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Abstract
For the linear Lagrange interpolation over a triangular domain, we propose an
efficient algorithm to rigorously evaluate the interpolation error constant under the
maximum norm by using the finite-element method (FEM). In solving the
optimization problem corresponding to the interpolation error constant, the
maximum norm in the constraint condition is the most difficult part to process. To
handle this difficulty, a novel method is proposed by combining the orthogonality of
the space decomposition using the Fujino–Morley FEM space and the convex-hull
property of the Bernstein representation of functions in the FEM space. Numerical
results for the lower and upper bounds of the interpolation error constant for triangles
of various types are presented to verify the efficiency of the proposed method.

Keywords: Lagrange interpolation; Finite-element method; Fujino–Morley
interpolation; Bernstein polynomial

1 Introduction
In this paper, we consider the error estimation for the linear Lagrange interpolation over
triangle elements and provide explicit values for the error constant in the error estimation
under the L∞-norm.

Before the detailed discussion of our results, let us introduce the existing literature on
the Lagrange interpolation function in a general scope.

• (1D case) Given a 1-dimensional interval I = (0, 1), since H1(I) ⊂ C(I), we can define
the Lagrange interpolation �Lu such that �Lu is a linear function satisfying
(u – �Lu)(0) = (u – �Lu)(1) = 0. Then, the following results are well known as optimal
estimates if u is regular enough in the sense that the right-hand sides of the
inequalities are well defined:

∥
∥u – �Lu

∥
∥

0,I ≤ 1
π2 |u|2,I ,

∣
∣u – �Lu

∣
∣
1,I ≤ 1

π
|u|2,I ,

∥
∥u – �Lu

∥
∥∞,I ≤ 1

8
∥
∥u(2)∥∥∞,I ,
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Figure 1 A linear Lagrange interpolation function �Lu
defined on a triangle K

where u(2) denotes the second derivative of u, ‖·‖0,I and ‖·‖∞,I denote the L2- and
L∞-norms, respectively, and |·|1,I and |·|2,I denote the H1- and H2-seminorms,
respectively. The estimations presented above are optimal in the sense that there exist
functions for which the equalities hold.
– Let u(x) := sin(πx) on the interval (0, 1). Then, �Lu(x) = 0. In this case,

∥
∥u – �Lu

∥
∥

0,I =
1
π2 |u|2,I ,

∣
∣u – �Lu

∣
∣
1,I =

1
π

|u|2,I .

– Let u(x) := x2 on the interval (0, 1). Then, �Lu(x) = x. In this case,

∥
∥u – �Lu

∥
∥∞,I =

1
8
∥
∥u(2)∥∥∞,I .

• (2D case) Over a triangle K with vertices pi (i = 1, 2, 3), the Lagrange interpolation
function �Lu is the linear function such that (see Fig. 1)

(

u – �Lu
)

(pi) = 0, ∀i = 1, 2, 3.

In the case of L2-norm and H1-seminorm error estimation of �L, one needs to
estimate the interpolation error constants appearing in the following inequalities:

∥
∥u – �Lu

∥
∥

0,K ≤ C0(K)|u|2,K ,
∣
∣u – �Lu

∣
∣
1,K ≤ C1(K)|u|2,K .

Let h be the medium edge length of K , θ the maximum angle, and αh (0 < α ≤ 1) the
smallest edge length. Kikuchi and Liu [1, 2] obtained a bound of C0 and C1 as follows:

C0(K) ≤ h
π

√

1 + |cos θ |, C1(K) ≤ 0.493h
1 + α2 +

√
1 + 2α2 cos 2θ + α4

√

2(1 + α2 –
√

1 + 2α2 cos 2θ + α4)
.

Also, Kobayashi [3] showed that for a triangle K with edge lengths A, B, C and area S,
the following holds:

∣
∣u – �Lu

∣
∣
1,K ≤ C1(K)|u|2,K , ∀u ∈ H2(K),
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where the constant C1(K) is defined by

C1(K) :=

√

A2B2C2

16S2 –
A2 + B2 + C2

30
–

S2

5

(
1

A2 +
1

B2 +
1

C2

)

.

The optimal estimation of constants C0(K) and C1(K) for a concrete K can be
obtained by solving the corresponding eigenvalue problems with rigorous lower
eigenvalue bounds; see the results of [4, 5].

For L∞-norm error estimation under the L∞-norm of objective function, Waldron
[6] provides the following sharp inequality:

∥
∥u – �Lu

∥
∥∞,K ≤ 1

2
(

R2 – d2)∥∥u(2)∥∥∞,K , (1)

where R is the radius of the circumscribed circle of K , d is the distance of the center c
of the circumscribed circle from K , and ‖u(2)‖∞,K is defined by

∥
∥u(2)∥∥∞,K := sup

x∈K
sup

u,v∈R2
‖u‖=‖v‖=1

∣
∣DuDvu(x)

∣
∣ = sup

x∈K
sup
ξ∈R2
‖ξ‖=1

∣
∣D2

ξ u(x)
∣
∣.

