Open Access

Generalized vector quasi-variational-like inequalities

Journal of Inequalities and Applications20062006:59387

DOI: 10.1155/JIA/2006/59387

Received: 14 September 2004

Accepted: 17 November 2004

Published: 8 February 2006

Abstract

Using maximal element theorem, we prove some existence theorems for the two types of generalized vector quasi-variational-like inequalities with non-monotonicity and non-compactness.

[1234567891011121314151617181920212223242526272829303132333435363738]

Authors’ Affiliations

(1)
College of Mathematics and Computer Science, Chongqing Normal University
(2)
Department of Mathematics, Inner Mongolia University

References

  1. Ansari QH: A note on generalized vector variational-like inequalities. Optimization 1997,41(3):197–205. 10.1080/02331939708844335MATHMathSciNetView ArticleGoogle Scholar
  2. Ansari QH: Extended generalized vector variational-like inequalities for nonmonotone multivalued maps. Annales des Sciences Mathématiques du Québec 1997,21(1):1–11.MATHMathSciNetGoogle Scholar
  3. Aubin J-P, Ekeland I: Applied Nonlinear Analysis, Pure and Applied Mathematics (New York). John Wiley & Sons, New York; 1984:xi+518.Google Scholar
  4. Bianchi M, Hadjisavvas N, Schaible S: Vector equilibrium problems with generalized monotone bifunctions. Journal of Optimization Theory and Applications 1997,92(3):527–542. 10.1023/A:1022603406244MATHMathSciNetView ArticleGoogle Scholar
  5. Chadli O, Chiang Y, Huang S: Topological pseudomonotonicity and vector equilibrium problems. Journal of Mathematical Analysis and Applications 2002,270(2):435–450. 10.1016/S0022-247X(02)00079-3MATHMathSciNetView ArticleGoogle Scholar
  6. Chen GY: Existence of solutions for a vector variational inequality: an extension of the Hartmann-Stampacchia theorem. Journal of Optimization Theory and Applications 1992,74(3):445–456. 10.1007/BF00940320MATHMathSciNetView ArticleGoogle Scholar
  7. Chen GY, Cheng GM: Vector Variational Inequalities and Vector Optimization, Lecture Notes in Economics and Mathematical Systems. Volume 285. Springer, Berlin; 1987.Google Scholar
  8. Chen GY, Craven BD: Approximate dual and approximate vector variational inequality for multiobjective optimization. Australian Mathematical Society. Journal. Series A. 1989,47(3):418–423. 10.1017/S1446788700033139MATHMathSciNetView ArticleGoogle Scholar
  9. Chen GY, Craven BD: A vector variational inequality and optimization over an efficient set. Zeitschrift für Operations Research 1990,34(1):1–12.MATHMathSciNetGoogle Scholar
  10. Chen GY, Li SJ: Existence of solutions for a generalized vector quasivariational inequality. Journal of Optimization Theory and Applications 1996,90(2):321–334. 10.1007/BF02190001MATHMathSciNetView ArticleGoogle Scholar
  11. Chen GY, Yang XQ: The vector complementary problem and its equivalences with the weak minimal element in ordered spaces. Journal of Mathematical Analysis and Applications 1990,153(1):136–158. 10.1016/0022-247X(90)90270-PMATHMathSciNetView ArticleGoogle Scholar
  12. Daniilidis A, Hadjisavvas N: Existence theorems for vector variational inequalities. Bulletin of the Australian Mathematical Society 1996,54(3):473–481. 10.1017/S0004972700021882MATHMathSciNetView ArticleGoogle Scholar
  13. Ding XP: The generalized vector quasi-variational-like inequalities. Computers & Mathematics with Applications 1999,37(6):57–67. 10.1016/S0898-1221(99)00076-0MATHMathSciNetView ArticleGoogle Scholar
  14. Ding XP, Tarafdar E: Generalized vector variational-like inequalities with-pseudomonotone set-valued mappings. In Vector Variational Inequalities and Vector Equilibria, Nonconvex Optim. Appl.. Volume 38. Edited by: Giannessi F. Kluwer Academic, Dordrecht; 2000:125–140. 10.1007/978-1-4613-0299-5_9View ArticleGoogle Scholar
  15. Ding XP, Tarafdar E: Generalized vector variational-like inequalities without monotonicity. In Vector Variational Inequalities and Vector Equilibria, Nonconvex Optim. Appl.. Volume 38. Edited by: Giannessi F. Kluwer Academic, Dordrecht; 2000:113–124. 10.1007/978-1-4613-0299-5_8View ArticleGoogle Scholar
  16. Giannessi F: Theorems of alternative, quadratic programs and complementarity problems. In Variational Inequalities and Complementarity Problems (Proc. Internat. School, Erice, 1978). Edited by: Cottle RW, Giannessi F, Lions J-L. John Wiley & Sons, Chichester; 1980:151–186.Google Scholar
