Skip to main content

Generalized integral inequalities for discontinuous functions with two independent variables and their applications

Abstract

This paper investigates integral inequalities for discontinuous functions with two independent variables involving two nonlinear terms. We do not require that ω(u) is in the class or the class ȷ in Gallo and Piccirllo’s paper (Nonlinear Stud. 19:115-126, 2012). My main results can be applied to generalize Borysenko and Iovane’s results (Nonlinear Anal., Theory Methods Appl. 66:2190-2230, 2007) and to give results similar to Gallo-Piccirllo’s. Examples to show the bounds of solutions of a partial differential equation with impulsive terms are also given, which cannot be estimated by Gallo and Piccirllo’s results.

MSC:26D15, 26D20.

1 Introduction

Integral inequalities and their various linear and nonlinear generalizations involving continuous or discontinuous functions play very important roles in investigating different qualitative characteristics of solutions for differential equations, partial differential equations and impulsive differential equations such as existence, uniqueness, continuation, boundedness, continuous dependence of parameters, stability, and attraction. The literature on inequalities for continuous functions and their applications is vast (see [111]). In the one-dimensional case, all the main results in the theory of integral inequalities for continuous functions are almost based on the solvability of Chaplygin’s problem [6] for the integral inequality

u(x)φ(x)+ x 0 x Γ ( x , s , u ( s ) ) ds.
(1.1)

Recently, more attention has been paid to generalizations of Gronwall-Bellman’s results for discontinuous functions and their applications (see [1227]). One of the important things is that Samoilenko and Perestyuk [26] studied the following inequality:

u(x)c+ x 0 x f(s)u(s)ds+ x 0 < x i < x β i u( x i 0)
(1.2)

for the nonnegative piecewise continuous function u(x), where c, β i are nonnegative constants, f(x) is a positive function, and x i are the first kind discontinuity points of the function u(x). Then Borysenko [14] investigated integral inequalities with two independent variables,

u ( x , y ) a ( x , y ) + x 0 x y 0 y τ ( s , t ) u ( s , t ) d s d t + ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i u ( x i 0 , y i 0 ) .
(1.3)

Here u(x,y) is an unknown nonnegative continuous function with the exception of the points ( x i , y i ) where there is a finite jump: u( x i 0, y i 0)u( x i +0, y i +0), i=1,2, .

In 2007, Borysenko and Iovane [16] considered the following inequalities:

u ( x , y ) a ( x , y ) + x 0 x y o y τ ( s , t ) u ( s , t ) d s d t + ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i u m ( x i 0 , y i 0 ) , m > 0 ,
(1.4)
u ( x , y ) a ( x , y ) + x 0 x y o y τ ( s , t ) u m ( s , t ) d s d t + ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i u m ( x i 0 , y i 0 ) , m > 0 ,
(1.5)
u ( x , y ) a ( x , y ) + q ( x , y ) x 0 x y o y τ ( s , t ) u m ( σ ( s ) , σ ( t ) ) d s d t + ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i u m ( x i 0 , y i 0 ) , m > 0 .
(1.6)

Later, Gallo and Piccirllo [24] studied the following inequalities:

u ( x , y ) a ( x , y ) + q ( x , y ) x 0 x y o y τ ( s , t ) ω ( u ( σ ( s ) , τ ( t ) ) ) d s d t + ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i u m ( x i 0 , y i 0 ) , m > 0 .
(1.7)

In this paper, motivated by the work above, we will establish the following much more general integral inequality:

u ( x , y ) a ( x , y ) + n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t + g ( x , y ) ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i u m ( x i 0 , y i 0 ) , m > 0 ,
(1.8)

with two independent variables involving two nonlinear terms ω 1 (u) and ω 2 (u) where we do not restrict ω 1 and ω 2 to the class or the class ȷ. Moreover, f n (x,y,s,t) (n=1,2) has a more general form. We also show that many integral inequalities for discontinuous functions such as (1.3)-(1.6) can be reduced to the form of (1.8). Finally, our main result is applied to an estimation of the bounds of the solutions of a partial differential equation with impulsive terms.

2 Main results

Let

Ω= i , j 1 Ω i j , Ω i j = { ( x , y ) : x i 1 x < x i , y j 1 y < y j } ,

for i,j=1,2, , x 0 >0 and y 0 >0, and let D 1 z(x,y) denote the first-order partial derivative of z(x,y) with respect to x and k = 0 1 u k (x,y)=0.

Consider (1.8) and assume that

(H1) a(x,y) is defined on Ω and a( x 0 , y 0 )0; β i is a nonnegative constant for any positive integer i;

(H2) f n (x,y,s,t) (n=1,2) are continuous and nonnegative functions on Ω×Ω and satisfy a certain condition: f n (x,y,s,t)=0 (n=1,2) if (s,t) Ω i j , ij for arbitrary i,j=1,2, ;

(H3) ω 1 (u) and ω 2 (u) are continuous and nonnegative functions on [0,) and are positive on (0,) such that ω 2 ( u ) ω 1 ( u ) is nondecreasing;

(H4) g(x,y) is continuous and nonnegative on Ω;

(H5) u(x,y) is nonnegative and continuous on Ω with the exception of the points ( x i , y i ) where there is a finite jump: u( x i 0, y i 0)u( x i +0, y i +0), i=1,2, . Here ( x i , y i )<( x i + 1 , y i + 1 ) if x i < x i + 1 , y i < y i + 1 , i=0,1,2, , and lim i x i =, lim i y i =;

(H6) b n (x) and c n (y) (n=1,2) are continuously differentiable and nondecreasing such that x 0 b n (x)x on [ x 0 ,) and y 0 c n (y)y on [ y 0 ,).

