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1 Introduction
Let, as usual, N, Z, Q, R be the sets of all natural, whole, rational, and real numbers re-
spectively, and R+ = [0,∞). For fixed k ∈ Z, we use the notation Nk = {n ∈ Z : n ≥ k}.
Throughout the paper we will also use the following standard convention:

k–1∏

j=k

aj = 1,

where k ∈ Z.
There has been a huge interest in difference equations and systems of difference equa-

tions (see, for example, [1–48] and the references therein), because they naturally appear
in many branches of mathematics and science, where they model real and abstract phe-
nomena (see, for example, [6, 8, 15, 20, 25, 27, 31, 37, 48]). Of many topics in the area,
there has been a growing renewed interest in their solvability, invariants, and their ap-
plications (see, for example, [3–6, 14, 28–30, 32–35, 38, 39, 41–47] and the references
therein), although nowadays mainstream of investigations is on the long-term behavior of
their solutions (see, e.g., [3, 4, 6–8, 16–19, 36, 40]).

A typical situation is that many solvable difference equations and systems of difference
equations are transformed by suitable changes of variables to well-known solvable ones
such as linear difference equations and systems with constant coefficients and their close
relatives (see, for example, [5, 32, 41–47] and many related references therein). For some
classical solvable difference equations and systems, see, for example, original sources [9,
11, 13, 23, 24], as well as some of the oldest presentations of the topic in [21] and [22]
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(for some later presentations see, for example, [10] and [26]). It should be pointed out that
the original sources have been also motivated by some practical problems, usually from
combinatorics and probability, but also in economics. Generally speaking, investigation
of difference equations and systems of difference equations has always had some direct or
potential applications.

Special cases of the difference equation

xn+1 = axn +
bx2

n
cxn + dxn–1

, n ∈N0, (1)

where parameters a, b, c, d and initial values x–1 and x0 are real or positive real numbers,
are some of the difference equations that appear from time to time in the literature (see,
e.g., [12]).

Our aim here it to show solvability of an extension of equation (1), considerably extend-
ing some results on solvability of difference equations in the literature. We also give some
applications of our main result, as well as some comments related to some results in [12]
on equation (1).

2 Main results
In this section we study solvability of the difference equation

xn+1 = f –1
(

f (xn)
αf (xn) + βf (xn–1)
γ f (xn) + δf (xn–1)

)
, n ∈N0, (2)

where α,β ,γ , δ ∈ R, γ 2 +δ2 �= 0, f : R→ R is a strictly monotone (increasing or decreasing)
continuous function, f (R) = R and f (0) = 0. We use some methods and ideas related to the
ones in [14, 41, 43–45, 47].

First note that if xn0 = 0 for some n0 ∈N0, then from equation (2) we easily obtain xn0+1 =
0, from which together with equation (2) it follows that xn0+2 is not defined. Hence, from
now on we consider only well-defined solutions to equation (2) such that xn �= 0, n ∈ N0.
We may also assume that x–1 �= 0. Namely, if we assume that x–1 = 0, the fact/assumption
x0 �= 0 �= x1 enables us to consider the solutions on the domain N0, that is, we can discard
the member x–1. Hence, we may assume

xn �= 0, n ∈ N–1. (3)

The following result is the main in this paper.

Theorem 1 Let α,β ,γ , δ ∈ R, γ 2 + δ2 �= 0, f : R → R be a strictly monotone continuous
function such that f (R) = R and f (0) = 0. Then equation (2) is solvable in closed form.

Proof First note that since f (R) = R, f (0) = 0 and f is strictly monotone and continuous,
then it is one-to-one, point 0 is a unique root of the function, and f is a homeomorphism
of the real line R (see, e.g., [49]).

There are several cases to be considered.
Case αδ = βγ , α = β = 0. Since α = β = 0, from (2) we have

xn+1 = 0, n ∈N0, (4)
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so we get a trivial equation, with an obvious solution.
Case αδ = βγ , α = 0, β �= 0. From these conditions we immediately obtain γ = 0 and

δ �= 0, which implies

xn+1 = f –1
(

β

δ
f (xn)

)
, n ∈ N0.

Hence

f (xn+1) =
β

δ
f (xn), n ∈N0.

