& \begin{aligned} \frac{^{b,d}\partial _{q_{1},q_{2}}^{2}f ( x,y ) }{^{b}\partial _{q_{1}}x\,{}^{d}\partial _{q_{2}}y} & = \frac{1}{ ( b-x ) ( d-y ) ( 1-q_{1} ) ( 1-q_{2} ) } \\ &\quad{} \times \bigl[ f \bigl( q_{1}x+ ( 1-q_{1} ) b,q_{2}y+ ( 1-q_{2} ) d \bigr) \\ &\quad{} - f \bigl( q_{1}x+ ( 1-q_{1} ) b,y \bigr) -f \bigl( x,q_{2}y+ ( 1-q_{2} ) d \bigr) +f ( x,y ) \bigr] , \\ &\quad x\neq b, y\neq d. \end{aligned} \end{aligned}$$

Recently, in [30], new versions of q-Hermite–Hadamard-type inequalities for coordinated convex functions have been established.

Theorem 2.5

Let \(f:\bigtriangleup \rightarrow \mathbb{R}\) be a coordinated convex function. Then, we have

$$\begin{aligned} &f \biggl( \frac{a+b}{2},\frac{c+d}{2} \biggr) \\ &\quad \leq \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f \biggl( x, \frac{c+d}{2} \biggr) } \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f \biggl( x,\frac{c+d}{2} \biggr) } \, {}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} + \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f \biggl( \frac{a+b}{2},y \biggr) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f \biggl( \frac{a+b}{2},y \biggr) } \,{}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \\ &\quad \leq \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x + \int _{\frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \leq \frac{1}{4(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d)} {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} + \frac{1}{4(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y)} \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y)} \,{}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \\ &\quad \leq \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4}. \end{aligned}$$

In this paper, we study some estimations between the middle and the rightmost terms of the above inequalities.

3 Main results

In this section, we prove several new inequalities for q-differentiable coordinated convex functions that are related to the right side of Hermite–Hadamard inequalities for coordinated convex functions. We may start with some lemmas, which are useful in further considerations.

Lemma 3.1

Let \(f:[a,b]\to \mathbb{R}\). Then, we have

$$\begin{aligned} &\int _{0}^{1} qt \,{}_{a}D_{q}f \biggl(tb+(1-t)\frac{a+b}{2} \biggr) \,{}_{0}d_{q}t \\ &\quad =\frac{2}{b-a}f (b )-\frac{4}{(b-a)^{2}} \int _{ \frac{a+b}{2}}^{b} f(x) \,{}_{\frac{a+b}{2}}d_{q}x. \end{aligned}$$
(3.1)

Proof

By (2.3) and the definition of a q-integral, we have

$$\begin{aligned} & \int _{0}^{1}qt \,{}_{a}D_{q}f \biggl( tb+(1-t)\frac{a+b}{2} \biggr) \,{}_{0}d_{q}t \\ &\quad = \frac{2qt f ( tb+(1-t)\frac{a+b}{2} ) }{b-a}\bigg\vert _{0}^{1}- \frac{2q}{b-a} \int _{0}^{1}f \biggl( qtb+(1-qt) \frac{a+b}{2} \biggr) \,{}_{0}d_{q}t \\ &\quad =\frac{2qf(b)}{b-a}-\frac{2q}{b-a}(1-q)\sum _{n=0}^{\infty }q^{n}f \biggl( q^{n+1}b+ \bigl(1-q^{n+1} \bigr)\frac{a+b}{2} \biggr) \\ &\quad =\frac{2qf(b)}{b-a}-\frac{2}{b-a}(1-q)\sum _{n=0}^{\infty }q^{n+1}f \biggl( q^{n+1}b+ \bigl(1-q^{n+1} \bigr)\frac{a+b}{2} \biggr) \\ &\quad =\frac{2qf(b)}{b-a}-\frac{2}{b-a}(1-q)\sum _{n=1}^{\infty }q^{n}f \biggl( q^{n}b+ \bigl(1-q^{n} \bigr) \frac{a+b}{2} \biggr) \\ &\quad =\frac{2qf(b)}{b-a}-\frac{2}{b-a}(1-q) \Biggl\{ \sum _{n=0}^{\infty }q^{n}f \biggl( q^{n}b+ \bigl(1-q^{n} \bigr)\frac{a+b}{2} \biggr) -f(b) \Biggr\} \\ &\quad =\frac{2}{b-a}f (b ) -\frac{4}{(b-a)^{2}} \int _{\frac{a+b}{2}}^{b}f(x) \,{}_{\frac{a+b}{2}}d_{q}x, \end{aligned}$$

which completes the proof. □

Lemma 3.2

Let \(f:[a,b]\to \mathbb{R}\). Then, we have

$$\begin{aligned} &\int _{0}^{1} qt \,{}^{b}D_{q}f \biggl(ta+(1-t)\frac{a+b}{2} \biggr) \,{}_{0}d_{q}t \\ &\quad =-\frac{2}{b-a}f (a )+\frac{4}{(b-a)^{2}} \int ^{ \frac{a+b}{2}}_{a} f(x) \,{}^{\frac{a+b}{2}}d_{q}x. \end{aligned}$$
(3.2)

Proof

By (2.4) and the definition of a q-integral, we have

$$\begin{aligned} & \int _{0}^{1}qt \,{}^{b}D_{q}f \biggl( ta+(1-t)\frac{a+b}{2} \biggr) \,{}_{0}d_{q}t \\ &\quad =\frac{2q}{b-a} \int _{0}^{1}f \biggl( qta+(1-qt) \frac{a+b}{2} \biggr) \,{}_{0}d_{q}t- \frac{2qt f ( ta+(1-t)\frac{a+b}{2} ) }{b-a}\bigg\vert _{0}^{1} \\ &\quad =\frac{2q}{b-a}(1-q)\sum_{n=0}^{\infty }q^{n}f \biggl( q^{n+1}a+ \bigl(1-q^{n+1} \bigr)\frac{a+b}{2} \biggr) -\frac{2qf(a)}{b-a} \\ &\quad =-\frac{2qf(a)}{b-a}+\frac{2}{b-a}(1-q)\sum _{n=0}^{\infty }q^{n+1}f \biggl( q^{n+1}a+ \bigl(1-q^{n+1} \bigr)\frac{a+b}{2} \biggr) \\ &\quad =-\frac{2qf(a)}{b-a}+\frac{2}{b-a}(1-q)\sum _{n=1}^{\infty }q^{n}f \biggl( q^{n}a+ \bigl(1-q^{n} \bigr) \frac{a+b}{2} \biggr) \\ &\quad =-\frac{2qf(a)}{b-a}+\frac{2}{b-a}(1-q) \Biggl\{ \sum _{n=0}^{\infty }q^{n}f \biggl( q^{n}a+ \bigl(1-q^{n} \bigr)\frac{a+b}{2} \biggr) -f(a) \Biggr\} \\ &\quad =-\frac{2}{b-a}f ( a ) +\frac{4}{(b-a)^{2}} \int _{a}^{\frac{a+b}{2}}f(x) \,{}^{\frac{a+b}{2}}d_{q}x. \end{aligned}$$

The proof is completed. □

For convenience, we will use the following notations:

$$\begin{aligned}& \Phi (t,s):= \frac {{}_{a,c}\partial ^{2}{}_{q_{1},q_{2}}f(t,s)}{{}_{a}\partial _{q_{1}}t{}_{c}\partial _{q_{2}}s},\qquad \Theta (t,s):= \frac {{}_{a}^{d}\partial ^{2}{}_{q_{1},q_{2}}f(t,s)}{{}_{a}\partial _{q_{1}}t{}^{d}\partial _{q_{2}}s}, \\& \Psi (t,s):= \frac {{}_{c}^{b}\partial ^{2}{}_{q_{1},q_{2}}f(t,s)}{{}^{b}\partial _{q_{1}}t{}_{c}\partial _{q_{2}}s}\quad \text{and} \quad \Omega (t,s):=\frac {{}^{b,d}\partial ^{2}{}_{q_{1},q_{2}}f(t,s)}{{}^{b}\partial _{q_{1}}t{}^{d}\partial _{q_{2}}s}. \end{aligned}$$

Lemma 3.3

Let \(f:\triangle \rightarrow \mathbb{R}\) be a q-partially differential function on \(\triangle ^{\circ }\). If \(\Phi (t,s)\), \(\Theta (t,s) \), \(\Psi (t,s)\), and \(\Omega (t,s)\) are q-integrable on , then the following identity holds:

$$\begin{aligned} & \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \, {}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \\ &\quad =\frac{(b-a)(d-c)}{16} \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl[ \Phi \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b,\frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \\ &\quad \quad{}-\Theta \biggl( \frac{1-t}{2}a+\frac{1+t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \\ &\quad \quad{}-\Psi \biggl( \frac{1+t}{2}a+\frac{1-t}{2}b, \frac{1-s}{2}c+ \frac{1+s}{2}d \biggr) \\ &\quad \quad{}+\Omega \biggl( \frac{1+t}{2}a+\frac{1-t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr] \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t. \end{aligned}$$