Let W j (u)= u ˜ j u d z ω j ( z ) for u u ˜ j and j=1,2 where u ˜ j is a given positive constant. Clearly, W j is strictly increasing so its inverse W j 1 is well defined, continuous, and increasing in its corresponding domain.

Theorem 2.1 Suppose that (H k ) (k=1,,6) hold and u(x,y) satisfies (1.8) for a positive constant m. If we let u i (x,y)=u(x,y) for (x,y) Ω i i , then the estimate of u(x,y) is recursively given, for (x,y) Ω i i , i=1,2, , by

u i ( x , y ) W 2 1 { W 2 W 1 1 [ W 1 ( r i ( x , y ) ) + b 1 ( x i 1 ) b 1 ( x ) c 1 ( y i 1 ) c 1 ( y ) f 1 ˜ ( x , y , s , t ) d s d t ] + b 2 ( x i 1 ) b 2 ( x ) c 2 ( y i 1 ) c 2 ( y ) f 2 ˜ ( x , y , s , t ) d s d t } ,
(2.1)

where

r 1 ( x , y ) = max x 0 ξ x , y 0 η y | a ( ξ , η ) | , f ˜ n ( x , y , s , t ) = max x 0 ξ x , y 0 η y f n ( ξ , η , s , t ) , r i ( x , y ) = r 1 ( x , y ) + k = 1 i 1 n = 1 2 b n ( x k 1 ) b n ( x k ) c n ( y k 1 ) c n ( y k ) f n ( x , y , s , t ) ω n ( u k ( s , t ) ) d s d t + g ( x , y ) k = 1 i 1 β k u k m ( x k 0 , y k 0 ) ,
(2.2)

provided that

W 1 ( r i ( x , y ) ) + b 1 ( x i 1 ) b 1 ( x ) c 1 ( y i 1 ) c 1 ( y ) f 1 ˜ ( x , y , s , t ) d s d t u ˜ 1 d z ω 1 ( z ) , W 2 W 1 1 [ W 1 ( r i ( x , y ) ) + b 1 ( x i 1 ) b 1 ( x ) c 1 ( y i 1 ) c 1 ( y ) f 1 ˜ ( x , y , s , t ) d s d t ] + b 2 ( x i 1 ) b 2 ( x ) c 2 ( y i 1 ) c 2 ( y ) f 2 ˜ ( x , y , s , t ) d s d t u ˜ 2 d z ω 2 ( z ) .
(2.3)

The proof is given in Section 3.

Remark 2.1 If ω j satisfies u ˜ j u d z ω j ( z ) = for j=1,2, then i in Theorem 2.1 can be any nonzero integer. Reference [4] pointed out that different choices of u ˜ j in W j do not affect our results for j=1,2. If a(x,y)0, then define W 1 (0)=0 and (2.1) is still true.

Remark 2.2 If a(x,y) is nondecreasing, Theorem 2.1 generalizes many known results. For example:

  1. (1)

    If we take f 1 (x,y,s,t)=τ(s,t), f 2 (x,y,s,t)=0, ω 1 (u)=u, m=1, b 1 (x)=x, c 1 (y)=y and g(x,y)=1, then (1.8) reduces to (1.3). It is easy to check that W 1 (u)=ln u u ˜ 1 and W 1 1 (u)= u ˜ 1 e u . From Theorem 2.1, we know that for (x,y) Ω i i

    u i (x,y) r i (x,y) e x i 1 x y i 1 y τ ( s , t ) d s d t

with

r i (x,y)=a(x,y)+ k = 1 i 1 x k 1 x k y k 1 y k τ(s,t) u k (s,t)dsdt+ k = 1 i 1 β k u k ( x k 0, y k 0).

Hence

r 1 ( x , y ) = a ( x , y ) , u 1 ( x , y ) = a ( x , y ) e x 0 x y 0 y τ ( s , t ) d s d t , r 2 ( x , y ) = a ( x , y ) ( 1 + β 1 ) e x 0 x 1 y 0 y 1 τ ( s , t ) d s d t , u 2 ( x , y ) = a ( x , y ) ( 1 + β 1 ) e x 0 x y 0 y τ ( s , t ) d s d t .

After recursive calculations, we have

u(x,y)a(x,y) Π ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) (1+ β i ) e x 0 x y 0 y τ ( s , t ) d s d t ,

which is the same as the expression in [14];

  1. (2)

    If we take f 1 (x,y,s,t)=τ(s,t), f 2 (x,y,s,t)=0, ω 1 (u)=u, m>0, b 1 (x)=x, c 1 (y)=y and g(x,y)=1, then (1.8) reduces to (1.4) and Theorem 2.1 becomes Theorem 2.1 in [16];

  2. (3)

    If we take f 1 (x,y,s,t)=τ(s,t), f 2 (x,y,s,t)=0, ω 1 (u)= u m , m>0, b 1 (x)=x, c 1 (y)=y and g(x,y)=1, then (1.8) reduces to (1.5) and Theorem 2.1 becomes Theorem 2.2 in [16];

  3. (4)

    If σ (t)>0 on [ t 0 ,) where t 0 =min{ x 0 , y 0 }, then (1.6) can be rewritten as

    u ( x , y ) a ( x , y ) + q ( x , y ) σ ( x 0 ) σ ( x ) σ ( y o ) σ ( y ) τ ( σ 1 ( s ) , σ 1 ( t ) ) σ ( σ 1 ( s ) ) σ ( σ 1 ( t ) ) u m ( s , t ) d s d t + ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i u m ( x i 0 , y i 0 ) .
    (2.4)

If we let f 1 (x,y,s,t)=q(x,y) τ ( σ 1 ( s ) , σ 1 ( t ) ) σ ( σ 1 ( s ) ) σ ( σ 1 ( t ) ) , f 2 (x,y,s,t)=0, and ω 1 (u)= u m , the above inequality is the same as (1.8).

