Open Access

Smooth fractal interpolation

Journal of Inequalities and Applications20062006:78734

DOI: 10.1155/JIA/2006/78734

Received: 12 December 2005

Accepted: 14 June 2006

Published: 4 September 2006


Fractal methodology provides a general frame for the understanding of real-world phenomena. In particular, the classical methods of real-data interpolation can be generalized by means of fractal techniques. In this paper, we describe a procedure for the construction of smooth fractal functions, with the help of Hermite osculatory polynomials. As a consequence of the process, we generalize any smooth interpolant by means of a family of fractal functions. In particular, the elements of the class can be defined so that the smoothness of the original is preserved. Under some hypotheses, bounds of the interpolation error for function and derivatives are obtained. A set of interpolating mappings associated to a cubic spline is defined and the density of fractal cubic splines in is proven.


Authors’ Affiliations

Departamento de Matemática Aplicada, Universidad de Zaragoza
Departamento de Matemáticas, Universidad de Zaragoza


  1. Ahlberg JH, Nilson EN, Walsh JL: The Theory of Splines and Their Applications. Academic Press, New York; 1967:xi+284.MATHGoogle Scholar
  2. Barnsley MF: Fractal functions and interpolation. Constructive Approximation 1986,2(4):303–329.MATHMathSciNetView ArticleGoogle Scholar
  3. Barnsley MF: Fractals Everywhere. Academic Press, Massachusetts; 1988:xii+396.MATHGoogle Scholar
  4. Barnsley MF, Harrington AN: The calculus of fractal interpolation functions. Journal of Approximation Theory 1989,57(1):14–34. 10.1016/0021-9045(89)90080-4MATHMathSciNetView ArticleGoogle Scholar
  5. Chand AKB, Kapoor GP: Generalized cubic spline fractal interpolation functions. SIAM Journal on Numerical Analysis 2006,44(2):655–676. 10.1137/040611070MATHMathSciNetView ArticleGoogle Scholar
  6. Ciarlet PG, Schultz MH, Varga RS: Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem. Numerische Mathematik 1967,9(5):394–430. 10.1007/BF02162155MATHMathSciNetView ArticleGoogle Scholar
  7. Hall CA, Meyer WW: Optimal error bounds for cubic spline interpolation. Journal of Approximation Theory 1976,16(2):105–122. 10.1016/0021-9045(76)90040-XMATHMathSciNetView ArticleGoogle Scholar
  8. Hutchinson JE: Fractals and self-similarity. Indiana University Mathematics Journal 1981,30(5):713–747. 10.1512/iumj.1981.30.30055MATHMathSciNetView ArticleGoogle Scholar
  9. Laurent P-J: Approximation et optimisation. Hermann, Paris; 1972:xiii+531.MATHGoogle Scholar
  10. Navascués MA, Sebastián MV: Some results of convergence of cubic spline fractal interpolation functions. Fractals 2003,11(1):1–7. 10.1142/S0218348X03001550MATHMathSciNetView ArticleGoogle Scholar
  11. Navascués MA, Sebastián MV: Fitting curves by fractal interpolation: an application to the quantification of cognitive brain processes. In Thinking in Patterns: Fractals and Related Phenomena in Nature. Edited by: Novak MM. World Scientific, New Jersey; 2004:143–154.View ArticleGoogle Scholar
  12. Navascués MA, Sebastián MV: Generalization of Hermite functions by fractal interpolation. Journal of Approximation Theory 2004,131(1):19–29. 10.1016/j.jat.2004.09.001MATHMathSciNetView ArticleGoogle Scholar
  13. Navascués MA, Sebastián MV: A fractal version of Schultz's theorem. Mathematical Inequalities & Applications 2005,8(1):63–70.MATHMathSciNetView ArticleGoogle Scholar
  14. Stoer J, Bulirsch R: Introduction to Numerical Analysis. Springer, New York; 1980:ix+609.View ArticleMATHGoogle Scholar


© M. A. Navascués and M. V. Sebastián 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.