In particular, if c ∈ K ,

∥
∥u – �Lu

∥
∥∞,K ≤ 1

2
R2∥∥u(2)∥∥∞,K .

A detailed discussion on the L∞-norm of interpolation error for a quadratic
polynomial f is considered by D’Azevedo and Simpson [7]. In [8], Shewchuk gives a
survey of the interpolation error estimation with L∞-norm for both f – �Lf and
∇(f – �Lf ), along with the discussion on the relation between the interpolation error
and the finite-element approximation of error functions. Also, the discussion on the
affection of the aspect ratio of a triangle element to the interpolation error can be
found in Cao [9].

In this research, we consider the L∞-norm estimation for the Lagrange interpolation
over triangle element K by using the H2-seminorm of the objective function, that is,

∥
∥u – �Lu

∥
∥∞,K ≤ CL(K)|u|2,K , ∀u ∈ H2(K). (2)

Here, CL(K) is the interpolation error constant to be evaluated explicitly. Note that since
W 2,∞(K) ⊆ H2(K), the inequality (2) is more general than Waldron’s result (1). In this
paper, it is aimed to give sharp estimation for the constant CL(K). For example, for the unit
isosceles right triangle element, the following estimation holds for the optimal constant
CL(K) in (2):

0.40432 ≤ CL(K) ≤ 0.41596.

Estimation of CL(K) for triangles of general shapes is provided in Theorem 2.3, while sharp
bounds for concrete triangles are discussed in Sect. 3. Such a kind of estimation is helpful
to provide explicit maximum norm error estimation for the FEM solution to boundary
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value problems by further applying the point-wise error estimation (see, e.g., [10]), which
will be considered in our succeeding work; see also classical qualitative error analysis un-
der the maximum norm in Sects. 19–22 of [11];

The contribution of our paper is summarized as follows.
(1) For triangle element K of general shapes, a formula to give an upper bound of CL(K)

is obtained by theoretical analysis. The bound is raw but works well for triangle
elements of arbitrary shapes. In particular, our analysis tells us that the value of
CL(K) can be very large and tends to ∞ if the triangle element tends to degenerate
to a 1D segment; see detail in Sect. 2.2.

(2) For a specific triangle element K , the optimal estimation of CL(K) is obtained by
solving the corresponding optimization problem over H2(K) under the constraint
condition involving L∞-norm. The processing of the constraint condition with
L∞-norm is not an easy task. We develop a novel algorithm to provide efficient and
sharp estimation for the solution of the optimization problem. With a light
computation, one can obtain the estimation of CL(K) with relative error less than
1%.

The rest of our paper is structured as follows. At the end of this section, we introduce
the preliminary concepts and notations to be used throughout the paper. In Sect. 2, the
estimation of the upper bound for CL(K) is considered using a theoretical approach. The
raw upper bound of the interpolation error constant is calculated for a right isosceles tri-
angle. Also, we investigate the asymptotic behavior of the constant as the triangle tends to
degenerate. In Sect. 3, using a finite-element method (FEM), an algorithm for the optimal
estimation of the constant is proposed. Lower bounds for the constant are calculated to
confirm the efficiency of the proposed algorithm. The numerical results are summarized
and the conclusion is presented in Sect. 4.

Notation Let us introduce the notation for the function spaces used in this paper. In most
cases, the domain � of functions is selected as a triangle element K . The standard notation
is used for Sobolev function spaces W k,p(�). The associated norms and seminorms are
denoted by ‖·‖k,p,� and |·|k,p,�, respectively (see, e.g., Chap. 1 of [12] and Chap. 1 of [13]).
In particular, for special k and p, we use abbreviated notations as Hk(�) = W k,2(�), |·|k,� =
|·|k,2,�, and Lp(�) = W 0,p(�). The set of polynomials over K of up to degree k is denoted
by Pk(K). The second-order derivative is given by D2u := (uxx, uxy, uyx, uyy) for u ∈ H2(K).

Given a triangle K , denote each vertex by pi (i = 1, 2, 3) and the largest edge length by hK ;
see Fig. 2. We follow the notation introduced by Liu and Kikuchi [2] to configure a general
triangle with geometric parameters. Let h,α, and θ be positive constants such that

h > 0, 0 < α ≤ 1,
(

π

3
≤

)

cos–1
(

α

2

)

≤ θ < π .

Define a triangle Kα,θ ,h with three vertices p1(0, 0), p2(h, 0), and p3(αh cos θ ,αh sin θ ). Note
that h ≤ hK . In the case of h = 1, the notation Kα,θ ,1 is abbreviated as Kα,θ .

With the above configuration of the triangle Kα,θ ,h, the optimal constant CL(K) in (2)
can be defined as follows:

CL(α, θ , h) := sup
u∈H2(Kα,θ ,h)

‖u – �Lu‖∞,Kα,θ ,h

|u|2,Kα,θ ,h

. (3)
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Figure 2 Configuration of triangle Kα,θ ,h

Figure 3 A triangle K with base e and height HK

By scaling of the triangle element, it is easy to confirm that CL(α, θ , h) = hCL(α, θ , 1).
In the rest of the paper, we show how to obtain explicit bounds for the error constant

CL(α, θ , h).