Consider the inequality

φ ( u ( x , y ) ) a ( x , y ) + n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t + g ( x , y ) ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i ψ ( u ( x i 0 , y i 0 ) ) ,
(2.5)

which looks much more complicated than (1.8).

Corollary 2.1 Suppose that (H k ) (k=1,,6) hold, ψ(u) is positive on (0,), φ(u) is positive and strictly increasing on (0,) and u(x,y) satisfies (2.5). If we let u i (x,y)=u(x,y) for (x,y) Ω i i , then the estimate of u(x,y) is recursively given, for (x,y) Ω i i , i=1,2, , by

u i ( x , y ) φ 1 { W 2 1 [ W 2 W 1 1 ( W 1 ( r i ( x , y ) ) + b 1 ( x i 1 ) b 1 ( x ) c 1 ( y i 1 ) c 1 ( y ) f 1 ˜ ( x , y , s , t ) d s d t ) + b 2 ( x i 1 ) b 2 ( x ) c 2 ( y i 1 ) c 2 ( y ) f 2 ˜ ( x , y , s , t ) d s d t ] } ,
(2.6)

where W j (u)= u ˜ j u d z ω j ( φ 1 ( z ) ) , r 1 (x,y) and f ˜ n (x,y,s,t) are given in Theorem  2.1, r i (x,y) is defined as follows:

r i ( x , y ) = r 1 ( x , y ) + k = 1 i 1 n = 1 2 b n ( x k 1 ) b n ( x k ) c n ( y k 1 ) c n ( y k ) f n ( x , y , s , t ) ω n ( u k ( s , t ) ) d s d t + g ( x , y ) k = 1 i 1 β k ψ ( u k ( x k 0 , y k 0 ) ) .

Proof Let φ(u(x,y))=h(x,y). Since the function φ is strictly increasing on [0,), its inverse φ 1 is well defined. Equation (2.5) becomes

h ( x , y ) a ( x , y ) + n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f n ( x , y , s , t ) ω n ( φ 1 ( h ( s , t ) ) ) d s d t + g ( x , y ) ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i ψ ( φ 1 ( h ( x i 0 , y i 0 ) ) ) .
(2.7)

Let ω ˜ n = ω n φ 1 and ψ ˜ =ψ φ 1 . Equation (2.7) becomes

h ( x , y ) a ( x , y ) + n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f n ( x , y , s , t ) ω ˜ n ( h ( s , t ) ) d s d t + g ( x , y ) ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i ψ ˜ ( h ( x i 0 , y i 0 ) ) .
(2.8)

It is easy to see that ψ ˜ (u)>0, ω ˜ 1 (u) and ω ˜ 2 (u) are continuous and nonnegative functions on [0,), and ω ˜ 2 ( u ) ω ˜ 1 ( u ) is nondecreasing on (0,). Even though ψ ˜ (u) is much more general, in the same way as in Theorem 2.1, for (x,y) Ω i i , i=1,2, , we can obtain the estimate of u(x,y),

u i ( x , y ) φ 1 { W 2 1 [ W 2 W 1 1 ( W 1 ( r i ( x , y ) ) + b 1 ( x i 1 ) b 1 ( x ) c 1 ( y i 1 ) c 1 ( y ) f 1 ˜ ( x , y , s , t ) d s d t ) + b 2 ( x i 1 ) b 2 ( x ) c 2 ( y i 1 ) c 2 ( y ) f 2 ˜ ( x , y , s , t ) d s d t ] } .
(2.9)

This completes the proof of Corollary 2.1. □

If φ(u)= u λ where λ>0 is a constant, we can study the inequality

u λ ( x , y ) a ( x , y ) + n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t + g ( x , y ) ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i ψ ( u ( x i 0 , y i 0 ) ) .
(2.10)

According to Corollary 2.1, we have the following result.

Corollary 2.2 Suppose that (H k ) (k=1,,6) hold, ψ(u)>0, and u(x,y) satisfies (2.10). If we let u i (x,y)=u(x,y) for (x,y) Ω i i , then the estimate of u(x,y) is recursively given, for (x,y) Ω i i , i=1,2, , by

u i ( x , y ) { W 2 1 [ W 2 W 1 1 ( W 1 ( r i ( x , y ) ) + b 1 ( x i 1 ) b 1 ( x ) c 1 ( y i 1 ) c 1 ( y ) f 1 ˜ ( x , y , s , t ) d s d t ) + b 2 ( x i 1 ) b 2 ( x ) c 2 ( y i 1 ) c 2 ( y ) f 2 ˜ ( x , y , s , t ) d s d t ] } 1 λ ,
(2.11)

where W j (u)= u ˜ j u d z ω ( z 1 λ ) , r 1 (x,y), r i (x,y) and f ˜ n (x,y,s,t) are given in Corollary  2.1.

3 Proof of Theorem 2.1

Obviously, for any (x,y)Ω, r 1 (x,y) is positive and nondecreasing with respect to x and y, f ˜ n (x,y,s,t) (n=1,2) is nonnegative and nondecreasing with respect to x and y for each fixed s and t. They satisfy a(x,y) r 1 (x,y) and f n (x,y,s,t) f ˜ n (x,y,s,t).