Proof

We use Lemma 3.1 for variables s and t, and we obtain

$$\begin{aligned} I_{1}&: = \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s)\Phi \biggl( \frac{1-t}{2}a+\frac{1+t}{2}b, \frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ & = \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s)\Phi \biggl( tb+(1-t) \frac{a+b}{2},sd+(1-s) \frac{c+d}{2} \biggr) \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ & = \int _{0}^{1}q_{1}t \biggl[ \int _{0}^{1}q_{2}s \Phi \biggl( tb+(1-t) \frac{a+b}{2},sd+(1-s)\frac{c+d}{2} \biggr) \,{}_{0}d_{q_{2}}s \biggr] \,{}_{0}d_{q_{1}}t \\ & = \int _{0}^{1}q_{1}t \biggl[ \frac{2}{d-c} \frac{_{a}\partial _{q_{1}}}{{}_{a}\partial _{q_{1}}t}f \biggl( tb+(1-t)\frac{a+b}{2},d \biggr) \\ & \quad{}-\frac{4}{(d-c)^{2}} \int _{\frac{c+d}{2}}^{d} \frac{_{a}\partial _{q_{1}}}{{}_{a}\partial _{q_{1}}t}f \biggl( tb+(1-t)\frac{a+b}{2},y \biggr) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \,{}_{0}d_{q_{1}}t \\ & =\frac{2}{d-c} \int _{0}^{1}q_{1}t \frac{_{a}\partial _{q_{1}}}{{}_{a}\partial _{q_{1}}t}f \biggl( tb+(1-t) \frac{a+b}{2},d \biggr) \,{}_{0}d_{q_{1}}t \\ & \quad{}-\frac{4}{(d-c)^{2}} \int _{\frac{c+d}{2}}^{d} \biggl[ \int _{0}^{1}q_{1}t \frac{_{a}\partial _{q_{1}}}{{}_{a}\partial _{q_{1}}t}f \biggl( tb+(1-t) \frac{a+b}{2},y \biggr) \,{}_{0}d_{q_{1}}t \biggr] \,{}_{\frac{c+d}{2}}d_{q_{2}}y \\ & =\frac{2}{d-c} \biggl[ \frac{2}{b-a}f ( b,d ) - \frac{4}{(b-a)^{2}} \int _{\frac{a+b}{2}}^{b}f ( x,d ) \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ & \quad{}-\frac{4}{(d-c)^{2}} \int _{\frac{c+d}{2}}^{d} \biggl[ \frac{2}{b-a}f ( b,y ) -\frac{4}{(b-a)^{2}} \int _{\frac{a+b}{2}}^{b}f ( x,y ) \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \,{}_{\frac{c+d}{2}}d_{q_{2}}y \\ & =\frac{4}{(b-a)(d-c)}f ( b,d ) - \frac{8}{(b-a)^{2}(d-c)} \int _{\frac{a+b}{2}}^{b}f ( x,d )\, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ & \quad{}-\frac{8}{(b-a)(d-c)^{2}} \int _{\frac{c+d}{2}}^{d}f ( b,y ) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \\ &\quad{}+\frac{16}{(b-a)^{2}(d-c)^{2}} \int _{\frac{a+b}{2}}^{b} \int _{ \frac{c+d}{2}}^{d}f ( x,y ) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x. \end{aligned}$$

Using Lemma 3.2 and Lemma 3.1 for variables s and t, respectively, we obtain

$$\begin{aligned} I_{2}& := \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s)\Theta \biggl( \frac{1-t}{2}a+\frac{1+t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ & = \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s)\Theta \biggl( tb+(1-t) \frac{a+b}{2},sc+(1-s) \frac{c+d}{2} \biggr) \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ & = \int _{0}^{1}q_{1}t \biggl[ \int _{0}^{1}q_{2}s \Theta \biggl( tb+(1-t) \frac{a+b}{2},sc+(1-s)\frac{c+d}{2} \biggr) \,{}_{0}d_{q_{2}}s \biggr] \,{}_{0}d_{q_{1}}t \\ & = \int _{0}^{1}q_{1}t \biggl[ - \frac{2}{d-c}{} \frac{{}_{a}\partial _{q_{1}}}{_{a}\partial _{q_{1}}t}f \biggl( tb+(1-t) \frac{a+b}{2},c \biggr) \\ & \quad{}+\frac{4}{(d-c)^{2}} \int _{c}^{\frac{c+d}{2}}{} \frac{_{a}\partial _{q_{1}}}{{}_{a}\partial _{q_{1}}t}f \biggl( tb+(1-t) \frac{a+b}{2},y \biggr) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \biggr] \,{}_{0}d_{q_{1}}t \\ & =-\frac{2}{d-c} \int _{0}^{1}q_{1}t {} \frac{{}_{a}\partial _{q_{1}}}{_{a}\partial _{q_{1}}t}f \biggl( tb+(1-t)\frac{a+b}{2},c \biggr) \,{}_{0}d_{q_{1}}t \\ & \quad{}+\frac{4}{(d-c)^{2}} \int _{c}^{\frac{c+d}{2}} \biggl[ \int _{0}^{1}q_{1}t {} \frac{{}_{a}\partial _{q_{1}}}{{}_{a}\partial _{q_{1}}t}f \biggl( tb+(1-t)\frac{a+b}{2},y \biggr) \,{}_{0}d_{q_{1}}t \biggr] \,{}^{\frac{c+d}{2}}d_{q_{2}}y \\ & =-\frac{2}{d-c} \biggl[ \frac{2}{b-a}f ( b,c ) - \frac{4}{(b-a)^{2}} \int _{\frac{a+b}{2}}^{b}f ( x,c ) \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ & \quad{}+\frac{4}{(d-c)^{2}} \int _{c}^{\frac{c+d}{2}} \biggl[ \frac{2}{b-a}f ( b,y ) -\frac{4}{(b-a)^{2}} \int _{\frac{a+b}{2}}^{b}f ( x,y ) \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \,{}^{\frac{c+d}{2}}d_{q_{2}}y \\ & =-\frac{4}{(b-a)(d-c)}f ( b,c ) + \frac{8}{(b-a)^{2}(d-c)} \int _{\frac{a+b}{2}}^{b}f ( x,c ) \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ & \quad{}+\frac{8}{(b-a)(d-c)^{2}} \int _{c}^{\frac{c+d}{2}}f ( b,y ) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \\ &\quad{}-\frac{16}{(b-a)^{2}(d-c)^{2}}\int _{\frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}f ( x,y ) {}^{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x. \end{aligned}$$

Similarly, using Lemma 3.1 and Lemma 3.2 for variables s and t, respectively, we obtain

$$\begin{aligned} I_{3}&: = \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s)\Psi \biggl( \frac{1+t}{2}a+\frac{1-t}{2}b,\frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ & =-\frac{4}{(b-a)(d-c)}f ( a,d ) + \frac{8}{(b-a)^{2}(d-c)} \int _{a}^{\frac{a+b}{2}}f ( x,d ) {}^{\frac{a+b}{2}}d_{q_{1}}x \\ & \quad{}+\frac{8}{(b-a)(d-c)^{2}} \int _{\frac{c+d}{2}}^{d}f ( a,y ) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \\ &\quad{}-\frac{16}{(b-a)^{2}(d-c)^{2}} \int _{a}^{\frac{a+b}{2}} \int _{ \frac{c+d}{2}}^{d}f ( x,y ) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x. \end{aligned}$$

Using Lemma 3.2 for variables s and t, we obtain

$$\begin{aligned} I_{4}&: = \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s)\Omega \biggl( \frac{1+t}{2}a+\frac{1-t}{2}b, \frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ & =\frac{4}{(b-a)(d-c)}f ( a,c ) - \frac{8}{(b-a)^{2}(d-c)} \int _{a}^{\frac{a+b}{2}}f ( x,c ) {}^{\frac{a+b}{2}}d_{q_{1}}x \\ & \quad{}-\frac{8}{(b-a)(d-c)^{2}} \int _{c}^{\frac{c+d}{2}}f ( a,y ) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \\ &\quad{}+\frac{16}{(b-a)^{2}(d-c)^{2}}\int _{a}^{\frac{a+b}{2}} \int _{c}^{\frac{c+d}{2}}f ( x,y ) {}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x. \end{aligned}$$

Multiplying \((I_{1}-I_{2}-I_{3}+I_{4})\) by \(\frac{(b-a)(d-c)}{16}\), the proof is completed. □

Theorem 3.1

Under the assumptions of Lemma 3.3. If \(|\Phi (t,s)|\), \(|\Theta (t,s)|\), \(|\Psi (t,s)|\), and \(|\Omega (t,s)|\) are coordinated convex on , then the following inequality holds:

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \,{}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{64[2]_{q_{1}}[2]_{q_{2}}[3]_{q_{1}}[3]_{q_{2}}} \\ &\quad \quad{} \times \bigl[ q_{1}^{3}q_{2}^{3} \bigl( \bigl\vert \Phi (a,c) \bigr\vert + \bigl\vert \Theta (a,d) \bigr\vert + \bigl\vert \Psi (b,c) \bigr\vert + \bigl\vert \Omega (b,d) \bigr\vert \bigr) \\ &\quad \quad{} + q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl( \bigl\vert \Phi (a,d) \bigr\vert + \bigl\vert \Theta (a,c) \bigr\vert + \bigl\vert \Psi (b,d) \bigr\vert + \bigl\vert \Omega (b,c) \bigr\vert \bigr) \\ &\quad \quad{} + q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl( \bigl\vert \Phi (b,c) \bigr\vert + \bigl\vert \Theta (b,d) \bigr\vert + \bigl\vert \Psi (a,c) \bigr\vert + \bigl\vert \Omega (a,d) \bigr\vert \bigr) \\ &\quad \quad{} + \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl( \bigl\vert \Phi (b,d) \bigr\vert + \bigl\vert \Theta (b,c) \bigr\vert + \bigl\vert \Psi (a,d) \bigr\vert + \bigl\vert \Omega (a,c) \bigr\vert \bigr) \bigr] . \end{aligned}$$
(3.3)