2 Raw upper bound of the constant
In this section, a raw upper bound of the constant is obtained through theoretical analysis.
Such a bound applies to triangles of arbitrary shapes.

First, let us quote a lemma about the trace theorem, which gives an estimation for the
integral over edge of a triangle element. For the reader’s convenience, we show the proof
in a concise way; refer to, e.g., [14–16] for more detailed discussion.

Lemma 2.1 (Trace theorem) Let e be one of the edges of triangle K ; see Fig. 3. Given w ∈
H1(K), we have the following estimation:

‖w‖2
0,e ≤ |e|

|K |
{‖w‖2

0,K + hK‖w‖0,K |w|1,K
}

.

Proof For any w ∈ H1(K), the Green theorem leads to
∫

K

(

(x, y) – p3
) · ∇(

w2)dK =
∫

∂K

(

(x, y) – p3
) · −→n w2 ds –

∫

K
2w2 dK .

Here, −→n is the unit outer normal direction on the boundary of K . For the term ((x, y) –
p3) · −→n , we have

(

(x, y) – p3
) · −→n =

⎧

⎨

⎩

0 on p1p3, p2p3,

HK on e.

Here, HK is the height of the triangle with base as e. Thus,

HK

∫

e
w2 ds =

∫

K
2w2 dK +

∫

K

(

(x, y) – p3
) · ∇(

w2)dK
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Figure 4 A subtriangle K̃ in a triangle K

≤
∫

K
2w2 dK + 2hK

∫

K
w|∇w|dK

≤ 2‖w‖2
0,K + 2hK‖w‖0,K‖∇w‖0,K .

We can now draw the conclusion by sorting the above inequality. �

Using the trace theorem, the following result provides a pointwise estimation of the
interpolation error.

Lemma 2.2 Given u ∈ H2(K), for any point x0 ∈ K , we have

∣
∣
(

u – �Lu
)

(x0)
∣
∣ ≤

√
2|p1x0|
√

HK̃

(

hK
∣
∣u – �Lu

∣
∣
1,K |u|2,K +

∣
∣u – �Lu

∣
∣
2
1,K

) 1
2 ,

where hK is the longest edge length of K , and HK̃ is the height of the subtriangle K̃ = p1x0p3

with respect to the base ẽ = p1x0 (see Fig. 4).

Proof Let g = u – �Lu and t be the direction along edge p1x0. In Lemma 2.1, by taking
w := ∂g

∂t , we have

∥
∥
∥
∥

∂g
∂t

∥
∥
∥
∥

2

0,ẽ
≤ |ẽ|

|K̃ |
(‖w‖2

0,K̃ + hK̃‖w‖0,K̃ |w|1,K̃
) ≤ |ẽ|

|K̃ |
(|g|21,K̃ + hK̃ |g|1,K̃ |g|2,K̃

)

.

Taking the Taylor expansion of g on the segment ẽ and noting that g(p1) = 0,

∣
∣g(x0)

∣
∣ =

∣
∣
∣
∣

∫

p1x0

∂g
∂t

dt + g(p1)
∣
∣
∣
∣
≤ √|p1x0| ·

∥
∥
∥
∥

∂g
∂t

∥
∥
∥
∥

0,ẽ

≤ |p1x0|
√

|K̃ |
(

hK |g|1,K̃ |g|2,K̃ + |g|21,K̃

) 1
2

≤
√

2|p1x0|
√

HK̃

(

hK |g|1,K |g|2,K + |g|21,K
) 1

2 .

The conclusion follows. �

Liu and Kikuchi [2] considered the estimation of the constant C1(α, θ ) for different types
of triangles K = Kα,θ such that

∣
∣u – �Lu

∣
∣
1,K ≤ C1(α, θ )h|u|2,K , ∀u ∈ H2(K),
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Figure 5 A right isosceles triangle K1, π2 ,h

where h is the medium length of K . The constant C1(α, θ ) is used to give a bound for
CL(K), as shown in the lemma below.

Lemma 2.3 Given u ∈ H2(K), for any point x0 ∈ K , we have

∣
∣
(

u – �Lu
)

(x0)
∣
∣ ≤

√
2|p1x0|
√

HK̃

(

C1(α, θ )hhK + C2
1(α, θ )h2) 1

2 |u|2,K . (4)

2.1 The case for a right isosceles triangle
Using Lemma 2.3, we obtain the upper bound of the constant for right isosceles triangles:
For the right isosceles triangle K = K1, π2 ,h,

∥
∥u – �Lu

∥
∥∞,K ≤ 1.3712h|u|2,K . (5)

Suppose a point x0 subdivides K into K1, K2, K3; see Fig. 5. Let us consider the estimation
of the term |p1x0|/HK2 , which is required in Lemma 2.3. Let p1p4 be the height of K with
base as p2p3. Due to the symmetry of K , it is enough to only consider the case that x0 ∈ K
is below the line p1p4. Let p be the intersection of the extended line of p1x0 and edge p2p3.
Note that |p1x0| ≤ |p1p|. For p := (x, y) on p2p4, |p1p| =

√

x2 + y2. The height of K2 with
base p1x0 is given by

HK2 =
hx

√

x2 + y2
.