We first consider (x,y) Ω 11 ={(x,y): x 0 x< x 1 , y 0 y< y 1 } and have from (1.8)

u ( x , y ) a ( x , y ) + n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t r 1 ( x , y ) + n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f ˜ n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t .
(3.1)

Take any fixed x ˜ ( x 0 , x 1 ), y ˜ ( y 0 , y 1 ), and for arbitrary x[ x 0 , x ˜ ], y[ y 0 , y ˜ ] we have

u(x,y) r 1 ( x ˜ , y ˜ )+ n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f ˜ n ( x ˜ , y ˜ ,s,t) ω n ( u ( s , t ) ) dsdt.
(3.2)

Let

z(x,y)= r 1 ( x ˜ , y ˜ )+ n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f ˜ n ( x ˜ , y ˜ ,s,t) ω n ( u ( s , t ) ) dsdt
(3.3)

and z( x 0 ,y)= r 1 ( x ˜ , y ˜ ). Hence, u(x,y)z(x,y). Clearly, z(x,y) is a nonnegative, nondecreasing and differentiable function for x[ x 0 , x ˜ ] and y[ y 0 , y ˜ ]. Moreover, b n (x) (or c n (y)) is differentiable and nondecreasing in x[ x 0 , x ˜ ] (or y[ y 0 , y ˜ ]) for n=1,2. Thus, b n (x)0 (or c n (y)0) for x[ x 0 , x ˜ ] (or y[ y 0 , y ˜ ]). Since r 1 ( x ˜ , y ˜ )>0 and ω 1 (z(x,y))>0, we have

D 1 z ( x , y ) ω 1 ( z ( x , y ) ) c 1 ( y o ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , b 1 ( x ) , t ) b 1 ( x ) ω 1 ( u ( b 1 ( x ) , t ) ) d t ω 1 ( z ( x , y ) ) + c 2 ( y o ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , b 2 ( x ) , t ) b 2 ( x ) ω 2 ( u ( b 2 ( x ) , t ) ) d t ω 1 ( z ( x , y ) ) c 1 ( y o ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , b 1 ( x ) , t ) b 1 ( x ) ω 1 ( z ( b 1 ( x ) , t ) ) d t ω 1 ( z ( x , y ) ) + c 2 ( y o ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , b 2 ( x ) , t ) b 2 ( x ) ω 2 ( z ( b 2 ( x ) , t ) ) d t ω 1 ( z ( x , y ) ) c 1 ( y o ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , b 1 ( x ) , t ) b 1 ( x ) ω 1 ( z ( x , t ) ) d t ω 1 ( z ( x , y ) ) + c 2 ( y o ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , b 2 ( x ) , t ) b 2 ( x ) ω 2 ( z ( b 2 ( x ) , t ) ) d t ω 1 ( z ( x , y ) ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , b 1 ( x ) , t ) b 1 ( x ) d t + c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , b 2 ( x ) , t ) b 2 ( x ) ω 2 ( z ( b 2 ( x ) , t ) ) ω 1 ( z ( b 2 ( x ) , t ) ) d t .
(3.4)

Integrating both sides of the above inequality from x 0 to x, we obtain

W 1 ( z ( x , y ) ) W 1 ( z ( x 0 , y ) ) x 0 x c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , b 1 ( s ) , t ) b 1 ( s ) d s d t + x 0 x c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , b 2 ( s ) , t ) b 2 ( s ) ω 2 ( z ( b 2 ( s ) , t ) ) ω 1 ( z ( b 2 ( s ) , t ) ) d s d t .

Thus,

W 1 ( z ( x , y ) ) W 1 ( r 1 ( x ˜ , y ˜ ) ) + b 1 ( x 0 ) b 1 ( x ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , s , t ) d s d t + b 2 ( x 0 ) b 2 ( x ) c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , s , t ) ϕ ( z ( s , t ) ) d s d t

for x 0 x x ˜ and y 0 y y ˜ , where ϕ(u)= ω 2 ( u ) ω 1 ( u ) , or equivalently

ξ ( x , y ) W 1 ( r 1 ( x ˜ , y ˜ ) ) + b 1 ( x 0 ) b 1 ( x ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , s , t ) d s d t + b 2 ( x 0 ) b 2 ( x ) c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , s , t ) ϕ ( W 1 1 ( ξ ( s , t ) ) ) d s d t z 1 ( x , y ) ,
(3.5)

where

ξ(x,y)= W 1 ( z ( x , y ) ) .

It is easy to check that ξ(x,y) z 1 (x,y), z 1 ( x 0 ,y)= W 1 ( r 1 ( x ˜ , y ˜ )) and z 1 (x,y) is differentiable, positive and nondecreasing on ( x 0 , x ˜ ] and ( y 0 , y ˜ ]. Since ϕ( W 1 1 (u)) is nondecreasing from the assumption (H3), we have