Proof

From Lemma 3.3, we have

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \, {}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{16} \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl[ \biggl\vert \Phi \biggl( \frac{1-t}{2}a+\frac{1+t}{2}b, \frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \\ &\quad \quad{}+ \biggl\vert \Theta \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b, \frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \\ &\quad \quad{}+ \biggl\vert \Psi \biggl( \frac{1+t}{2}a+\frac{1-t}{2}b,\frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \\ &\quad \quad{}+ \biggl\vert \Omega \biggl( \frac{1+t}{2}a+ \frac{1-t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \biggr] \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t. \end{aligned}$$
(3.4)

By the coordinated convexity of \(|\Phi (t,s)|\), \(|\Theta (t,s)|\), \(|\Psi (t,s)|\) and \(|\Omega (t,s)|\), we obtain

$$\begin{aligned}& \begin{aligned}[b] & \biggl\vert \Phi \biggl( \frac{1-t}{2}a+\frac{1+t}{2}b, \frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \\ &\quad \leq \frac{(1-t)(1-s)}{4} \bigl\vert \Phi (a,c) \bigr\vert + \frac{(1-t)(1+s)}{4} \bigl\vert \Phi (a,d) \bigr\vert \\ &\quad \quad{}+\frac{(1+t)(1-s)}{4} \bigl\vert \Phi (b,c) \bigr\vert + \frac{(1+t)(1+s)}{4} \bigl\vert \Phi (b,d) \bigr\vert , \end{aligned} \end{aligned}$$
(3.5)
$$\begin{aligned}& \begin{aligned}[b] & \biggl\vert \Theta \biggl( \frac{1-t}{2}a+\frac{1+t}{2}b, \frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \\ &\quad \leq \frac{(1-t)(1+s)}{4} \bigl\vert \Theta (a,c) \bigr\vert + \frac{(1-t)(1-s)}{4} \bigl\vert \Theta (a,d) \bigr\vert \\ &\quad \quad{}+\frac{(1+t)(1+s)}{4} \bigl\vert \Theta (b,c) \bigr\vert + \frac{(1+t)(1-s)}{4} \bigl\vert \Theta (b,d) \bigr\vert , \end{aligned} \end{aligned}$$
(3.6)
$$\begin{aligned}& \begin{aligned}[b] & \biggl\vert \Psi \biggl( \frac{1+t}{2}a+\frac{1-t}{2}b, \frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \\ &\quad \leq \frac{(1+t)(1-s)}{4} \bigl\vert \Psi (a,c) \bigr\vert + \frac{(1+t)(1+s)}{4} \bigl\vert \Psi (a,d) \bigr\vert \\ &\quad \quad{}+\frac{(1-t)(1-s)}{4} \bigl\vert \Psi (b,c) \bigr\vert + \frac{(1-t)(1+s)}{4} \bigl\vert \Psi (b,d) \bigr\vert \end{aligned} \end{aligned}$$
(3.7)

and

$$\begin{aligned} & \biggl\vert \Omega \biggl( \frac{1+t}{2}a+\frac{1-t}{2}b, \frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \\ &\quad \leq \frac{(1+t)(1+s)}{4} \bigl\vert \Omega (a,c) \bigr\vert + \frac{(1+t)(1-s)}{4} \bigl\vert \Omega (a,d) \bigr\vert \\ &\quad \quad{}+\frac{(1-t)(1+s)}{4} \bigl\vert \Omega (b,c) \bigr\vert + \frac{(1-t)(1-s)}{4} \bigl\vert \Omega (b,d) \bigr\vert . \end{aligned}$$
(3.8)

Replacing (3.5)–(3.8) in (3.4), we obtain

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \, {}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{64} \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \\ &\quad \quad{}\times \bigl[(1-t) (1-s) \bigl( \bigl\vert \Phi (a,c) \bigr\vert + \bigl\vert \Theta (a,d) \bigr\vert + \bigl\vert \Psi (b,c) \bigr\vert + \bigl\vert \Omega (b,d) \bigr\vert \bigr) \\ &\quad \quad{}+(1-t) (1+s) \bigl( \bigl\vert \Phi (a,d) \bigr\vert + \bigl\vert \Theta (a,c) \bigr\vert + \bigl\vert \Psi (b,d) \bigr\vert + \bigl\vert \Omega (b,c) \bigr\vert \bigr) \\ &\quad \quad{}+(1+t) (1-s) \bigl( \bigl\vert \Phi (b,c) \bigr\vert + \bigl\vert \Theta (b,d) \bigr\vert + \bigl\vert \Psi (a,c) \bigr\vert + \bigl\vert \Omega (a,d) \bigr\vert \bigr) \\ &\quad \quad{}+(1+t) (1+s) \bigl( \bigl\vert \Phi (b,d) \bigr\vert + \bigl\vert \Theta (b,c) \bigr\vert + \bigl\vert \Psi (a,d) \bigr\vert + \bigl\vert \Omega (a,c) \bigr\vert \bigr) \bigr] \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t. \end{aligned}$$
(3.9)

Evaluating each integral in (3.9), we obtain (3.3). The proof is completed. □

Remark 3.1

If we take the limit \(q_{1}, q_{2}\to 1\), then (3.3) reduces to (1.4).

Theorem 3.2

Under the assumptions of Lemma 3.3. If \(|\Phi (t,s)|^{r} \), \(|\Theta (t,s)|^{r}\), \(|\Psi (t,s)|^{r}\), and \(|\Omega (t,s)|^{r}\) are coordinated convex on and \(p,r>1\), \(\frac{1}{p}+\frac{1}{r}=1\), then the following inequality holds:

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \, {}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{16} \biggl[ \frac{q_{1}^{p}q_{2}^{p}}{[p+1]_{q_{1}}[p+1]_{q_{2}}} \biggr] ^{1/p} \biggl[\frac{1}{4[2]_{q_{1}}[2]_{q_{2}}} \biggr]^{1/r} \\ &\quad \quad{}\times \bigl[ \bigl(q_{1}q_{2} \bigl\vert \Phi (a,c) \bigr\vert ^{r}+q_{1}(2+q_{2}) \bigl\vert \Phi (a,d) \bigr\vert ^{r}+q_{2}(2+q_{1}) \bigl\vert \Phi (b,c) \bigr\vert ^{r} \\ &\quad \quad{}+(2+q_{1}) (2+q_{2}) \bigl\vert \Phi (b,d) \bigr\vert ^{r} \bigr)^{1/r} \\ &\quad \quad{}+ \bigl(q_{1}(2+q_{2}) \bigl\vert \Theta (a,c) \bigr\vert ^{r}+q_{1}q_{2} \bigl\vert \Theta (a,d) \bigr\vert ^{r}+(2+q_{1}) (2+q_{2}) \bigl\vert \Theta (b,c) \bigr\vert ^{r} \\ &\quad \quad{}+q_{2}(2+q_{1}) \bigl\vert \Theta (b,d) \bigr\vert ^{r} \bigr)^{1/r} \\ &\quad \quad{}+ \bigl(q_{2}(2+q_{1}) \bigl\vert \Psi (a,c) \bigr\vert ^{r}+(2+q_{1}) (2+q_{2}) \bigl\vert \Psi (a,d) \bigr\vert ^{r}+q_{1}q_{2} \bigl\vert \Psi (b,c) \bigr\vert ^{r} \\ &\quad \quad{}+q_{1}(2+q_{2}) \bigl\vert \Psi (b,d) \bigr\vert ^{r} \bigr)^{1/r} \\ &\quad \quad{}+ \bigl((2+q_{1}) (2+q_{2}) \bigl\vert \Omega (a,c) \bigr\vert ^{r}+q_{2}(2+q_{1}) \bigl\vert \Omega (a,d) \bigr\vert ^{r}+q_{1}(2+q_{2}) \bigl\vert \Omega (b,c) \bigr\vert ^{r} \\ &\quad \quad{}+q_{1}q_{2} \bigl\vert \Omega (b,d) \bigr\vert ^{r} \bigr)^{1/r} \bigr] . \end{aligned}$$
(3.10)

Proof

From Lemma 3.3, we have

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \, {}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{16} \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl[ \biggl\vert \Phi \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b, \frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \\ &\quad \quad{}+ \biggl\vert \Theta \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b, \frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \\ &\quad \quad{}+ \biggl\vert \Psi \biggl( \frac{1+t}{2}a+\frac{1-t}{2}b,\frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \\ &\quad \quad{}+ \biggl\vert \Omega \biggl( \frac{1+t}{2}a+ \frac{1-t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \biggr] \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t. \end{aligned}$$
(3.11)

Now, using the q-Hölder inequality for double integrals, since \(|\Phi (t,s)|^{r}\) is coordinated convex, we obtain

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Phi \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b,\frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ &\quad \leq \biggl[ \int _{0}^{1} \int _{0}^{1}(q_{1}t)^{p}(q_{2}s)^{p} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/p} \\ &\quad \quad{}\times \biggl[ \int _{0}^{1} \int _{0}^{1} \biggl\vert \Phi \biggl( \frac{1-t}{2}a+\frac{1+t}{2}b,\frac{1-s}{2}c+ \frac{1+s}{2}d \biggr) \biggr\vert ^{r} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/r} \\ &\quad = \biggl[ \frac{q_{1}^{p}q_{2}^{p}}{[p+1]_{q_{1}}[p+1]_{q_{2}}} \biggr] ^{1/p} \\ &\quad \quad{}\times \biggl[ \int _{0}^{1} \int _{0}^{1} \biggl\vert \Phi \biggl( \frac{1-t}{2}a+\frac{1+t}{2}b,\frac{1-s}{2}c+ \frac{1+s}{2}d \biggr) \biggr\vert ^{r} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/r} \\ &\quad \leq \biggl[ \frac{q_{1}^{p}q_{2}^{p}}{[p+1]_{q_{1}}[p+1]_{q_{2}}} \biggr] ^{1/p} \\ &\quad \quad{}\times \biggl[ \int _{0}^{1} \int _{0}^{1}\frac{(1-t)(1-s)}{4} \bigl\vert \Phi (a,c) \bigr\vert ^{r}+\frac{(1-t)(1+s)}{4} \bigl\vert \Phi (a,d) \bigr\vert ^{r} \\ &\quad \quad{}+\frac{(1+t)(1-s)}{4} \bigl\vert \Phi (b,c) \bigr\vert ^{r}+ \frac{(1+t)(1+s)}{4} \bigl\vert \Phi (b,d) \bigr\vert ^{r} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/r}. \end{aligned}$$
(3.12)