Then, since y = h – x,

|p1p|
HK2

=
2x2 – 2hx + h2

hx
.

The above quantity takes its maximum value at p = ( h
2 , h

2 ) and p = (h, 0), and its maximum
value is 1. Thus, for any p on p2p4, |p1p|/HK2 ≤ 1. From [2], C1(1, π

2 ) ≤ 0.49293. Since
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hK =
√

2h, by inequality (4),

∣
∣
(

u – �Lu
)

(x0)
∣
∣ ≤ √

2
[

(0.49293)
√

2 + 0.492932] 1
2 h|u|2,K ≤ 1.3712h|u|2,K .

Hence, we obtain the error estimate for a right isosceles triangle as in (5).

2.2 Dependence of the constant on the shape of K
In this subsection, we consider the variation of the interpolation constant when a reference
triangle, i.e., the right isosceles triangle, is transformed to a general triangle.

Theorem 2.1 For a general element Kα,θ , the following estimation for constant CL(α, θ )
holds:

CL(α, θ ) ≤ v+(α, θ )
2
√

α sin θ
CL

(

1,
π

2

)

, (6)

where v+(α, θ ) = 1 + α2 +
√

1 + 2α2 cos 2θ + α4.

Proof Let us consider the affine transformation between x = (x1, x2) ∈ Kα,θ and ξ =
(ξ1, ξ2) ∈ K1, π2 :

ξ1 = x1 –
x2

tan θ
, ξ2 =

x2

α sin θ
or x1 = ξ1 + αξ2 cos θ , x2 = αξ2 sin θ .

Given ṽ(ξ ) over K1, π2 , define v(x) over Kα,θ by v(x1, x2) = ṽ(ξ1, ξ2). Thus,

‖v‖∞,Kα,θ = ‖ṽ‖∞,K1, π2
.

The estimation for the variation of H2-seminorm in Theorem 1 of [2] tells us that

|v|2,Kα,θ ≥ 2
√

α sin θ

v+(α, θ )
|ṽ|2,K1, π2

.

Thus, we draw the conclusion from the definition of constant CL(α, θ ) in (3). �

Lemma 2.4 For shape-regular triangles, CL(α, θ ) is bounded. Here, by “shape-regular tri-
angles” it means that for a certain positive quantity δ, the minimal inner angle of each
triangle, denoted by θmin, the inequality θmin ≥ δ holds.

Proof It is easy to see that for all triangles with θmin ≥ δ, the term v+(α, θ )/
√

α sin θ in (6)
is uniformly bounded. As CL(1,π/2) has a finite value, we draw the conclusion from the
estimation (6). �

Remark 2.1 By using the raw bound of CL(1, π
2 ) ≤ 1.3712h in (5), an explicit but raw bound

of CL(α, θ ) is available. Later, with a sharp and rigorous estimation of CL(1, π
2 ) based on a

numerical approach, the bound can be improved as

CL(α, θ , h) ≤ 0.41596h
v+(α, θ )

2
√

α sin θ
. (7)
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Figure 6 A triangle Kα,θ with angle θ close to π

Figure 7 A right triangle Kα,π2
with one leg length close to 0

Remark 2.2 Here are two remarks on the asymptotic behavior of the constant when the
triangle degenerates to a segment.

1. Suppose the maximum inner angle θ of Kα,θ is close to π ; see Fig. 6. Let
u(x, y) := x2 + y2. Then, �Lu(x, y) = x + ((α – cos θ )/ sin θ )y and

∥
∥u – �Lu

∥
∥∞,Kα,θ

=
(

2α cos θ – α2 – 1
)

/4, |u|2,Kα,θ = 2
√

α sin θ .

Thus, we have a lower bound of CL(α, θ ) as follows,

CL(α, θ ) ≥ 2α cos θ – α2 – 1
8
√

α sin θ
.

In this case, CL(α, θ ) diverges to ∞ as θ tends to π .
2. For triangle Kα, π2 shown in Fig. 7, let u(x, y) := |(x, y) – p4|2, where p4 is the midpoint

of the edge p2p3. Then, �Lu = (α2 + 1)/4 and

∥
∥u – �Lu

∥
∥∞,Kα, π2

=
(

α2 + 1
)

/4, |u|2,Kα, π2
= 2

√
α.

Thus,

‖u – �Lu‖∞,Kα, π2

|u|2,Kα, π2

=
α2 + 1
8
√

α

(

≤ CL
(

α,
π

2

))

.

When α → 0, although the maximum inner angle is invariant, the interpolation error
constant CL(α, π

2 ) tends to ∞.

3 Optimal estimation of the constant
In the previous section, we obtained explicit bounds for the interpolation constant for
triangles of general shape. Basically, such bounds from theoretical analysis only provide a
raw bound for the objective constant. In this section, we propose a numerical algorithm
to obtain the optimal estimation of the constant CL(K) for specific triangles.