D 1 z 1 ( x , y ) ϕ ( W 1 1 ( z 1 ( x , y ) ) ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , b 1 ( x ) , t ) b 1 ( x ) d t ϕ ( W 1 1 ( z 1 ( x , y ) ) ) + c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , b 2 ( x ) , t ) b 2 ( x ) ϕ ( W 1 1 ( ξ ( b 2 ( x ) , t ) ) ) d t ϕ ( W 1 1 ( z 1 ( x , y ) ) ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , b 1 ( x ) , t ) b 1 ( x ) d t ϕ [ W 1 1 ( W 1 ( r 1 ( x ˜ , y ˜ ) ) + b 1 ( x 0 ) b 1 ( x ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , s , t ) d s d t ) ] + c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , b 2 ( x ) , t ) b 2 ( x ) ϕ ( W 1 1 ( z 1 ( x , t ) ) ) d t ϕ ( W 1 1 ( z 1 ( x , y ) ) ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , b 1 ( x ) , t ) b 1 ( x ) d t ϕ [ W 1 1 ( W 1 ( r 1 ( x ˜ , y ˜ ) ) + b 1 ( x 0 ) b 1 ( x ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , s , t ) d s d t ) ] + c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , b 2 ( x ) , t ) b 2 ( x ) d t .
(3.6)

Note that

x 0 x D 1 z 1 ( s , y ) ϕ ( W 1 1 ( z 1 ( s , y ) ) ) d s = x 0 x D 1 z 1 ( s , y ) ω 1 ( W 1 1 ( z 1 ( s , y ) ) ) ω 2 ( W 1 1 ( z 1 ( s , y ) ) ) d s = W 1 1 ( z 1 ( x 0 , y ) ) W 1 1 ( z 1 ( x , y ) ) d u ω 2 ( u ) = W 2 W 1 1 ( z 1 ( x , y ) ) W 2 W 1 1 ( z 1 ( x 0 , y ) ) = W 2 W 1 1 ( z 1 ( x , y ) ) W 2 W 1 1 ( W 1 ( r 1 ( x ˜ , y ˜ ) ) ) = W 2 W 1 1 ( z 1 ( x , y ) ) W 2 ( r 1 ( x ˜ , y ˜ ) ) .

Integrating both sides of the inequality (3.6) from x 0 to x, we obtain

W 2 W 1 1 ( z 1 ( x , y ) ) W 2 ( r 1 ( x ˜ , y ˜ ) ) = x 0 x D 1 z 1 ( s , y ) ϕ ( W 1 1 ( z 1 ( s , y ) ) ) d s x 0 x c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , b 1 ( s ) , t ) b 1 ( s ) d t ϕ [ W 1 1 ( W 1 ( r 1 ( x ˜ , y ˜ ) ) + b 1 ( x 0 ) b 1 ( s ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , τ , t ) d τ d t ) ] d s + x 0 x c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , b 2 ( s ) , t ) b 2 ( s ) d s d t W 2 W 1 1 [ W 1 ( r 1 ( x ˜ , y ˜ ) ) + b 1 ( x 0 ) b 1 ( x ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , s , t ) d s d t ] W 2 ( r 1 ( x ˜ , y ˜ ) ) + b 2 ( x 0 ) b 2 ( x ) c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , s , t ) d s d t .

Thus,

W 2 W 1 1 ( z 1 ( x , y ) ) W 2 W 1 1 [ W 1 ( r 1 ( x ˜ , y ˜ ) ) + b 1 ( x 0 ) b 1 ( x ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , s , t ) d s d t ] + b 2 ( x 0 ) b 2 ( x ) c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , s , t ) d s d t .

Hence

u ( x , y ) z ( x , y ) W 1 1 ( ξ ( x , y ) ) W 1 1 ( z 1 ( x , y ) ) W 2 1 [ W 2 W 1 1 ( W 1 ( r 1 ( x ˜ , y ˜ ) ) + b 1 ( x 0 ) b 1 ( x ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x ˜ , y ˜ , s , t ) d s d t ) + b 2 ( x 0 ) b 2 ( x ) c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x ˜ , y ˜ , s , t ) d s d t ] .

Since the above inequality is true for any x[ x 0 , x ˜ ], y[ y 0 , y ˜ ], we obtain

u ( x ˜ , y ˜ ) W 2 1 [ W 2 W 1 1 ( W 1 ( r 1 ( x ˜ , y ˜ ) ) + b 1 ( x 0 ) b 1 ( x ˜ ) c 1 ( y 0 ) c 1 ( y ˜ ) f ˜ 1 ( x ˜ , y ˜ , s , t ) d s d t ) + b 2 ( x 0 ) b 2 ( x ˜ ) c 2 ( y 0 ) c 2 ( y ˜ ) f ˜ 2 ( x ˜ , y ˜ , s , t ) d s d t ] .
(3.7)

Replacing x ˜ by x and y ˜ by y yields

u ( x , y ) W 2 1 [ W 2 W 1 1 ( W 1 ( r 1 ( x , y ) ) + b 1 ( x 0 ) b 1 ( x ) c 1 ( y 0 ) c 1 ( y ) f ˜ 1 ( x , y , s , t ) d s d t ) + b 2 ( x 0 ) b 2 ( x ) c 2 ( y 0 ) c 2 ( y ) f ˜ 2 ( x , y , s , t ) d s d t ] .
(3.8)

This means that (2.1) is true for (x,y) Ω 11 and i=1 if replace u(x,y) with u 1 (x,y).