Similarly, we have

$$\begin{aligned}& \begin{aligned}[b] & \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Theta \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ &\quad \leq \biggl[ \frac{q_{1}^{p}q_{2}^{p}}{[p+1]_{q_{1}}[p+1]_{q_{2}}} \biggr] ^{1/p} \\ &\quad \quad{}\times \biggl[ \int _{0}^{1} \int _{0}^{1}\frac{(1-t)(1+s)}{4} \bigl\vert \Theta (a,c) \bigr\vert ^{r}+\frac{(1-t)(1-s)}{4} \bigl\vert \Theta (a,d) \bigr\vert ^{r} \\ &\quad \quad{}+\frac{(1+t)(1+s)}{4} \bigl\vert \Theta (b,c) \bigr\vert ^{r}+ \frac{(1+t)(1-s)}{4} \bigl\vert \Theta (b,d) \bigr\vert ^{r} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/r}, \end{aligned} \end{aligned}$$
(3.13)
$$\begin{aligned}& \begin{aligned}[b] & \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Psi \biggl( \frac{1+t}{2}a+ \frac{1-t}{2}b,\frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ &\quad \leq \biggl[ \frac{q_{1}^{p}q_{2}^{p}}{[p+1]_{q_{1}}[p+1]_{q_{2}}} \biggr] ^{1/p} \\ &\quad \quad{}\times \biggl[ \int _{0}^{1} \int _{0}^{1}\frac{(1+t)(1-s)}{4} \bigl\vert \Psi (a,c) \bigr\vert ^{r}+\frac{(1+t)(1+s)}{4} \bigl\vert \Psi (a,d) \bigr\vert ^{r} \\ &\quad \quad{}+\frac{(1-t)(1-s)}{4} \bigl\vert \Psi (b,c) \bigr\vert ^{r}+ \frac{(1-t)(1+s)}{4} \bigl\vert \Psi (b,d) \bigr\vert ^{r} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/r} \end{aligned} \end{aligned}$$
(3.14)

and

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Omega \biggl( \frac{1+t}{2}a+ \frac{1-t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ &\quad \leq \biggl[ \frac{q_{1}^{p}q_{2}^{p}}{[p+1]_{q_{1}}[p+1]_{q_{2}}} \biggr] ^{1/p} \\ &\quad \quad{}\times \biggl[ \int _{0}^{1} \int _{0}^{1}\frac{(1+t)(1+s)}{4} \bigl\vert \Omega (a,c) \bigr\vert ^{r}+\frac{(1+t)(1-s)}{4} \bigl\vert \Omega (a,d) \bigr\vert ^{r} \\ &\quad \quad{}+\frac{(1-t)(1+s)}{4} \bigl\vert \Omega (b,c) \bigr\vert ^{r}+ \frac{(1-t)(1-s)}{4} \bigl\vert \Omega (b,d) \bigr\vert ^{r} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/r}. \end{aligned}$$
(3.15)

Replacing (3.12)–(3.15) in (3.11) and calculating each integral, we obtain

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \, {}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{16} \biggl[ \frac{q_{1}^{p}q_{2}^{p}}{[p+1]_{q_{1}}[p+1]_{q_{2}}} \biggr] ^{1/p} \biggl[\frac{1}{4[2]_{q_{1}}[2]_{q_{2}}} \biggr]^{1/r} \\ &\quad \quad{}\times \bigl[ \bigl(q_{1}q_{2} \bigl\vert \Phi (a,c) \bigr\vert ^{r}+q_{1}(2+q_{2}) \bigl\vert \Phi (a,d) \bigr\vert ^{r}+q_{2}(2+q_{1}) \bigl\vert \Phi (b,c) \bigr\vert ^{r} \\ &\quad \quad{}+ (2+q_{1}) (2+q_{2}) \bigl\vert \Phi (b,d) \bigr\vert ^{r} \bigr)^{1/r} \\ &\quad \quad{}+ \bigl(q_{1}(2+q_{2}) \bigl\vert \Theta (a,c) \bigr\vert ^{r}+q_{1}q_{2} \bigl\vert \Theta (a,d) \bigr\vert ^{r}+(2+q_{1}) (2+q_{2}) \bigl\vert \Theta (b,c) \bigr\vert ^{r} \\ &\quad \quad{}+q_{2}(2+q_{1}) \bigl\vert \Theta (b,d) \bigr\vert ^{r} \bigr)^{1/r} \\ &\quad \quad{}+ \bigl(q_{2}(2+q_{1}) \bigl\vert \Psi (a,c) \bigr\vert ^{r}+(2+q_{1}) (2+q_{2}) \bigl\vert \Psi (a,d) \bigr\vert ^{r}+q_{1}q_{2} \bigl\vert \Psi (b,c) \bigr\vert ^{r} \\ &\quad \quad{}+q_{1}(2+q_{2}) \bigl\vert \Psi (b,d) \bigr\vert ^{r} \bigr)^{1/r} \\ &\quad \quad{}+ \bigl((2+q_{1}) (2+q_{2}) \bigl\vert \Omega (a,c) \bigr\vert ^{r}+q_{2}(2+q_{1}) \bigl\vert \Omega (a,d) \bigr\vert ^{r}+q_{1}(2+q_{2}) \bigl\vert \Omega (b,c) \bigr\vert ^{r} \\ &\quad \quad{}+ q_{1}q_{2} \bigl\vert \Omega (b,d) \bigr\vert ^{r} \bigr)^{1/r} \bigr] . \end{aligned}$$

The proof is completed. □

Theorem 3.3

Under the assumptions of Lemma 3.3. If \(|\Phi (t,s)|^{r} \), \(|\Theta (t,s)|^{r}\), \(|\Psi (t,s)|^{r}\), and \(|\Omega (t,s)|^{r}\) are coordinated convex on and \(r\geq 1\), then the following inequality holds:

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \, {}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{16} \biggl[ \frac{q_{1}q_{2}}{[2]_{q_{1}}[2]_{q_{2}}} \biggr] ^{1-1/r} \biggl[ \frac{1}{4[2]_{q_{1}}[2]_{q_{2}}[3]_{q_{1}}[3]_{q_{2}}} \biggr]^{1/r} \\ &\quad \quad{} \times \bigl[ \bigl( q_{1}^{3}q_{2}^{3} \bigl\vert \Phi (a,c) \bigr\vert ^{r}+q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Phi (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Phi (b,c) \bigr\vert ^{r}+ \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Phi (b,d) \bigr\vert ^{r} \bigr) ^{1/r} \\ &\quad \quad{} + \bigl( q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Theta (a,c) \bigr\vert ^{r}+q_{1}^{3}q_{2}^{3} \bigl\vert \Theta (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Theta (b,c) \bigr\vert ^{r}+q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Theta (b,d) \bigr\vert ^{r} \bigr) ^{1/r} \\ &\quad \quad{} + \bigl( q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Psi (a,c) \bigr\vert ^{r}+ \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Psi (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + q_{1}^{3}q_{2}^{3} \bigl\vert \Psi (b,c) \bigr\vert ^{r}+q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Psi (b,d) \bigr\vert ^{r} \bigr) ^{1/r} \\ &\quad \quad{} + \bigl( \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Omega (a,c) \bigr\vert ^{r}+q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Omega (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Omega (b,c) \bigr\vert ^{r}+q_{1}^{3}q_{2}^{3} \bigl\vert \Omega (b,d) \bigr\vert ^{r} \bigr) ^{1/r} \bigr]. \end{aligned}$$
(3.16)

Proof

From Lemma 3.3, we have

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \, {}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{16} \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl[ \biggl\vert \Phi \biggl( \frac{1-t}{2}a+\frac{1+t}{2}b, \frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \\ &\quad \quad{}+ \biggl\vert \Theta \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b, \frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \\ &\quad \quad{}+ \biggl\vert \Psi \biggl( \frac{1+t}{2}a+\frac{1-t}{2}b,\frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \\ &\quad \quad{}+ \biggl\vert \Omega \biggl( \frac{1+t}{2}a+ \frac{1-t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \biggr] \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t. \end{aligned}$$
(3.17)

Now, using the q-power mean inequality for double integrals, since \(|\Phi (t,s)|^{r}\) is coordinated convex, we obtain