Let us define the space V L(K) := {u ∈ H2(K) | u(pi) = 0 (i = 1, 2, 3)}. Let T h be a triangu-
lation of the domain K and define the space

V FM
h (K) :=

{

v | v|Kh ∈ P2(Kh),∀Kh ∈ T h; v(pi) = 0 (i = 1, 2, 3); v is continuous
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at the nodes;
∫

e

(
∂v

∂
−→n

∣
∣
∣
∣
Kh

–
∂v

∂
−→n

∣
∣
∣
∣
K ′

h

)

ds = 0 for each e = Kh ∩ Kh′
}

.

For uh, vh ∈ V FM
h (K), define the discretized H2-inner product and seminorm by

〈uh, vh〉h :=
∑

Kh∈T h

∫

Kh

D2uh|Kh · D2vh|Kh dKh, |uh|2,K :=
√〈uh, uh〉h.

Let us define the two quantities over the triangle K :

λ(K) := inf
u∈V L(K )

|u|22,K

‖u‖2
∞,K

, λh(K) := min
uh∈V FM

h (K )

|uh|22,K

‖uh‖2
∞,K

. (8)

Note that CL(K) =
√

λ(K)–1 holds. In Theorem 3.1, we describe the algorithm to bound λ

by using λh.
Given u ∈ H2(K), the Fujino–Morley interpolation �FM

h u is a function satisfying

�FM
h u ∈ V FM

h (K); �FM
h u|Kh ∈ P2(Kh), ∀Kh ∈ T h,

and at the vertices pi and edges ei of K ,

(

u – �FM
h u

)

(pi) = 0,
∫

ei

∂

∂n
(

u – �FM
h u

)

ds = 0 (i = 1, 2, 3).

The Fujino–Morley interpolation has the property that (see, e.g., [4, 5])

〈

u – �FM
h u, vh

〉

h = 0, ∀vh ∈ V FM
h (K). (9)

Let V (h) := {u + uh | u ∈ V L(K), uh ∈ V FM
h (K)}. Thus, it is easy to see that the Fujino–

Morley interpolation is just the projection Ph : V (h) → V FM
h (K) with respect to the inner

product 〈·, ·〉h.
Below, let us introduce the theorem that provides an explicit lower bound of λ. Such a

result is inspired by the idea of [17] for the lower bounds of eigenvalue problems.
Let CFM

h be a quantity that makes the following inequality hold.

∥
∥u – �FM

h u
∥
∥∞,K ≤ CFM

h
∣
∣u – �FM

h u
∣
∣
2,K , ∀u ∈ V L(K). (10)

The existence of CFM
h is confirmed by the argument in Sect. 3.1.

Theorem 3.1 With the quantity CFM
h , we have a lower bound of λ(K) as follows:

λ(K) ≥ λh

1 + (CFM
h )2λh

. (11)

Proof For any u ∈ V L(K), noting that |�FM
h u|2,K ≥ √

λh‖�FM
h u‖∞,K and applying the in-

equality (10), we have

‖u‖∞,K =
∥
∥�FM

h u + u – �FM
h u

∥
∥∞,K
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≤ ∥
∥�FM

h u
∥
∥∞,K +

∥
∥u – �FM

h u
∥
∥∞,K

≤ |�FM
h u|2,K√

λh
+ CFM

h
∣
∣u – �FM

h u
∣
∣
2,K

≤
√

1
λh

+
(

CFM
h

)2
√

∣
∣�FM

h u
∣
∣
2
2,K +

∣
∣u – �FM

h u
∣
∣
2
2,K .

From the orthogonality in (9), we have

∣
∣�FM

h u
∣
∣
2
2,K +

∣
∣u – �FM

h u
∣
∣
2
2,K = |u|22,K .

Thus,

‖u‖∞,K ≤
√

1 + (CFM
h )2λh

λh
|u|2,K , ∀u ∈ V L(K).

From the definition of λ in (8), we draw the conclusion. �

To apply Theorem 3.1 for bounding λ, an explicit value of CFM
h is needed. Below, let us

describe the way to obtain this explicit value by utilizing the raw bound of CL(α, θ ).

3.1 Explicit estimation of CFM
h

To have an explicit value of CFM
h , we first define the quantity CFM

res (Kh) for each element Kh

in the triangulation T h:

CFM
res (Kh) := sup

u∈H2(Kh)

‖u – �FM
h u‖∞,Kh

|u – �FM
h u|2,Kh

= sup
w∈W1

‖w‖∞,Kh

|w|2,Kh

.

Here, W1 := {w ∈ H2(Kh) | w(pi) = 0,
∫

ei
∂w
∂n ds = 0 (i = 1, 2, 3)}. Noting that W1 ⊆ W2 for

W2 := {w ∈ H2(Kh) | w(pi) = 0 (i = 1, 2, 3)}, from the definition of CL in (3), we have

CFM
res (Kh) ≤ sup

w∈W2

‖w‖∞,Kh

|w|2,Kh

= CL(Kh).