  17. Hadjisavvas N, Schaible S: From scalar to vector equilibrium problems in the quasimonotone case. Journal of Optimization Theory and Applications 1998,96(2):297–309. 10.1023/A:1022666014055MATHMathSciNetView ArticleGoogle Scholar
  18. Kim WK: Existence of maximal element and equilibrium for a nonparacompact-person game. Proceedings of the American Mathematical Society 1992,116(3):797–807.MATHMathSciNetGoogle Scholar
  19. Konnov IV, Yao JC: On the generalized vector variational inequality problem. Journal of Optimization Theory and Applications 1997,206(1):42–58.MATHMathSciNetGoogle Scholar
  20. Lee GM, Kim DS, Lee BS: Generalized vector variational inequality. Applied Mathematics Letters 1996,9(1):39–42. 10.1016/0893-9659(95)00099-2MATHMathSciNetView ArticleGoogle Scholar
  21. Lee GM, Kim DS, Lee BS, Cho SJ: Generalized vector variational inequality and fuzzy extension. Applied Mathematics Letters 1993,6(6):47–51. 10.1016/0893-9659(93)90077-ZMATHMathSciNetView ArticleGoogle Scholar
  22. Lee GM, Lee BS, Chang S-S: On vector quasivariational inequalities. Journal of Mathematical Analysis and Applications 1996,203(3):626–638. 10.1006/jmaa.1996.0401MATHMathSciNetView ArticleGoogle Scholar
  23. Lin KL, Yang D-P, Yao JC: Generalized vector variational inequalities. Journal of Optimization Theory and Applications 1997,92(1):117–125. 10.1023/A:1022640130410MATHMathSciNetView ArticleGoogle Scholar
  24. Lin LJ, Yu ZT, Kassay G: Existence of equilibria for multivalued mappings and its application to vectorial equilibria. Journal of Optimization Theory and Applications 2002,114(1):189–208. 10.1023/A:1015420322818MATHMathSciNetView ArticleGoogle Scholar
  25. Oettli W: A remark on vector-valued equilibria and generalized monotonicity. Acta Mathematica Vietnamica 1997,22(1):213–221.MATHMathSciNetGoogle Scholar
  26. Oettli W, Schläger D: Existence of equilibria for monotone multivalued mappings. Mathematical Methods of Operations Research 1998,48(2):219–228. 10.1007/s001860050024MATHMathSciNetView ArticleGoogle Scholar
  27. Peng JW: Equilibrium problems for-spaces. Mathematica Applicata (Wuhan) 1999,12(3):81–87.MATHMathSciNetGoogle Scholar
  28. Qun L: Generalized vector variational-like inequalities. In Vector Variational Inequalities and Vector Equilibria, Nonconvex Optim. Appl.. Volume 38. Edited by: Giannessi F. Kluwer Academic, Dordrecht; 2000:353–369.Google Scholar
  29. Schaefer HH: Topological vector spaces, Graduate Texts in Mathematics. Volume 3. Springer, New York; 1971:xi+294.View ArticleGoogle Scholar
  30. Siddiqi AH, Ansari QH, Khaliq A: On vector variational inequalities. Journal of Optimization Theory and Applications 1995,84(1):171–180. 10.1007/BF02191741MATHMathSciNetView ArticleGoogle Scholar
  31. Su CH, Sehgal VM: Some fixed point theorems for condensing multifunctions in locally convex spaces. Proceedings of the American Mathematical Society 1975, 50: 150–154. 10.1090/S0002-9939-1975-0380530-7MATHMathSciNetView ArticleGoogle Scholar
  32. Tian GQ, Zhou J: Quasi-variational inequalities without the concavity assumption. Journal of Mathematical Analysis and Applications 1993,172(1):289–299. 10.1006/jmaa.1993.1025MATHMathSciNetView ArticleGoogle Scholar
  33. Yang XQ: Generalized convex functions and vector variational inequalities. Journal of Optimization Theory and Applications 1993,79(3):563–580. 10.1007/BF00940559MATHMathSciNetView ArticleGoogle Scholar
  34. Yang XQ: Vector complementarity and minimal element problems. Journal of Optimization Theory and Applications 1993,77(3):483–495. 10.1007/BF00940446MATHMathSciNetView ArticleGoogle Scholar
  35. Yang XQ: Vector variational inequality and its duality. Nonlinear Analysis 1993,21(11):869–877. 10.1016/0362-546X(93)90052-TMATHMathSciNetView ArticleGoogle Scholar
  36. Yang XQ, Yao JC: Gap functions and existence of solutions to set-valued vector variational inequalities. Journal of Optimization Theory and Applications 2002,115(2):407–417. 10.1023/A:1020844423345MATHMathSciNetView ArticleGoogle Scholar
  37. Yu SJ, Yao JC: On vector variational inequalities. Journal of Optimization Theory and Applications 1996,89(3):749–769. 10.1007/BF02275358MATHMathSciNetView ArticleGoogle Scholar
  38. Zhou J, Chen G: Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities. Journal of Mathematical Analysis and Applications 1988,132(1):213–225. 10.1016/0022-247X(88)90054-6MATHMathSciNetView ArticleGoogle Scholar

Copyright

© J.-W. Peng and X.-M. Yang 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.