From this we get

f (xn) =
(

β

δ

)n

f (x0), n ∈N0,

which implies

xn = f –1
((

β

δ

)n

f (x0)
)

, n ∈ N0. (5)

Case αδ = βγ , α �= 0, β = 0. From these conditions we immediately obtain δ = 0, and
consequently γ �= 0, which implies

xn+1 = f –1
(

α

γ
f (xn)

)
, n ∈N0,

and consequently

f (xn+1) =
α

γ
f (xn), n ∈N0.

From this we get

f (xn) =
(

α

γ

)n

f (x0), n ∈N0,

which implies

xn = f –1
((

α

γ

)n

f (x0)
)

, n ∈N0. (6)

Case αδ = βγ , δ = 0. From these conditions we have γ �= 0, and consequently β = 0.
Hence, we have two cases α = 0 and α �= 0, which have been considered above.

Case αδ = βγ , γ = 0. From these conditions we have δ �= 0, and consequently α = 0.
Hence, we have two cases β = 0 and β �= 0, which have been also considered above.

Case αδ = βγ , αβγ δ �= 0. Since αβγ δ �= 0, we have α = βγ /δ, from which it follows that

xn+1 = f –1
(

β

δ
f (xn)

)
,

so formula (5) holds in this case.
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Case αδ �= βγ . We have

f (xn+1) = f (xn)
αf (xn) + βf (xn–1)
γ f (xn) + δf (xn–1)

, n ∈ N0. (7)

Since we assume that (3) holds, then we have

f (xn) �= 0, n ∈N–1,

so we can use the change of variables

yn =
f (xn)

f (xn–1)
, n ∈N0, (8)

in (7) and obtain the equation

yn+1 =
αyn + β

γ yn + δ
, n ∈N0. (9)

Case αδ �= βγ , γ = 0. First note that it must be δ �= 0, and we get the linear equation

yn+1 =
α

δ
yn +

β

δ
(10)

for n ∈N0.
Case αδ �= βγ , γ = 0, α = δ. Since α = δ, from equation (10) it follows that

yn =
β

δ
n + y0

for n ∈N0, from which along with (8) it follows that

f (xn) =
(

β

δ
n +

f (x0)
f (x–1)

)
f (xn–1)

for n ∈N0, and consequently

f (xn) = f (x–1)
n∏

j=0

(
β

δ
j +

f (x0)
f (x–1)

)

for n ∈N–1, from which it follows that

xn = f –1

(
f (x–1)

n∏

j=0

(
β

δ
j +

f (x0)
f (x–1)

))
(11)

for n ∈N–1.
Case αδ �= βγ , γ = 0, α �= δ. Since α �= δ, then from (10) we have

yn = β
(α/δ)n – 1

α – δ
+

(
α

δ

)n

y0
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for n ∈N0, from which along with (8) it follows that

f (xn) =
(

β
(α/δ)n – 1

α – δ
+

(
α

δ

)n f (x0)
f (x–1)

)
f (xn–1)

for n ∈N0, and consequently

f (xn) = f (x–1)
n∏

j=0

(
β

(α/δ)j – 1
α – δ

+
(

α

δ

)j f (x0)
f (x–1)

)

for n ∈N–1, from which we obtain

xn = f –1

(
f (x–1)

n∏

j=0

(
β

(α/δ)j – 1
α – δ

+
(

α

δ

)j f (x0)
f (x–1)

))
(12)

for n ∈N–1.
Case αδ �= βγ , γ �= 0. In this case equation (9) is a bilinear/fractional linear difference

equation [1, 2, 22, 27, 45], hence we can use the following change of variables:

yn =
zn+1

zn
+ f , n ∈N0, (13)

where f is a constant which should be suitably chosen so that equation (9) is transformed
to a known solvable one.

We have
(

zn+2

zn+1
+ f

)(
γ

zn+1

zn
+ γ f + δ

)
–

(
α

zn+1

zn
+ αf + β

)
= 0 (14)

for n ∈N0.
By choosing

f = –
δ

γ

in (14), after some calculation, we get that it must be

γ 2zn+2 – γ (α + δ)zn+1 + (αδ – βγ )zn = 0 (15)

for n ∈N0.
If � := (α+δ)2 –4(αδ–βγ ) �= 0, then the roots of the characteristic polynomial associated

with equation (15) are different and given by

λ1 =
α + δ +

√
�

2γ
and λ2 =

α + δ –
√

�

2γ
.