Then, the following CFM
h with an upper bound makes certain (10) holds:

CFM
h := max

Kh∈T h
CFM

res (Kh)
(

≤ max
Kh∈T h

CL(Kh)
)

. (12)

Remark 3.1 Let T h be a uniform triangulation of a right isosceles triangle; see a sample
mesh in Fig. 8. We choose an explicit upper bound of CFM

h as CFM
h ≤ 1.3712h, since for

each Kh ∈ T h, CFM
res ≤ CL(Kh) ≤ 1.3712h, where h is the leg length of each right triangle

element.

3.2 Estimation of λh by solving the finite-dimensional optimization problem
In this subsection, we present a method to estimate λh, which is required in Theorem 3.1
for bounding λ. Let M := Dim(V FM

h ). The estimation of λh is equivalent to finding the
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Figure 8 A uniform triangulation of a right isosceles triangle

solution to the optimization problem

λh = min xT Ax, subject to

∥
∥
∥
∥
∥

M
∑

i=1

xiφi

∥
∥
∥
∥
∥∞,K

≥ 1, (13)

where the components aij of A are given by aij = 〈φi,φj〉h, {φi}i=1,...,M are the basis functions
for the Fujino–Morley space V FM

h , and x ∈R
M denotes the Fujino–Morley coefficient vec-

tor of uh ∈ V FM
h .

To solve the optimization problem (13) is not an easy task since the L∞-norm of the
function appears in the constraint. Here, we introduce the technique to apply Bernstein
polynomials and their convex-hull property to solve the problem. Strictly speaking, a new
optimization problem (14) utilizing the Bernstein polynomials will be formulated to pro-
vide a lower bound for the solution of (13).

As preparation, let us introduce the definition of Bernstein polynomials along with the
convex-hull property; refer to, e.g., [18, 19] for detailed discussion.

Convex-hull property of Bernstein polynomials Given a triangle K , let (u, v, w) be the
barycentric coordinates for a point x in K . A Bernstein polynomial p of degree n over a
triangle K is defined by

p :=
∑

i+j+k=n

di,j,kJ (n)
i,j,k , J (n)

i,j,k(x) :=
n!

i!j!k!
uivjwk .

Here, J (n)
i,j,k(x) are the Bernstein basis polynomials; the coefficients di,j,k are the control

points of p. Noting that

J (n)
i,j,k ≥ 0,

∑

i+j+k=n

J (n)
i,j,k = 1,

we can easily obtain the following convex-hull property of Bernstein polynomials:

‖p‖∞,K ≤ max|di,j,k|.

Given uh ∈ V FM
h (K), for each Kh ∈ T h, uh|Kh ∈ P2(Kh) can be represented by the Bern-

stein basis polynomials of degree two. Let B be the N × M matrix that transforms the
Fujino–Morley coefficients x to the Bernstein coefficients dB. Note that uh is regarded as
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a piecewise Bernstein polynomial so that its Bernstein coefficient vector dB has the di-
mension N = 6 × #{elements}. The dimension of dB can be further reduced considering
the continuity of uh at the vertices of the triangulation. However, it is difficult to utilize the
constraints of uh that cross the edges to reduce the dimension N . From the convex-hull
property of the Bernstein polynomials, the following inequality holds:

1 ≤
∥
∥
∥
∥
∥

M
∑

i=1

xiφi

∥
∥
∥
∥
∥∞,K

≤ ‖Bx‖∞.

Based on this inequality, we propose a new optimization by relaxing the constraint con-
dition of (13):

λh,B = min xT Ax, subject to ‖Bx‖∞ ≥ 1. (14)

The solution to problem (14) provides a lower bound for (13), i.e., λh ≥ λh,B.
Below, we propose an algorithm to solve the problem (14). Since A is positive-definite,

let us consider the Cholesky decomposition of A: A = RT R, where R is an M × M upper
triangular matrix. Then, by letting y := Rx and B̂ := BR–1, problem (14) becomes

λh,B = min yT y, subject to ‖B̂y‖∞ ≥ 1. (15)

The following lemma shows the solution for problem (15).

Lemma 3.1 Let bT
i (i = 1, . . . , N ) be the ith row of B̂ and bT

max be a row of B̂ satisfying
‖bmax‖2 = maxi=1,...,N‖bi‖2. Then, the optimal value of problem (15) is given by1

λh,B =
1

‖bmax‖2
2

.

Proof Let S := {y | ‖B̂y‖∞ ≥ 1} and ȳ := ‖bmax‖–2
2 bmax. Then, we have ȳ ∈ S because

‖B̂ȳ‖∞ = max
i=1,...,N

∣
∣bT

i ȳ
∣
∣ ≥ ∣

∣bT
maxȳ

∣
∣ = 1.

Hence,

min
y∈S

yT y ≤ ȳT ȳ =
1

‖bmax‖2
2

. (16)

For any y ∈ S, from the Cauchy–Schwarz inequality,

1 ≤ max
i=1,...,N

∣
∣bi

T y
∣
∣ ≤ max

i=1,...,N
‖bi‖2‖y‖2 = ‖bmax‖2‖y‖2.