For i=2 and (x,y) Ω 22 ={(x,y): x 1 x< x 2 , y 1 y< y 2 }, (1.8) becomes

u ( x , y ) r 1 ( x , y ) + n = 1 2 b n ( x 0 ) b n ( x 1 ) c n ( y o ) c n ( y 1 ) f n ( x , y , s , t ) ω n ( u 1 ( s , t ) ) d s d t + g ( x , y ) β 1 u 1 m ( x 1 0 , y 1 0 ) + n = 1 2 b n ( x 1 ) b n ( x ) c n ( y 1 ) c n ( y ) f n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t r 2 ( x , y ) + n = 1 2 b n ( x 1 ) b n ( x ) c n ( y 1 ) c n ( y ) f n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t ,
(3.9)

where the definition of r 2 (x,y) is given in (2.2). Note that the estimate of u 1 (x,y) is known. Clearly, (3.9) is the same as (3.1) if replace r 1 (x,y) and ( x 0 , y 0 ) by r 2 (x,y) and ( x 1 , y 1 ). Thus, by (3.8) we have

u ( x , y ) W 2 1 [ W 2 W 1 1 ( W 1 ( r 2 ( x , y ) ) + b 1 ( x 1 ) b 1 ( x ) c 1 ( y 1 ) c 1 ( y ) f 1 ˜ ( x , y , s , t ) d s d t ) + b 2 ( x 1 ) b 2 ( x ) c 2 ( y 1 ) c 2 ( y ) f 2 ˜ ( x , y , s , t ) d s d t ] .

This implies that (2.1) is true for (x,y) Ω 22 and i=2 if replace u(x,y) by u 2 (x,y).

Assume that (2.1) is true for (x,y) Ω i i ={(x,y): x i 1 x< x i , y i 1 y< y i }, i.e.,

u i ( x , y ) W 2 1 [ W 2 W 1 1 ( W 1 ( r i ( x , y ) ) + b 1 ( x i 1 ) b 1 ( x ) c 1 ( y i 1 ) c 1 ( y ) f 1 ˜ ( x , y , s , t ) d s d t ) + b 2 ( x i 1 ) b 2 ( x ) c 2 ( y i 1 ) c 2 ( y ) f 2 ˜ ( x , y , s , t ) d s d t ] .
(3.10)

For (x,y) Ω i + 1 , i + 1 ={(x,y): x i x< x i + 1 , y i y< y i + 1 }, (1.8) becomes

u ( x , y ) a ( x , y ) + n = 1 2 b n ( x 0 ) b n ( x ) c n ( y o ) c n ( y ) f n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t + g ( x , y ) ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i u m ( x i 0 , y i 0 ) r 1 ( x , y ) + k = 1 i n = 1 2 b n ( x k 1 ) b n ( x k ) c n ( y k 1 ) c n ( y k ) f n ( x , y , s , t ) ω n ( u k ( s , t ) ) d s d t + g ( x , y ) k = 1 i β k u k m ( x k 0 , y k 0 ) + n = 1 2 b n ( x i ) b n ( x ) c n ( y i ) c n ( y ) f n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t r i + 1 ( x , y ) + n = 1 2 b n ( x i ) b n ( x ) c n ( y i ) c n ( y ) f n ( x , y , s , t ) ω n ( u ( s , t ) ) d s d t ,
(3.11)

where we use the fact that the estimate of u(x,y) is already known for (x,y) Ω i i (i=1,2,). Again, (3.11) is the same as (3.1) if replace r 1 (x,y) and ( x 0 , y 0 ) by r i + 1 (x,y) and ( x i , y i ). Thus, by (3.8) we have

u ( x , y ) W 2 1 [ W 2 W 1 1 ( W 1 ( r i + 1 ( x , y ) ) + b 1 ( x i ) b 1 ( x ) c 1 ( y i ) c 1 ( y ) f 1 ˜ ( x , y , s , t ) d s d t ) + b 2 ( x i ) b 2 ( x ) c 2 ( y i ) c 2 ( y ) f 2 ˜ ( x , y , s , t ) d s d t ] .

This shows that (2.1) is true for (x,y) Ω i + 1 , i + 1 if replace u(x,y) by u i + 1 (x,y). By induction, we know that (2.1) holds for (x,y) Ω i + 1 , i + 1 for any nonnegative integer i. This completes the proof of Theorem 2.1.

4 Applications

Consider the following partial differential equation with an impulsive term:

{ 2 v ( x , y ) x y = H ( x , y , v ( x , y ) ) , ( x , y ) Ω i i , x x i , y y i , v | x = x i , y = y i = I i ( v ) , v ( x , y 0 ) = ϕ 1 ( x ) , v ( x 0 , y ) = ϕ 2 ( y ) , ϕ 1 ( x 0 ) = ϕ 2 ( y 0 ) 0 ,
(4.1)

where vR, HR, I i R, and i=1,2, .

Assume that

(C1) |H(x,y,v(x,y))| h 1 (x,y) e | v ( x , y ) | + h 2 (x,y) e 2 | v ( x , y ) | where h 1 , h 2 are nonnegative and continuous on Ω, h 1 (x,y)=0, h 2 (x,y)=0 for (x,y) Ω i j , ij, i,j=1,2, ;

(C2) | I i (v)| β i | v | m where β i and m are nonnegative constants.

Corollary 4.1 Suppose that (C1) and (C2) hold. If we let v i (x,y)=v(x,y) for (x,y) Ω i i , then the solution of system (4.1) has an estimate for (x,y) Ω i i

| v i ( x , y ) | 1 2 ln [ ( e r i ( x , y ) x i 1 x y i 1 y h 1 ( s , t ) d s d t ) 2 x i 1 x y i 1 y h 2 ( s , t ) d s d t ] ,
(4.2)

where

r 1 ( x , y ) = max x 0 ξ x , y 0 η y | ϕ 1 ( ξ ) + ϕ 2 ( η ) ϕ 1 ( x 0 ) | > 0 , r i ( x , y ) = r 1 ( x , y ) + k = 1 i 1 x k 1 x k y k 1 y k h 1 ( s , t ) e | v k ( s , t ) | d s d t + k = 1 i 1 x k 1 x k y k 1 y k h 2 ( s , t ) e 2 | v k ( s , t ) | d s d t + k = 1 i 1 β k | v k ( x k 0 , y k 0 ) | m , ( e r i ( x , y ) x i 1 x y i 1 y h 1 ( s , t ) d s d t ) 2 x i 1 x y i 1 y h 2 ( s , t ) d s d t > 0 .