A general solution to equation (15) is

zn =
(z1 – λ2z0)λn

1 – (z1 – λ1z0)λn
2

λ1 – λ2
(16)

for n ∈N0 (see [11, p. 84]).
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Using (16) in (13), we have

yn =
(z1 – λ2z0)λn+1

1 – (z1 – λ1z0)λn+1
2

(z1 – λ2z0)λn
1 – (z1 – λ1z0)λn

2
–

δ

γ

=
(y0 – λ2 + δ

γ
)λn+1

1 – (y0 – λ1 + δ
γ

)λn+1
2

(y0 – λ2 + δ
γ

)λn
1 – (y0 – λ1 + δ

γ
)λn

2
–

δ

γ

for n ∈N0, from which along with (8) it follows that

f (xn) =
( ( f (x0)

f (x–1) – λ2 + δ
γ

)λn+1
1 – ( f (x0)

f (x–1) – λ1 + δ
γ

)λn+1
2

( f (x0)
f (x–1) – λ2 + δ

γ
)λn

1 – ( f (x0)
f (x–1) – λ1 + δ

γ
)λn

2
–

δ

γ

)
f (xn–1)

for n ∈N0, and consequently

f (xn) = f (x–1)
n∏

j=0

( ( f (x0)
f (x–1) – λ2 + δ

γ
)λj+1

1 – ( f (x0)
f (x–1) – λ1 + δ

γ
)λj+1

2

( f (x0)
f (x–1) – λ2 + δ

γ
)λj

1 – ( f (x0)
f (x–1) – λ1 + δ

γ
)λj

2

–
δ

γ

)

for n ∈N–1.
Hence

xn = f –1

(
f (x–1)

n∏

j=0

( ( f (x0)
f (x–1) – λ2 + δ

γ
)λj+1

1 – ( f (x0)
f (x–1) – λ1 + δ

γ
)λj+1

2

( f (x0)
f (x–1) – λ2 + δ

γ
)λj

1 – ( f (x0)
f (x–1) – λ1 + δ

γ
)λj

2

–
δ

γ

))
(17)

for n ∈N–1.
If � = 0, then the roots of the characteristic polynomial associated with equation (15)

are

λ1,2 =
α + δ

2γ
�= 0,

and the general solution to equation (15) is

zn =
(
(z1 – λ1z0)n + λ1z0

)
λn–1

1 (18)

for n ∈N0 (see, e.g., [42]).
Using (18) in (13), we have

yn =
((z1 – λ1z0)(n + 1) + λ1z0)λ1

(z1 – λ1z0)n + λ1z0
–

δ

γ

=
((y0 + δ

γ
– λ1)(n + 1) + λ1)λ1

(y0 + δ
γ

– λ1)n + λ1
–

δ

γ

for n ∈N0, from which along with (8) it follows that

f (xn) =
( ((f (x0) + ( δ

γ
– λ1)f (x–1))(n + 1) + λ1f (x–1))λ1

(f (x0) + ( δ
γ

– λ1)f (x–1))n + λ1f (x–1)
–

δ

γ

)
f (xn–1)
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for n ∈N0, and consequently

f (xn) = f (x–1)
n∏

j=0

( ((f (x0) + ( δ
γ

– λ1)f (x–1))(j + 1) + λ1f (x–1))λ1

(f (x0) + ( δ
γ

– λ1)f (x–1))j + λ1f (x–1)
–

δ

γ

)

for n ∈N–1.
Hence

xn = f –1

(
f (x–1)

n∏

j=0

( ((f (x0) + ( δ
γ

– λ1)f (x–1))(j + 1) + λ1f (x–1))λ1

(f (x0) + ( δ
γ

– λ1)f (x–1))j + λ1f (x–1)
–

δ

γ

))
(19)

for n ∈N–1.
The formulas in (4), (5), (6), (11), (12), (17), and (19) imply the claim of the theorem. �

From the proof of Theorem 1 and since the bilinear function

b(x) =
αx + β

γ x + δ

maps R+ into itself, when α,β ,γ , δ ∈ R+, γ 2 + δ2 �= 0, we see that the following result also
holds.

Theorem 2 Let α,β ,γ , δ ∈ R+, γ 2 + δ2 �= 0, f : R+ →R+ be a strictly monotone continuous
function such that f (R+) = R+ and f (0) = 0. Then equation (2) is solvable in closed form.

3 Applications
In this section we present some applications of the main result concerning solutions to
equation (1). We also give some comments related to some of the results in [12] to equation
(1). First, we present a corollary of Theorem 1 related to solvability of equation (1).