Thus,

1
‖bmax‖2

2
≤ min

y∈S
yT y. (17)

From (16) and (17), we draw the conclusion. �

1Appreciation to Tamaki TANAKA and Syuuji YAMADA from the Faculty of Science, Niigata University for their idea of
solving this problem in an efficient way.
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Note that the diagonal elements of BA–1BT = B̂B̂T correspond to ‖bi‖2
2 (i = 1, . . . , N ).

Therefore, we can solve problem (14) without performing the Cholesky decomposition of
A, as shown by the following lemma.

Lemma 3.2 Let D := BA–1BT . The optimal value of (14) is given by

λh,B =
1

max(diag(D))
,

where diag(D) is the diagonal elements of D.

Theorem 3.1 gives a lower bound for λ. Since CL(K) =
√

λ(K)–1, this lower bound is used
to obtain an upper bound for CL(K). Below, let us summarize the procedure to obtain a
lower bound for λ.

Algorithm for calculating the lower bound of λ(K)
a. Set up the FEM space V FM

h (K) = span{φi}M
i=1 over a triangulation of the triangle

domain K .
b. Assemble the global matrix A = (aij)M×M (aij = 〈φi,φj〉h) and the transformation

matrix B from Fujino–Morley coefficients to Bernstein coefficients.
c. Apply Lemma 2.3 to obtain a raw bound for CFM

h .
d. Apply Lemma 3.1 or Lemma 3.2 to calculate λh,B(≤ λh).
e. The lower bound for λ is obtained through Theorem 3.1 by using λh,B and the upper

bound of CFM
h .

Using uniform triangulation of a domain K , a direct estimation of the lower bound for
λ without using CFM

h is available.

Corollary 3.1 For a uniform triangulation of K = Kα,θ ,h with N subdivisions for each side,
the following holds:

λ(K) ≥ λh
(

1 – (1/N)2). (18)

Proof Since (CL(K))2 = 1/λ(K) and each Kh ∈ T h is similar to K , we have,

λ(K) ≥ λh

1 + (CFM
h )2λh

≥ λh

1 + (CL(Kh))2λh
=

λh

1 + (1/N)2λh/λ(K)
.

The conclusion is achieved by sorting the inequality. �

Remark 3.2 Theoretically, for a refined uniform triangulation, the lower bound (11) using
CFM

h is sharper (i.e., larger) than (18). This can be confirmed by utilizing the following
relation:

λh

1 + (CFM
h )2λh

≥ λh
(

1 – (1/N)2) ⇐⇒ 1 ≥ (

N2 – 1
)(

CFM
h

)2
λh. (19)

For a small value of h = 1/N , we have

(

N2 – 1
)(

CFM
h

)2 ≈ (

NCFM
h

)2 =
(

CFM
res (Kh)

)2,λh ≈ λ =
(

CL(Kh)
)–2.
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Figure 9 Contour lines of CL(α,θ ) w.r.t. vertex p3(x, y)

Thus, the second equality of (19) holds due to CFM
res (Kh) < CL(Kh). However, in practical

computation, the raw estimate of CFM
res (Kh) will produce a worse bound of λ than (18).

Using Corollary 3.1, the following steps are modified from the algorithm to obtain a
lower bound for λ, without using the quantity of CFM

h :
Revision of algorithm for calculating the lower bound of λ(K)
c*. Apply Lemma 3.1 or Lemma 3.2 to calculate λh,B(≤ λh).
d*. Solve the lower bound for λ using Corollary 3.1 along with λh,B.

Remark 3.3 To compare the efficiencies of the two formulas (11) and (18), we apply them
to estimate λ for a unit right isosceles K1,π/2. By using uniform triangulation of size h =
1/64, the estimate (11) gives λ ≥ 5.7659 and (18) gives a sharper bound as λ ≥ 5.7798.
Hence, a sharper upper bound is obtained using (18) and we have the following estimation:

∥
∥u – �Lu

∥
∥∞,K1,π/2,h

≤ 0.41596h|u|2,K1,π/2,h .

As a comparison, the result (5) will yield a raw bound as CL(1,π/2, h) ≤ 1.3712h.

For a triangle Kα,θ with two fixed vertices p1(0, 0), p2(1, 0), let us vary the vertex p3(x, y)
and calculate the approximate value of CL(α, θ ) for each position of p3. Note that CL can
be regarded as a function with respect to the coordinate (x, y) of p3, which is denoted by
CL(x, y). In Fig. 9, we draw the contour lines of CL(x, y), where the abscissa and the ordinate
denote x- and y- coordinates of p3, respectively.

3.3 Lower bound of the constant
To confirm the precision of the obtained estimation for the Lagrange interpolation con-
stant, the lower bounds of the constants are calculated. Let uh be the function obtained by
numerical computation solving the minimization problem. To obtain the lower bound, an
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Figure 10 The contour lines of the minimizer uh of
(14) for K1,π /2

appropriate polynomial f over K of higher degree d is selected by solving the minimization
problem below:

min
f ∈Pd(K )

n
∑

i=1

∣
∣f (pi) – uh(pi)

∣
∣
2 (

n : #{nodes of triangulation}),

where pi denote the nodes of the triangulation of K . From the definition of λ(K) in (8) and
the relation CL(K) = 1/

√
λ(K), we have a lower bound of CL(K) as follows:

CL(K) ≥ ‖f ‖∞,K

|f |2,K
.