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Phi \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b,\frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ &\quad \leq \biggl[ \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1-1/r} \\ &\quad \quad{} \times \biggl[ \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Phi \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b,\frac{1-s}{2}c+ \frac{1+s}{2}d \biggr) \biggr\vert ^{r} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/r} \\ &\quad = \biggl[ \frac{q_{1}q_{2}}{[2]_{q_{1}}[2]_{q_{2}}} \biggr] ^{1-1/r} \\ &\quad \quad{} \times \biggl[ \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Phi \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b,\frac{1-s}{2}c+ \frac{1+s}{2}d \biggr) \biggr\vert ^{r} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/r} \\ &\quad \leq \biggl[ \frac{q_{1}q_{2}}{[2]_{q_{1}}[2]_{q_{2}}} \biggr] ^{1-1/r} \\ &\quad \quad{} \times \biggl[ \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\{ \frac{(1-t)(1-s)}{4} \bigl\vert \Phi (a,c) \bigr\vert ^{r}+ \frac{(1-t)(1+s)}{4} \bigl\vert \Phi (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + \frac{(1+t)(1-s)}{4} \bigl\vert \Phi (b,c) \bigr\vert ^{r}+ \frac{(1+t)(1+s)}{4} \bigl\vert \Phi (b,d) \bigr\vert ^{r} \biggr\} \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \biggr] ^{1/r} \\ &\quad = \biggl[ \frac{q_{1}q_{2}}{[2]_{q_{1}}[2]_{q_{2}}} \biggr] ^{1-1/r} \biggl[ \frac{1}{4[2]_{q_{1}}[2]_{q_{2}}[3]_{q_{1}}[3]_{q_{2}}} \biggr]^{1/r} \\ &\quad \quad{} \times \bigl[ q_{1}^{3}q_{2}^{3} \bigl\vert \Phi (a,c) \bigr\vert ^{r}+q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Phi (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Phi (b,c) \bigr\vert ^{r} \\ &\quad \quad{} + \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Phi (b,d) \bigr\vert ^{r} \bigr] ^{1/r}. \end{aligned}$$
(3.18)

Similarly, we have

$$\begin{aligned}& \begin{aligned}[b] & \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Theta \biggl( \frac{1-t}{2}a+ \frac{1+t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ &\quad \leq \biggl[ \frac{q_{1}q_{2}}{[2]_{q_{1}}[2]_{q_{2}}} \biggr] ^{1-1/r} \biggl[ \frac{1}{4[2]_{q_{1}}[2]_{q_{2}}[3]_{q_{1}}[3]_{q_{2}}} \biggr]^{1/r} \\ &\quad \quad{}\times \bigl[ q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Theta (a,c) \bigr\vert ^{r}+q_{1}^{3}q_{2}^{3} \bigl\vert \Theta (a,d) \bigr\vert ^{r} \\ &\quad \quad{}+ \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Theta (b,c) \bigr\vert ^{r} \\ &\quad \quad{}+ q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Theta (b,d) \bigr\vert ^{r} \bigr] ^{1/r}, \end{aligned} \end{aligned}$$
(3.19)
$$\begin{aligned}& \begin{aligned}[b] & \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Psi \biggl( \frac{1+t}{2}a+ \frac{1-t}{2}b,\frac{1-s}{2}c+\frac{1+s}{2}d \biggr) \biggr\vert \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ &\quad \leq \biggl[ \frac{q_{1}q_{2}}{[2]_{q_{1}}[2]_{q_{2}}} \biggr] ^{1-1/r} \biggl[ \frac{1}{4[2]_{q_{1}}[2]_{q_{2}}[3]_{q_{1}}[3]_{q_{2}}} \biggr]^{1/r} \\ &\quad \quad{}\times \bigl[ q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Psi (a,c) \bigr\vert ^{r}+ \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Psi (a,d) \bigr\vert ^{r} \\ &\quad \quad{}+ q_{1}^{3}q_{2}^{3} \bigl\vert \Psi (b,c) \bigr\vert ^{r}+q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Psi (b,d) \bigr\vert ^{r} \bigr] ^{1/r} \end{aligned} \end{aligned}$$
(3.20)

and

$$\begin{aligned} & \int _{0}^{1} \int _{0}^{1}(q_{1}t) (q_{2}s) \biggl\vert \Omega \biggl( \frac{1+t}{2}a+ \frac{1-t}{2}b,\frac{1+s}{2}c+\frac{1-s}{2}d \biggr) \biggr\vert \,{}_{0}d_{q_{2}}s \ {}_{0}d_{q_{1}}t \\ &\quad \leq \biggl[ \frac{q_{1}q_{2}}{[2]_{q_{1}}[2]_{q_{2}}} \biggr] ^{1-1/r} \biggl[ \frac{1}{4[2]_{q_{1}}[2]_{q_{2}}[3]_{q_{1}}[3]_{q_{2}}} \biggr]^{1/r} \\ &\quad \quad{}\times \bigl[ \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Omega (a,c) \bigr\vert ^{r}+q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Omega (a,d) \bigr\vert ^{r} \\ &\quad \quad{}+ q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Omega (b,c) \bigr\vert ^{r}+q_{1}^{3}q_{2}^{3} \bigl\vert \Omega (b,d) \bigr\vert ^{r} \bigr] ^{1/r}. \end{aligned}$$
(3.21)

Replacing (3.18)–(3.21) in (3.17), we obtain

$$\begin{aligned} & \biggl\vert \frac{f(a,c)+f(a,d)+f(b,c)+f(b,d)}{4} \\ &\quad \quad{} + \frac{1}{(b-a)(d-c)} \biggl[ \int _{a}^{\frac{a+b}{2}} \int _{c}^{ \frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{a}^{\frac{a+b}{2}} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{ \frac{a+b}{2}}^{b} \int _{c}^{\frac{c+d}{2}}{f(x,y}) \,{}^{\frac{c+d}{2}}d_{q_{2}}y \, {}_{\frac{a+b}{2}}d_{q_{1}}x \\ &\quad \quad{} + \int _{\frac{a+b}{2}}^{b} \int _{\frac{c+d}{2}}^{d}{f(x,y}) \,{}_{\frac{c+d}{2}}d_{q_{2}}y \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(b-a)} \biggl[ \int _{a}^{\frac{a+b}{2}}{f(x,c)+f(x,d) } {}^{\frac{a+b}{2}}d_{q_{1}}x+ \int _{\frac{a+b}{2}}^{b}{f(x,c)+f(x,d)} \,{}_{\frac{a+b}{2}}d_{q_{1}}x \biggr] \\ &\quad \quad{} - \frac{1}{2(d-c)} \biggl[ \int _{c}^{\frac{c+d}{2}}{f(a,y)+f(b,y) } \,{}^{\frac{c+d}{2}}d_{q_{2}}y+ \int _{\frac{c+d}{2}}^{d}{f(a,y)+f(b,y) } \, {}_{\frac{c+d}{2}}d_{q_{2}}y \biggr] \biggr\vert \\ &\quad \leq \frac{(b-a)(d-c)}{16} \biggl[ \frac{q_{1}q_{2}}{[2]_{q_{1}}[2]_{q_{2}}} \biggr] ^{1-1/r} \biggl[ \frac{1}{4[2]_{q_{1}}[2]_{q_{2}}[3]_{q_{1}}[3]_{q_{2}}} \biggr]^{1/r} \\ &\quad \quad{} \times \bigl[ \bigl( q_{1}^{3}q_{2}^{3} \bigl\vert \Phi (a,c) \bigr\vert ^{r}+q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Phi (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Phi (b,c) \bigr\vert ^{r}+ \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Phi (b,d) \bigr\vert ^{r} \bigr) ^{1/r} \\ &\quad \quad{} + \bigl( q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Theta (a,c) \bigr\vert ^{r}+q_{1}^{3}q_{2}^{3} \bigl\vert \Theta (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Theta (b,c) \bigr\vert ^{r}+q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Theta (b,d) \bigr\vert ^{r} \bigr) ^{1/r} \\ &\quad \quad{} + \bigl( q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Psi (a,c) \bigr\vert ^{r}+ \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Psi (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + q_{1}^{3}q_{2}^{3} \bigl\vert \Psi (b,c) \bigr\vert ^{r}+q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Psi (b,d) \bigr\vert ^{r} \bigr) ^{1/r} \\ &\quad \quad{} + \bigl( \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Omega (a,c) \bigr\vert ^{r}+q_{2}^{3} \bigl(2q_{1}+2q_{1}^{2}+q_{1}^{3} \bigr) \bigl\vert \Omega (a,d) \bigr\vert ^{r} \\ &\quad \quad{} + q_{1}^{3} \bigl(2q_{2}+2q_{2}^{2}+q_{2}^{3} \bigr) \bigl\vert \Omega (b,c) \bigr\vert ^{r}+q_{1}^{3}q_{2}^{3} \bigl\vert \Omega (b,d) \bigr\vert ^{r} \bigr) ^{1/r} \bigr]. \end{aligned}$$

The proof is completed. □

4 Examples

Now, we give some examples of our main results to demonstrate our theorems.