Proof The solution of (4.1) with an initial value is given by

v ( x , y ) = v ( x , y 0 ) + v ( x 0 , y ) v ( x 0 , y 0 ) + x 0 x y 0 y H ( s , t , v ( s , t ) ) d s d t + ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) I i ( v ( x i 0 , y i 0 ) ) = ϕ 1 ( x ) + ϕ 2 ( y ) ϕ 1 ( x 0 ) + x 0 x y 0 y H ( s , t , v ( s , t ) ) d s d t + ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) I i ( v ( x i 0 , y i 0 ) ) ,
(4.3)

which implies

| v ( x , y ) | | ϕ 1 ( x ) + ϕ 2 ( y ) ϕ 1 ( x 0 ) | + x 0 x y 0 y h 1 ( s , t ) e | v ( s , t ) | d s d t + x 0 x y 0 y h 2 ( s , t ) e 2 | v ( s , t ) | d s d t + ( x 0 , y 0 ) < ( x i , y i ) < ( x , y ) β i | v ( x i 0 , y i 0 ) | m .
(4.4)

Let

u ( x , y ) = | v ( x , y ) | , a ( x , y ) = | ϕ 1 ( x ) + ϕ 2 ( y ) ϕ 1 ( x 0 ) | , b 1 ( x ) = b 2 ( x ) = x , c 1 ( y ) = c 2 ( y ) = y , g ( x , y ) = 1 , ω 1 ( u ) = e u , ω 2 ( u ) = e 2 u , f 1 ( x , y , s , t ) = h 1 ( s , t ) , f 2 ( x , y , s , t ) = h 2 ( s , t ) .

Thus, (4.4) is the same as (1.8). It is easy to see that for any positive constants u ˜ 1 and u ˜ 2

r 1 ( x , y ) = max x 0 ξ x , y 0 η y | a ( ξ , η ) | > 0 , f ˜ 1 ( x , y , s , t ) = h 1 ( s , t ) , f ˜ 2 ( x , y , s , t ) = h 2 ( s , t ) , W 1 ( u ) = u ˜ 1 u d z ω 1 ( z ) = u ˜ 1 u e z d z = e u ˜ 1 e u , W 1 1 ( u ) = ln ( e u ˜ 1 u ) , W 2 ( u ) = u ˜ 2 u d z ω 2 ( z ) = u ˜ 2 u e 2 z d z = 1 2 ( e 2 u ˜ 2 e 2 u ) , W 2 1 ( u ) = 1 2 ln ( e 2 u ˜ 2 2 u ) , r i ( x , y ) = r 1 ( x , y ) + k = 1 i 1 x k 1 x k y k 1 y k h 1 ( s , t ) e | v k ( s , t ) | d s d t + k = 1 i 1 x k 1 x k y k 1 y k h 2 ( s , t ) e 2 | v k ( s , t ) | d s d t + k = 1 i 1 β k | v k ( x k 0 , y k 0 ) | m .

Therefore, for any nonnegative i and (x,y) Ω i i

| v i ( x , y ) | 1 2 ln [ ( e r i ( x , y ) x i 1 x y i 1 y h 1 ( s , t ) d s d t ) 2 x i 1 x y i 1 y h 2 ( s , t ) d s d t ]

provided that

( e r i ( x , y ) x i 1 x y i 1 y h 1 ( s , t ) d s d t ) 2 x i 1 x y i 1 y h 2 (s,t)dsdt>0.

 □

Remark 4.1 From (4.4), we know ω 1 (u)= e u . Clearly, ω 1 (2u)= e 2 u ω 1 (2) ω 1 (u)= e 2 e u does not hold for large u>0. Thus, ω 1 (u)= e u does not belong to the class in [24]. Again ω 1 ( u 2 )= e u 2 1 2 ω 1 (u)= 1 2 e u does not hold for large u>0 so ω 1 (u) does not belong to the class ȷ in [24]. Hence, the results in [24] cannot be applied to the inequality (4.1).

References

  1. Agarwal RP: On an integral inequality in n independent variables. J. Math. Anal. Appl. 1982, 85: 192–196. 10.1016/0022-247X(82)90034-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal RP, Deng SF, Zhang WN: Generalization of a retard Gronwall-like inequality and its applications. Appl. Math. Comput. 2005, 165: 599–612. 10.1016/j.amc.2004.04.067

    Article  MathSciNet  MATH  Google Scholar 

  3. Bihari IA: Generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Hung. 1956, 7: 81–94. 10.1007/BF02022967

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi SK, Deng SF, Koo NJ, Zhang WN: Nonlinear integral inequalities of Bihari-type without class H . Math. Inequal. Appl. 2005, 8: 643–654.

    MathSciNet  MATH  Google Scholar 

  5. Cheung W, Iovane G: Some new nonlinear inequalities and applications to boundary value problems. Nonlinear Anal. 2006, 64: 2112–2128. 10.1016/j.na.2005.08.009

    Article  MathSciNet  MATH  Google Scholar 

  6. Rakhmatullina LF: On application of solvability conditions of Chaplygin problems of boundedness and solution stability of differential equations. Izv. Vysš. Učebn. Zaved., Mat. 1959, 2: 198–201.