Remark 3.4 For the unit right isosceles triangle K1,π/2, the upper bound for the constant is
obtained by solving the optimization problem with mesh size 1/64. Meanwhile, the lower
bound of the constant is obtained by using a polynomial of degree 9. The two side bounds
read:

0.40432 ≤ CL
(

1,
π

2

)

≤ 0.41596.

4 Numerical results and conclusion
In this section, we perform numerical computation to obtain the estimation of the inter-
polation error constant CL(K) for triangles of various shapes.

First, let us confirm the shape of the function uh that solves the minimization problem
for λh,B in the case of K being the unit isosceles right triangle. The contour lines of uh are
displayed in Fig. 10. The numerical computation tells us that the maximum value of uh

happens on the midpoint of the hypotenuse of K . Note that the maximum value of uh is
around 0.95, while the maximum of its Bernstein coefficients is above 1.

Let us also compare the lower bounds of λ obtained through Theorem 3.1 and Corol-
lary 3.1 for various triangles. Table 1 tells us that the values obtained using Corollary 3.1
give a sharper estimate of λ.

Table 2 summarizes the results for the lower and upper bounds of the constant for dif-
ferent types of triangle K1,θ with the mesh size as h = 1/32 and h = 1/64. The upper bounds
(denoted by CL

ub) are obtained through Corollary 3.1, while the lower bounds (denoted by
CL

lb) are obtained by using high-degree polynomials with degree denoted by d.
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Table 1 The lower bounds for λ through Theorem 3.1 and Corollary 3.1

θ h = 1/32 h = 1/64

λh,B Theorem 3.1 Corollary 3.1 λh,B Theorem 3.1 Corollary 3.1

π /6 9.8339 8.7356 9.8245 9.8925 9.5892 9.8901
π /4 13.517 12.263 13.505 13.574 13.234 13.570
π /3 15.412 14.357 15.397 15.457 15.177 15.454
π /2 5.5988 5.5418 5.5933 5.7812 5.7660 5.7799
2π /3 2.3954 2.3683 2.3930 2.5511 2.5433 2.5504
3π /4 1.5550 1.5369 1.5534 1.6768 1.6715 1.6764
5π /6 0.93778 0.92669 0.93687 1.0212 1.0179 1.0210

Table 2 The lower and upper bounds of CL(1,θ ) for triangles of different shapes

θ h = 1/32 h = 1/64

d CLlb λh,B CLub d CLlb λh,B CLub
π /6 9 0.31511 9.8339 0.31904 9 0.31423 9.8925 0.31799
π /4 8 0.26777 13.517 0.27212 8 0.26753 13.574 0.27146
π /3 10 0.25182 15.412 0.25485 10 0.25209 15.457 0.25439
π /2 9 0.40432 5.5988 0.42283 9 0.40419 5.7812 0.41596
2π /3 8 0.59964 2.3954 0.64644 8 0.60079 2.5511 0.62618
3π /4 10 0.72146 1.5550 0.80233 10 0.72420 1.6768 0.77235
5π /6 8 0.92197 0.93778 1.03314 8 0.92830 1.0212 0.98968

Figure 11 The convergency behavior of the upper and lower bounds of CL(1,θ ) for θ = π /3 and π /2

Figure 11 demonstrates the convergency of the upper and lower bounds of the inter-
polation error constant as the mesh is refined. This implies that the convergency order
of upper bounds depends on the shape of the triangles. The theoretical analysis on the
efficiency and the convergency of the algorithm in solving the optimization problem is
beyond the scope of this paper and will be systematically investigated in our succeeding
research.

Rigorous result using interval arithmetic Numerical computation with floating-point
numbers involves round-off errors. To have rigorous results, we applied the interval arith-
metic in assembling the matrices and evaluating the upper bound CL

ub in Table 2. It is ob-
served from the numerical computation results that the accumulation of round-off error
in the computation is not so large. For example, for the mesh size being h = 1/64, the ma-
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trix B has the dimensions 24576 × 8382 and the rigorous estimation of CL
ub in the case of

an isosceles right triangle is given as

CL
ub(1,π/2) ∈ [0.4159516728, 0.4159516793].

5 Conclusion
In this research, we provide explicit estimates for the L∞-norm error constant CL of the
linear Lagrange interpolation function over triangular elements. The formula in Theo-
rem 2.1 provides a bound of CL that holds for triangles of arbitrary shapes. Theorem 3.1
in Sect. 3 proposes a numerical approach to obtain the optimal bounds for the constant CL

over a concrete triangle. The optimization problem corresponding to CL is solved by uti-
lizing the convex-hull property of Bernstein polynomials in a novel way. In the near future,
the convergency of the numerical approach to solve the optimization problems involving
the maximum norm will be systematically considered.
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