Example 4.1

Let \(f:[0,1]\times [0,1]\to \mathbb{R}\) be a function defined by \(f(x,y)=x^{2}y^{2}\). Then, f is q-partially differentiable. Moreover, \(\vert \Phi (t,s) \vert \), \(\vert \Theta (t,s) \vert \), \(\vert \Psi (t,s) \vert \), and \(\vert \Omega (t,s) \vert \) are q-integrable coordinated convex on \([0,1]\times [0,1]\). By applying Theorem 3.1 with \(q_{1}=\frac{1}{4}\) and \(q_{2}=\frac{3}{4}\), we have

$$\begin{aligned} &\frac{f(0,0)+f(0,1)+f(1,0)+f(1,1)}{4}=\frac{1}{4}, \\ &\frac{1}{(1-0)(1-0)} \biggl[ \int _{0}^{\frac{0+1}{2}} \int _{0}^{ \frac{0+1}{2}}{x^{2}y^{2}} \,{}^{\frac{0+1}{2}}d_{\frac{3}{4}}y \,{}^{\frac{0+1}{2}}d_{ \frac{1}{4}}x \\ &\quad \quad{}+ \int _{0}^{\frac{0+1}{2}} \int _{\frac{0+1}{2}}^{1}{x^{2}y^{2}} \, {}_{\frac{0+1}{2}}d_{\frac{3}{4}}y \,{}^{\frac{0+1}{2}}d_{\frac{1}{4}}x + \int _{\frac{0+1}{2}}^{1} \int _{0}^{\frac{0+1}{2}}{x^{2}y^{2}} \,{}^{\frac{0+1}{2}}d_{\frac{3}{4}}y \,{}_{\frac{0+1}{2}}d_{\frac{1}{4}}x \\ &\quad \quad{}+ \int _{\frac{0+1}{2}}^{1} \int _{\frac{0+1}{2}}^{1}{x^{2}y^{2}} \, {}_{\frac{0+1}{2}}d_{\frac{3}{4}}y \,{}_{\frac{0+1}{2}}d_{\frac{1}{4}}x \biggr] \\ &\quad = \int _{0}^{\frac{1}{2}} \int _{0}^{\frac{1}{2}}{x^{2}y^{2}} \,{}^{\frac{1}{2}}d_{\frac{3}{4}}y \,{}^{\frac{1}{2}}d_{\frac{1}{4}}x+ \int _{0}^{\frac{1}{2}} \int _{\frac{1}{2}}^{1}{x^{2}y^{2}} \,{}_{\frac{1}{2}}d_{\frac{3}{4}}y \,{}^{\frac{1}{2}}d_{\frac{1}{4}}x \\ &\quad \quad{}+ \int _{\frac{1}{2}}^{1} \int _{0}^{\frac{1}{2}}{x^{2}y^{2}} \,{}^{\frac{1}{2}}d_{\frac{3}{4}}y \,{}_{\frac{1}{2}}d_{\frac{1}{4}}x+ \int _{\frac{1}{2}}^{1} \int _{\frac{1}{2}}^{1}{x^{2}y^{2}} \,{}_{\frac{1}{2}}d_{\frac{3}{4}}y \,{}_{\frac{1}{2}}d_{\frac{1}{4}}x \\ &\quad =\frac{1}{4}\cdot \frac{3}{4}\cdot \frac{1}{2} \cdot \frac{1}{2}\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}{ \biggl( \frac{1}{4} \biggr)^{n} \biggl(\frac{3}{4} \biggr)^{m}}\frac{1}{4}\cdot \frac{1}{4} \biggl(1- \biggl( \frac{1}{4} \biggr)^{n} \biggr)^{2} \biggl(1- \biggl(\frac{3}{4} \biggr)^{m} \biggr)^{2} \\ &\quad \quad{}+\frac{1}{4}\cdot \frac{3}{4}\cdot \frac{1}{2}\cdot \frac{1}{2}\sum _{n=0}^{\infty}\sum_{m=0}^{\infty}{ \biggl(\frac{1}{4} \biggr)^{n} \biggl(\frac{3}{4} \biggr)^{m}}\frac{1}{4}\cdot \frac{1}{4} \biggl(1- \biggl( \frac{1}{4} \biggr)^{n} \biggr)^{2} \biggl(1+ \biggl(\frac{3}{4} \biggr)^{m} \biggr)^{2} \\ &\quad \quad{}+\frac{1}{4}\cdot \frac{3}{4}\cdot \frac{1}{2}\cdot \frac{1}{2}\sum _{n=0}^{\infty}\sum_{m=0}^{\infty}{ \biggl(\frac{1}{4} \biggr)^{n} \biggl(\frac{3}{4} \biggr)^{m}}\frac{1}{4}\cdot \frac{1}{4} \biggl(1+ \biggl( \frac{1}{4} \biggr)^{n} \biggr)^{2} \biggl(1- \biggl(\frac{3}{4} \biggr)^{m} \biggr)^{2} \\ &\quad \quad{}+\frac{1}{4}\cdot \frac{3}{4}\cdot \frac{1}{2}\cdot \frac{1}{2}\sum _{n=0}^{\infty}\sum_{m=0}^{\infty}{ \biggl(\frac{1}{4} \biggr)^{n} \biggl(\frac{3}{4} \biggr)^{m}}\frac{1}{4}\cdot \frac{1}{4} \biggl(1+ \biggl( \frac{1}{4} \biggr)^{n} \biggr)^{2} \biggl(1+ \biggl(\frac{3}{4} \biggr)^{m} \biggr)^{2} \\ &\quad = \frac{85}{116{,}032}+\frac{11{,}339}{1{,}740{,}480}+\frac{1765}{116{,}032}+ \frac{235{,}451}{1{,}740{,}480}=\frac{53}{336} \end{aligned}$$

and

$$\begin{aligned} &\frac{1}{2(1-0)} \biggl[ \int _{0}^{\frac{0+1}{2}}{f(x,0)+f(x,1)} \,{}^{\frac{0+1}{2}}d_{\frac{1}{4}}x+ \int _{\frac{0+1}{2}}^{1}{f(x,0)+f(x,1)} \,{}_{\frac{0+1}{2}}d_{\frac{1}{4}}x \biggr] \\ &\quad \quad{} + \frac{1}{2(1-0)} \biggl[ \int _{0}^{\frac{0+1}{2}}{f(0,y)+f(1,y)} \,{}^{\frac{0+1}{2}}d_{\frac{3}{4}}y + \int _{\frac{0+1}{2}}^{1}{f(0,y)+f(1,y)} \,{}_{\frac{0+1}{2}}d_{\frac{3}{4}}y \biggr] \\ &\quad =\frac{1}{2} \biggl[ \int _{0}^{\frac{1}{2}}{x^{2}} \,{}^{\frac{1}{2}}d_{ \frac{1}{4}}x+ \int _{\frac{1}{2}}^{1}{x^{2}} \,{}_{\frac{1}{2}}d_{ \frac{1}{4}}x+ \int _{0}^{\frac{1}{2}}{y^{2}} \,{}^{\frac{1}{2}}d_{ \frac{3}{4}}y + \int _{\frac{1}{2}}^{1}{y^{2}} \,{}_{\frac{1}{2}}d_{ \frac{3}{4}}y \biggr] \\ &\quad =\frac{1}{2} \Biggl[ \frac{3}{4}\cdot \frac{1}{2} \sum_{n=0}^{\infty}{ \biggl( \frac{1}{4} \biggr)^{n}\frac{1}{4} \biggl(1- \biggl(\frac{1}{4} \biggr)^{n} \biggr)^{2}}+ \frac{3}{4}\cdot \frac{1}{2}\sum_{n=0}^{ \infty}{ \biggl(\frac{1}{4} \biggr)^{n}\frac{1}{4} \biggl(1+ \biggl( \frac{1}{4} \biggr)^{n} \biggr)^{2}} \\ &\quad \quad{}+ \frac{1}{2}\cdot \frac{1}{2}\sum _{n=0}^{\infty}{ \biggl(\frac{3}{4} \biggr)^{n}\frac{1}{4} \biggl(1- \biggl( \frac{3}{4} \biggr)^{n} \biggr)^{2}}+ \frac{1}{4}\cdot \frac{1}{2}\sum_{n=0}^{ \infty}{ \biggl(\frac{3}{4} \biggr)^{n}\frac{1}{4} \biggl(1+ \biggl( \frac{3}{4} \biggr)^{n} \biggr)^{2}} \Biggr] \\ &\quad =\frac{1}{2} \biggl[\frac{68}{3360}+\frac{1412}{3360}+ \frac{300}{8288}+\frac{2668}{8288} \biggr]=\frac{1241}{3108}. \end{aligned}$$

Thus, the left-hand side of (3.3) is

$$ \biggl\vert \frac{1}{4}+\frac{53}{336}-\frac{1241}{3108} \biggr\vert = \frac{5}{592}. $$

Next, we consider

$$\begin{aligned}& \begin{aligned} \Phi (t,s)&= \frac {{}_{0,0}\partial ^{2}\,{}_{\frac{1}{4},\frac{3}{4}} t^{2}s^{2}}{{}_{0}\partial _{\frac{1}{4}}t{}_{0}\partial _{\frac{3}{4}}s}= \frac{4\cdot 4}{3\cdot 1\cdot ts} \biggl[ \frac{9t^{2}s^{2}}{16\cdot 16}- \frac{t^{2}s^{2}}{16}-\frac{9t^{2}s^{2}}{16}+t^{2}s^{2} \biggr] \\ &=\frac{35ts}{16}, \end{aligned} \\& \begin{aligned} \Theta (t,s)&= \frac {{}_{0}^{1}\partial ^{2}\,{}_{\frac{1}{4},\frac{3}{4}} t^{2}s^{2}}{{}_{0}\partial _{\frac{1}{4}}t{}^{1}\partial _{\frac{3}{4}}s} \\ &=\frac{4\cdot 4}{3\cdot 1\cdot t(1-s)} \biggl[\frac{t^{2}(3s+1)^{2}}{16\cdot 16}- \frac{t^{2}s^{2}}{16}-\frac{t^{2}(3s+1)^{2}}{16}+t^{2}s^{2} \biggr] \\ &=\frac{-5t(7s+1)}{16}, \end{aligned} \\& \begin{aligned} \Psi (t,s)&= \frac {{}_{0}^{1}\partial ^{2}\,{}_{\frac{1}{4},\frac{3}{4}} t^{2}s^{2}}{{}^{1}\partial _{\frac{1}{4}}t{}_{0}\partial _{\frac{3}{4}}s} \\ &=\frac{4\cdot 4}{3\cdot 1\cdot (1-t)s} \biggl[\frac{9(t+3)^{2}s^{2}}{16\cdot 16}- \frac{(t+3)^{2}s^{2}}{16}- \frac{9t^{2}s^{2}}{16}+t^{2}s^{2} \biggr] \\ &=\frac{-7(5t+3)s}{16} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \Omega (t,s)&= \frac {{}^{1,1}\partial ^{2}\,{}_{\frac{1}{4},\frac{3}{4}} t^{2}s^{2}}{{}^{1}\partial _{\frac{1}{4}}t{}^{1}\partial _{\frac{3}{4}}s} \\ &=\frac{4\cdot 4}{3\cdot 1\cdot (1-t)(1-s)} \biggl[ \frac{(t+3)^{2}(3s+1)^{2}}{16\cdot 16}-\frac{(t+3)^{2}s^{2}}{16}- \frac{t^{2}(3s+1)^{2}}{16} + t^{2}s^{2} \biggr] \\ &=\frac{(5t+3)(7s+1)}{16}. \end{aligned}$$