Corollary 1 Assume that a, b, c, d ∈ R, c2 + d2 �= 0. Then equation (1) is solvable in closed
form.

Proof First note that equation (1) can be written in the following form:

xn+1 = xn
(ac + b)xn + adxn–1

cxn + dxn–1

for n ∈N0.
From this observation we see that equation (1) is obtained from equation (2) with

f (x) = x, for x ∈R,

α = ac + b, β = ad, γ = c, and δ = d.
(20)

Hence, the result follows from Theorem 1. �

Many recent papers on difference equations and systems of difference equations present
some results and closed form formulas for their solutions with no or minor theoretical ex-
planations related to them, as well as with some incomplete arguments. For some previous
discussions on related issues of this type see, for example, [42, 43, 45, 46].
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Related to equation (1), in [12] it is claimed that x̄ = 0 is a unique equilibrium point of
the equation, when

(1 – a)(c + d) �= b. (21)

However, if x̄ is an equilibrium of the equation, then it must be

x̄ = ax̄ +
bx̄2

(c + d)x̄
, (22)

and consequently

x̄ �= 0 and c + d �= 0.

So, x̄ cannot be equal to zero.
On the other hand, if we assume that x̄ �= 0, then from equation (22) it follows that

x̄
(

1 – a –
b

c + d

)
= 0,

which implies

1 – a –
b

c + d
= 0,

from which it immediately follows that each x̄ �= 0 is an equilibrium of equation (1) in this
case.

In [12, Theorem 1] it is claimed that, under a specified condition, the equilibrium point
of (1) is locally asymptotically stable. But, as the simple analysis shows, equation (1) does
not have an equilibrium or it has infinitely many, so the formulation of [12, Theorem 1] is
obscure. Further, Theorem 2 in [12] claims that the following result holds.

Theorem 3 The equilibrium point x̄ of equation (1) is a global attractor if

c(1 – a) �= b. (23)

A simple result on boundedness is also given therein as well as closed-form formulas
for solutions to four special cases of equation (1) without any explanation how they are
obtained.

Remark 1 Equation (1) should be folklore. For example, Problem 1572 in Mathematics
Magazine 72 (2) 1999 is on the equation with

a =
2
3

, b = –
1
3

, c = 2, and d = –3.

The present study is based on our original idea for solving the difference equation back in
1999.
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Example 1 Here we give a counterexample to the claim in Theorem 3. Consider equation
(1) with

a = b = c = d = 1,

that is, the equation

xn+1 = xn
2xn + xn–1

xn + xn–1
(24)

for n ∈N0.
Since in this case

c(1 – a) – b = –1 �= 0,

we see that condition (23) posed in the formulation of the claim in Theorem 3 is satisfied.
Employing formula (17), where f is given by (20) and

α = 2, β = γ = δ = 1,

we have

xn = x–1

n∏

j=0

(
(x0 + (1 – λ̂2)x–1)̂λj+1

1 – (x0 + (1 – λ̂1)x–1)̂λj+1
2

(x0 + (1 – λ̂2)x–1)̂λj
1 – (x0 + (1 – λ̂1)x–1)̂λj

2

– 1
)

, (25)

where

λ̂1 =
3 +

√
5

2
and λ̂2 =

3 –
√

5
2

.

Now note that

lim
n→+∞

(x0 + (1 – λ̂2)x–1)̂λn+1
1 – (x0 + (1 – λ̂1)x–1)̂λn+1

2

(x0 + (1 – λ̂2)x–1)̂λn
1 – (x0 + (1 – λ̂1)x–1)̂λn

2
– 1 = λ̂1 – 1, (26)

when

x0

x–1
�= λ̂2 – 1 =

1 –
√

5
2

.

This obviously holds if, for example, we choose the initial values x–1, x0 ∈ Q ∩ (0, +∞),
since in this case the quotient x0/x–1 is a rational number, whereas 1–

√
5

2 is an irrational
number.

From (25), (26) and since

λ̂1 – 1 =
1 +

√
5

2
> 1,

we get

lim
n→+∞ xn = +∞.
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Hence, such solutions, as unbounded, are not convergent. Since some of them are positive
ones, the claim in Theorem 3 is not correct.

Remark 2 By the closed-form formulas for solutions to equation (2) obtained in the proof
of Theorem 1, after some calculations, the closed-form formulas in [12] are easily obtained
in terms of the Fibonacci sequence [42]. Many facts on the Fibonacci sequence can be
found in [48] (see also [20] and [27]).
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