    Google Scholar 

  7. Sun YG: On retarded integral inequalities and their applications. J. Math. Anal. Appl. 2005, 301: 265–275. 10.1016/j.jmaa.2004.07.020

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu Y, Li XP, Deng SF: Nonlinear delay discrete inequalities and their applications to Volterra type difference equations. Adv. Differ. Equ. 2010., 2010: Article ID 795145

    Google Scholar 

  9. Zheng KL, Zhong SM: Nonlinear sum-difference inequalities with two variables. Int. J. Appl. Math. Comput. Sci. 2010, 6: 31–36.

    Google Scholar 

  10. Wang WS: A generalized retarded Gronwall-like inequality in two variable and applications to BVP. Appl. Math. Comput. 2007, 191: 144–154. 10.1016/j.amc.2007.02.099

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang WN, Deng SF: Projected Gronwall-Bellman’s inequality for integrable functions. Math. Comput. Model. 2001, 34: 394–402.

    Article  MathSciNet  MATH  Google Scholar 

  12. Angela G, Anna MP: On some generalizations Bellman-Bihari result for integro-functional inequalities for discontinuous functions and their applications. Bound. Value Probl. 2009., 2009: Article ID 808124

    Google Scholar 

  13. Borysenko SD: About asymptotical stability on linear approximation of the systems with impulse influence. Ukr. Mat. Zh. 1982, 35: 144–150.

    Google Scholar 

  14. Borysenko SD: Integro-sum inequalities for functions of many independent variables. Differ. Equ. 1989, 25: 1634–1641.

    MathSciNet  Google Scholar 

  15. Borysenko SD, Ciarletta M, Iovane G: Integro-sum inequalities and motion stability of systems with impulse perturbations. Nonlinear Anal. 2005, 62: 417–428. 10.1016/j.na.2005.03.032

    Article  MathSciNet  MATH  Google Scholar 

  16. Borysenko SD, Iovane G: About some new integral inequalities of Wendroff type for discontinuous functions. Nonlinear Anal. 2007, 66: 2190–2203. 10.1016/j.na.2006.03.008

    Article  MathSciNet  MATH  Google Scholar 

  17. Borysenko SD, Iovane G, Giordano P: Investigations of properties motion for essential nonlinear systems perturbed by impulses on some hypersurfaces. Nonlinear Anal. 2005, 62: 345–363. 10.1016/j.na.2005.03.031

    Article  MathSciNet  MATH  Google Scholar 

  18. Borysenko SD, Toscano S: Impulsive differential system: the problem of stability and practical stability. Nonlinear Anal. 2009, 71: e1843-e1849. 10.1016/j.na.2009.02.084

    Article  MathSciNet  MATH  Google Scholar 

  19. Gallo A, Piccirllo AM: On some generalizations Bellman-Bihari result for integrofunctionam inequalities for discontinuous functions and theri applications. Bound. Value Probl. 2009., 2009: Article ID 808124

    Google Scholar 

  20. Gallo A, Piccirllo AM: About new analogies of Gronwall-Bellman-Bihari type inequalities for discontinuous functions and estimated solution for impulsive differential systems. Nonlinear Anal. 2007, 67: 1550–1568. 10.1016/j.na.2006.07.038

    Article  MathSciNet  MATH  Google Scholar 

  21. Iovane G: Some new integral inequalities of Bellman-Bihari type with delay for discontinuous functions. Nonlinear Anal. 2007, 66: 498–508. 10.1016/j.na.2005.11.043

    Article  MathSciNet  MATH  Google Scholar 

  22. Iovane G: On Gronwall-Bellman-Bihari type integral inequalities in several variables with retardation for discontinuous functions. Math. Inequal. Appl. 2008, 11: 599–606.

    MathSciNet  MATH  Google Scholar 

  23. Mitropolskiy YA, Iovane G, Borysenko SD: About a generalization of Bellman-Bihari type inequalities for discontinuous functions and theri applications. Nonlinear Anal. 2007, 66: 2140–2165. 10.1016/j.na.2006.03.006

    Article  MathSciNet  MATH  Google Scholar 

  24. Gallo A, Piccirillo AM: Multidimensional impulse inequalities and general Bihari-type inequalities for discontinuous functions with delay. Nonlinear Stud. 2012, 19: 115–126.

    MathSciNet  MATH  Google Scholar 

  25. Samoilenko AM, Perestjuk NA: Stability of the solutions of differential equations with impulsive action. Appl. Math. Comput. 2005, 165: 599–612. 10.1016/j.amc.2004.04.067

    Article  MathSciNet  Google Scholar 

  26. Samoilenko AM, Perestyuk NA: Differential Equations with Impulse Effect. Visha Shkola, Kyiv; 1987.

    Google Scholar 

  27. Samoilenko AM, Perestyuk NA: Stability of the solutions of differential equations with impluse action. Appl. Math. Comput. 2005, 195: 599–613.

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. Shengfu Deng for many helpful conversations during the course of this work. This research was supported by National Natural Science Foundation of China (No. 11371314), Guangdong Natural Science Foundation (No. S2013010015957), and the Project of Department of Education of Guangdong Province, China (No. 2012KJCX0074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhen Mi.

Additional information

Competing interests

The author declares that she has no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y. Generalized integral inequalities for discontinuous functions with two independent variables and their applications. J Inequal Appl 2014, 524 (2014). https://doi.org/10.1186/1029-242X-2014-524

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-524

Keywords