Hence, the right-hand side of (3.3) is

$$\begin{aligned} & \frac{(1-0)(1-0)}{64 (1+\frac{1}{4} ) (1+\frac{3}{4} ) (1+\frac{1}{4}+\frac{1}{16} ) (1+\frac{3}{4}+\frac{9}{16} )} \\ &\quad \quad{}\times \biggl[ \biggl(\frac{1}{4} \biggr)^{3} \biggl( \frac{3}{4} \biggr)^{3} \bigl( \bigl\vert \Phi (0,0) \bigr\vert + \bigl\vert \Theta (0,1) \bigr\vert + \bigl\vert \Psi (1,0) \bigr\vert + \bigl\vert \Omega (1,1) \bigr\vert \bigr) \\ &\quad \quad{}+ \biggl(\frac{1}{4} \biggr)^{3} \biggl( \frac{2\cdot 3}{4}+ \frac{2\cdot 9}{16}+\frac{27}{64} \biggr) \bigl( \bigl\vert \Phi (0,1) \bigr\vert + \bigl\vert \Theta (0,0) \bigr\vert + \bigl\vert \Psi (1,1) \bigr\vert + \bigl\vert \Omega (1,0) \bigr\vert \bigr) \\ &\quad \quad{}+ \biggl(\frac{3}{4} \biggr)^{3} \biggl( \frac{2\cdot 1}{4}+ \frac{2\cdot 1}{16}+\frac{1}{64} \biggr) \bigl( \bigl\vert \Phi (1,0) \bigr\vert + \bigl\vert \Theta (1,1) \bigr\vert + \bigl\vert \Psi (0,0) \bigr\vert + \bigl\vert \Omega (0,1) \bigr\vert \bigr) \\ &\quad \quad{}+ \biggl(\frac{2\cdot 1}{4}+\frac{2\cdot 1}{16}+ \frac{1}{64} \biggr) \biggl(\frac{2\cdot 3}{4}+\frac{2\cdot 9}{16}+ \frac{27}{64} \biggr) \bigl( \bigl\vert \Phi (1,1) \bigr\vert + \bigl\vert \Theta (1,0) \bigr\vert \\ &\quad \quad{}+ \bigl\vert \Psi (0,1) \bigr\vert + \bigl\vert \Omega (0,0) \bigr\vert \bigr) \biggr]. \\ &\quad =\frac{4\cdot 4 \cdot 16 \cdot 16}{64\cdot 5\cdot 7\cdot 21\cdot 37} \biggl[\frac{1\cdot 27\cdot 4}{64\cdot 64}+\frac{1\cdot 195\cdot 4}{64\cdot 64}+ \frac{27\cdot 41\cdot 4}{64\cdot 64}+ \frac{41\cdot 195\cdot 4}{64\cdot 64} \biggr] \\ &\quad =\frac{3}{140}. \end{aligned}$$

It is clear that

$$ \frac{5}{592}\leq \frac{3}{140}, $$

which demonstrates the result described in Theorem 3.1.

Example 4.2

Let \(f:[0,1]\times {}[ 0,1]\rightarrow \mathbb{R}\) be a function defined by \(f(x,y)=x^{2}y^{2}\) and \(p=r=2\). Then, f is q-partially differentiable. Moreover, \(|\Phi (t,s)|^{2}\), \(|\Theta (t,s)|^{2}\), \(|\Psi (t,s)|^{2}\), and \(|\Omega (t,s)|^{2} \) are q-integrable coordinated convex on \([0,1]\times [0,1]\).

By applying Theorem 3.2 with \(q_{1}=\frac{1}{4}\) and \(q_{2}=\frac{3}{4}\), the left-hand side of (3.10) is similar to the left-hand side of (3.3), which is \(\frac{5}{592}\).

Since

$$\begin{aligned} \Phi (t,s)& =\frac{35ts}{16},\qquad \Theta (t,s)=\frac{-5t(7s+1)}{16}, \\ \Psi (t,s)& =\frac{-7(5t+3)s}{16},\quad \text{and}\quad \Omega (t,s)= \frac{(5t+3)(7s+1)}{16}, \end{aligned}$$

the right-hand side of (3.10) is

$$\begin{aligned} & \frac{(1-0)(1-0)}{16} \biggl[ \frac{1\cdot 9}{16\cdot 16 (1+\frac{1}{4}+\frac{1}{16} ) (1+\frac{3}{4}+\frac{9}{16} )} \biggr] ^{1/2} \biggl[ \frac{1}{4 (1+\frac{1}{4} ) (1+\frac{3}{4} )} \biggr] ^{1/2} \\ &\quad \quad{}\times \biggl[ \biggl( \biggl( 2+\frac{1}{4} \biggr) \biggl( 2+\frac{3}{4} \biggr) \bigl\vert \Phi (1,1) \bigr\vert ^{2} \biggr) ^{1/2} \\ &\quad \quad{}+ \biggl( \biggl( 2+\frac{1}{4} \biggr) \biggl( 2+ \frac{3}{4} \biggr) \bigl\vert \Theta (1,0) \bigr\vert ^{2}+\frac{3}{4} \biggl( 2+\frac{1}{4} \biggr) \bigl\vert \Theta (1,1) \bigr\vert ^{2} \biggr) ^{1/2} \\ &\quad \quad{}+ \biggl( \biggl( 2+\frac{1}{4} \biggr) \biggl( 2+ \frac{3}{4} \biggr) \bigl\vert \Psi (0,1) \bigr\vert ^{2}+\frac{1}{4} \biggl( 2+\frac{3}{4} \biggr) \bigl\vert \Psi (1,1) \bigr\vert ^{2} \biggr) ^{1/2} \\ &\quad \quad{}+ \biggl( \biggl( 2+\frac{1}{4} \biggr) \biggl( 2+ \frac{3}{4} \biggr) \bigl\vert \Omega (0,0) \bigr\vert ^{2}+ \frac{3}{4} \biggl( 2+\frac{1}{4} \biggr) \bigl\vert \Omega (0,1) \bigr\vert ^{2} \\ &\quad \quad{}+ \frac{1}{4} \biggl( 2+\frac{3}{4} \biggr) \bigl\vert \Omega (1,0) \bigr\vert ^{2}+\frac{1}{4}\cdot \frac{3}{4} \bigl\vert \Omega (1,1) \bigr\vert ^{2} \biggr) ^{1/2} \biggr] \\ &\quad =\frac{1}{16} \biggl[ \frac{3}{7\cdot 37} \biggr] ^{1/2} \biggl[ \frac{4}{5\cdot 7} \biggr] ^{1/2} \\ &\quad \quad{}\times \biggl[ \biggl( \frac{99}{4096} \biggr) ^{1/2}+ \biggl( \frac{43{,}475}{4096} \biggr) ^{1/2}+ \biggl( \frac{78{,}155}{4096} \biggr) ^{1/2}+ \biggl( \frac{38{,}435}{4096} \biggr) ^{1/2} \biggr] \\ &\quad =0.02466\ldots . \end{aligned}$$

It is clear that

$$ \frac{5}{592}\leq 0.02466\ldots , $$

which demonstrates the result described in Theorem 3.2.

Example 4.3

Let \(f:[0,1]\times [0,1]\to \mathbb{R}\) be a function defined by \(f(x,y)=x^{2}y^{2}\) and \(r=2\). Then, f is q-partially differentiable. Moreover, \(\vert \Phi (t,s) \vert ^{2}\), \(\vert \Theta (t,s) \vert ^{2}\), \(\vert \Psi (t,s) \vert ^{2}\), and \(\vert \Omega (t,s) \vert ^{2}\) are q-integrable coordinated convex on \([0,1]\times [0,1]\).

By applying Theorem 3.3 with \(q_{1}=\frac{1}{4}\) and \(q_{2}=\frac{3}{4}\), the left-hand side of (3.16) is similar to the left-hand side of (3.3), which is \(\frac{5}{592}\).

Since

$$\begin{aligned} \Phi (t,s)&=\frac{35ts}{16}, \qquad \Theta (t,s)=\frac{-5t(7s+1)}{16}, \\ \Psi (t,s)&=\frac{-7(5t+3)s}{16}, \quad \text{and}\quad \Omega (t,s)= \frac{(5t+3)(7s+1)}{16}, \end{aligned}$$

the right-hand side of (3.16) is

$$\begin{aligned} &\frac{(1-0)(1-0)}{16} \biggl[ \frac{1\cdot 3}{4\cdot 4\cdot (1+\frac{1}{4} ) (1+\frac{3}{4} )} \biggr]^{1/2} \\ &\quad \quad{}\times \biggl[ \frac{1}{4 (1+\frac{1}{4} ) (1+\frac{3}{4} ) (1+\frac{1}{4}+\frac{1}{16} ) (1+\frac{3}{4}+\frac{9}{16} )} \biggr]^{1/2} \\ &\quad \quad{}\times \biggl\lbrace \biggl[ \biggl(\frac{2\cdot 1}{4}+ \frac{2\cdot 1}{16}+\frac{1}{64} \biggr) \biggl(\frac{2\cdot 3}{4}+ \frac{2\cdot 9}{16}+\frac{27}{64} \biggr) \bigl\vert \Phi (1,1) \bigr\vert ^{2} \biggr]^{1/2} \\ &\quad \quad{}+ \biggl[ \biggl(\frac{2\cdot 1}{4}+\frac{2\cdot 1}{16}+ \frac{1}{64} \biggr) \biggl(\frac{2\cdot 3}{4}+\frac{2\cdot 9}{16}+ \frac{27}{64} \biggr) \bigl\vert \Theta (1,0) \bigr\vert ^{2} \\ &\quad \quad{}+ \biggl(\frac{3}{4} \biggr)^{3} \biggl(\frac{2\cdot 1}{4}+\frac{2\cdot 1}{16}+ \frac{1}{64} \biggr) \bigl\vert \Theta (1,1) \bigr\vert ^{2} \biggr]^{1/2} \\ &\quad \quad{}+ \biggl( \biggl(\frac{2\cdot 1}{4}+\frac{2\cdot 1}{16}+ \frac{1}{64} \biggr) \biggl(\frac{2\cdot 3}{4}+\frac{2\cdot 9}{16}+ \frac{27}{64} \biggr) \bigl\vert \Psi (0,1) \bigr\vert ^{2} \\ &\quad \quad{}+ \biggl(\frac{1}{4} \biggr)^{3} \biggl(\frac{2\cdot 3}{4}+\frac{2\cdot 9}{16}+ \frac{27}{64} \biggr) \bigl\vert \Psi (1,1) \bigr\vert ^{2} \biggr)^{1/2} \\ &\quad \quad{}+ \biggl( \biggl(\frac{2\cdot 1}{4}+\frac{2\cdot 1}{16}+ \frac{1}{64} \biggr) \biggl(\frac{2\cdot 3}{4}+\frac{2\cdot 9}{16}+ \frac{27}{64} \biggr) \bigl\vert \Omega (0,0) \bigr\vert ^{2} \\ &\quad \quad{}+ \biggl(\frac{3}{4} \biggr)^{3} \biggl( \frac{2\cdot 1}{4}+\frac{2\cdot 1}{16}+\frac{1}{64} \biggr) \bigl\vert \Omega (0,1) \bigr\vert ^{2} \\ &\quad \quad{}+ \biggl(\frac{1}{4} \biggr)^{3} \biggl(\frac{2\cdot 3}{4}+\frac{2\cdot 9}{16}+ \frac{27}{64} \biggr) \bigl\vert \Omega (1,0) \bigr\vert ^{2}+ \biggl( \frac{1}{4} \biggr)^{3} \biggl(\frac{3}{4} \biggr)^{3} \bigl\vert \Omega (1,1) \bigr\vert ^{2} \biggr)^{1/2} \biggr\rbrace \\ &\quad =\frac{1}{16} \biggl[\frac{1\cdot 3}{5\cdot 7} \biggr]^{1/2} \biggl[ \frac{4\cdot 16\cdot 16}{5\cdot 7\cdot 21\cdot 37} \biggr]^{1/2} \\ &\quad \quad{}\times \biggl[ \biggl(\frac{9{,}793{,}875}{1{,}048{,}576} \biggr)^{1/2}+ \biggl(\frac{1{,}971{,}075}{1{,}048{,}576} \biggr)^{1/2}+ \biggl( \frac{4{,}137{,}315}{1{,}048{,}576} \biggr)^{1/2}+ \biggl(\frac{832{,}659}{1{,}048{,}576} \biggr)^{1/2} \biggr] \\ &\quad = 0.02593\ldots . \end{aligned}$$

It is clear that

$$ \frac{5}{592}\leq 0.02593\ldots , $$

which demonstrates the result described in Theorem 3.3.

5 Conclusion

We established several new inequalities for q-differentiable coordinated convex functions that are related to the right side of Hermite–Hadamard inequalities for coordinated convex functions. We also showed that the inequalities proved in this paper generalize the results given in earlier works. Moreover, we gave some examples in order to demonstrate our main results.

Availability of data and materials

Not applicable.

References

  1. Hermite, C.: Sur deux limites d’une integrale de finie. Mathesis 82 (1883)

  2. Hadamard, J.: Etude sur les fonctions entiees et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)

    MATH  Google Scholar 

  3. Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5, 775–788 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sarikaya, M.Z., Set, E.: New some Hadamard’s type inequalities for co-ordinated convex functions. Tamsui Oxf. J. Inf. Math. Sci. 28, 137–152 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Jackson, F.H.: On a q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

    MATH  Google Scholar 

  6. Jackson, F.H.: q-Difference aligns. Am. J. Math. 32, 305–314 (1910)

    Article  Google Scholar 

  7. Bangerezaka, G.: Variational q-calculus. J. Math. Anal. Appl. 289, 650–665 (2004)

    Article  MathSciNet  Google Scholar 

  8. Annyby, H.M., Mansour, S.K.: q-Fractional Calculus and Aligns. Springer, Helidelberg (2012)

    Google Scholar 

  9. Ernst, T.: A Comprehensive Treatment of q-Calculus. Springer, Basel (2012)

    Book  MATH  Google Scholar 

  10. Ernst, T.: A History of q-Calculus and a New Method. Uppsala University, Uppsala (2000)

    Google Scholar 

  11. Gauchman, H.: Integral inequalities in q-calculus. J. Comput. Appl. Math. 47, 281–300 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    Book  MATH  Google Scholar 

  13. Tariboon, J., Ntouyas, S.K.: Quantum calculus on finite intervals and applications to impulsive difference aligns. Adv. Differ. Equ. 2013, 282 (2013)

    Article  MATH  Google Scholar 

  14. Alp, N., Sarikaya, M.Z., Kunt, M., İşcan, İ.: q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ., Sci. 30, 193–203 (2018)

    Article  MATH  Google Scholar 

  15. Bermudo, S., Korus, P., Valdes, J.E.N.: On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hung. 162, 364–374 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ali, M.A., Budak, H., Nanlaopon, K., Abdullah, Z.: Simpson’s and Newton’s inequalities for \((\alpha ,m)\)-convex functions via quantum calculus. Symmetry 14(4), 736 (2021)

    Google Scholar 

  17. Sial, I.B., Mei, S., Ali, M.A., Nanlaopon, K.: On some generalized Simpson’s and Newton’s inequalities for \((\alpha ,m)\)-convex functions in q-calculus. Mathematics 2021, 3266 (2021)

    Article  Google Scholar 

  18. Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Budak, H.: Some trapezoid and midpoint type inequalities for newly defined quantum integrals. Proyecciones 40, 199–215 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ali, M.A., Budak, H., Fečkan, M., Khan, S.A.: A new version of q-Hermite–Hadamard’s midpoint and trapezoid type inequalities for convex functions. https://www.researchgate.net/publication/361557045

  21. Sitthiwirattham, T., Ali, M.A., Ali, A., Budak, H., Nonlaopon, K.: On new q-Hermite-Hadamard’s inequality and estimates for midpoint and trapezoid type inequalities for convex functions. Miskolc Math. Notes (2022, accepted)

  22. Latif, M.A., Dragomir, S.S., Momoniat, E.: Some q-analogues of Hermite–Hadamard inequality of functions of two variables on finite rectangles in the plane. J. King Saud Univ., Sci. 29, 263–273 (2017)

    Article  Google Scholar 

  23. Budak, H., Ali, M.A., Tarhanaci, M.: Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 186, 899–910 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kunt, M., Latif, M.A., Iscan, I., Dragomir, S.S.: Quantum Hermite–Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 37, 207–223 (2019)

    Google Scholar 

  25. Ali, M.A., Budak, H., Sarikaya, M.Z.: On some new trapezoidal type inequalities for the functions of two variables via quantum calculus. https://www.researchgate.net/publication/344469986

  26. Vivas-Cortez, M., Aamir Ali, M., Kashuri, A., Bashir Sial, I., Zhang, Z.: Some new Newton’s type integral inequalities for co-ordinated convex functions in quantum calculus. Symmetry 12, 1476 (2020)

    Article  Google Scholar 

  27. Ali, M.A., Chu, Y.M., Budak, H., Akkurt, A., Yıldırım, H., Zahid, M.A.: Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv. Differ. Equ. 2021, 25 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. You, X.X., Ali, M.A., Murtaza, G., Chasreechai, S., Ntouyas, S.K., Sitthiwirattham, T.: Post-quantum Simpson’s type inequalities for co-ordinated convex functions. AIMS Math. 7, 3097–3132 (2022)

    Article  MathSciNet  Google Scholar 

  29. Budak, H., Ali, M.A., Tunç, T.: Quantum Ostrowski-type integral inequalities for functions of two variables. Math. Methods Appl. Sci. 44, 5857–5872 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wannalookkhee, F., Nonlaopon, K., Ntouyas, S.K., Sarikaya, M.Z., Budak, H., Ali, M.A.: Some new quantum Hermite–Hadamard inequalities for co-ordinated convex functions. Mathematics 10(12), 1962 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The first author is supported by the Development and Promotion of Science and Technology talents project (DPST), Thailand. This research was supported by Chiang Mai University, Thailand.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

FW reviewed previous work, wrote original draft, edited and corrected the manuscript. KN gave suggestions, revised the manuscript. MZS gave suggestions, revised the manuscript. HB reviewed previous work, gave concepts, gave suggestions, revised the manuscript MAA started the ideas for main results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kamsing Nonlaopon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wannalookkhee, F., Nonlaopon, K., Sarikaya, M.Z. et al. On some new quantum trapezoid-type inequalities for q-differentiable coordinated convex functions. J Inequal Appl 2023, 5 (2023). https://doi.org/10.1186/s13660-023-02917-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-023-02917-1

MSC

Keywords