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Abstract
In this paper, we introduce a definition of very weak solutions to the homogenous
Dirac-harmonic equations for differential forms. In this setting, applying the Gehring
lemma and interpolation theorems, we establish a higher integrability of the Dirac
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1 Introduction
Let � ⊂ R

n, n ≥ 2, be a bounded domain. In the paper, we focus on the homogeneous
harmonic equation for differential forms driven by the Hodge–Dirac operator

d�A(x, Du) = 0, (1.1)

where the natural space we consider in equation (1.1) is the Sobolev space W 1,p(�,�),
D = d + d� is the Hodge–Dirac operator, and the operator A : �×�(Rn) → �(Rn) satisfies
the following conditions:

(i) the mapping x → A(x, ξ ) is measurable for all ξ ∈ �(�);
(ii) the Lipschitz-type inequality

∣
∣A(x, ξ ) – A(x,η)

∣
∣ ≤ L1

(|ξ | + |η|)p–2|ξ – η|;

(iii) the monotonicity inequality

∣
∣
〈

A(x, ξ ) – A(x,η), ξ – η
〉∣
∣ ≥ L2

(|ξ | + |η|)p–2|ξ – η|2;

(iv) the homogeneity

A(x,λξ ) = |λ|p–2λA(x, ξ )
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for almost all x ∈ �, all ξ ,η ∈ �l(Rn), and some λ ∈ R. Here the constants L1, L2 > 0, the
fixed exponent p > 1 is associated with the operator A, � = �(Rn) =

⊕n
k=0 �k(Rn) is a

graded algebra with respect to the exterior products, and �k = �k(Rn) denotes the set of
all k-forms

u(x) =
∑

1≤i1<···<ik≤n

ui1···ik (x) dxi1 ∧ · · · ∧ dxik , x ∈ R
n.

A k-form u(x) is is said to be differentiable if its coefficients ui1···ik are differentiable func-
tions in R

n. Moreover, we say that a differential form u ∈ W 1,p
loc (�,�) is a weak Dirac-

harmonic tensor if it is a weak solution to equation (1.1), that is, it satisfies
∫

�

〈

A(x, Du), dφ
〉

= 0 (1.2)

for every φ ∈ W 1,p
0 (�,�l–1) such that

∫

�
φ dx = 1.

It is worth mentioning that Dirac-harmonic equation (1.1), proposed by Ding and Liu in
[1], is a classical counterpart of the A-harmonic equation via differential forms; in some
sense, it can be viewed as a particular case of equation (1.1). For example, if d�u = 0, then
due to the fact that D(u) = du + d�u, equation (1.1) can be rewritten as

d�A(x, du) = 0, (1.3)

which is called the A-harmonic equation. In particular, if A(x, ξ ) = ξ |ξ |p–2 with p > 1, then
the A-harmonic equation becomes the p-harmonic equation for differential forms

d�
(

du|du|p–2) = 0. (1.4)

The research on A-harmonic equations for differential forms has a long history. Ko-
daira [2] in 1949 presented the original homogenous A-harmonic equation for differential
forms, where the operator A is defined by A(x, ξ ) = ξ . Based on equation (1.4), Sibner
[3] gave a systematic study of the p-harmonic tensor for p > 1 and established the non-
linear Hodge–De Rham theorems. Afterward, many authors paid great attention on A-
harmonic equations and showed many powerful results by using different techniques; for
instance, see [4–8] and the references therein. Particularly, to explore the properties of
weak and very weak solutions to equation (1.3) rigorously, some investigations are mainly
devoted to the regularity and higher integrability of weak and very weak solutions to the
A-harmonic equations for differential forms. More precisely, Stroffolini [9] introduced the
notion of a very weak solution to equation (1.3) with some restriction on the operator A
and performed a quantitative analysis of very weak solutions. In spirit of [9], Giannetti [6]
established a regularity result for very weak solutions of degenerate p-harmonic equations.
Also, Beck and Stroffolini [10] considered the degenerate systems

d�A(·,ω) = 0 and dω = 0

in the weak sense and proved a partial Hölder regularity result in the case of bounded
domains. However, until now, there is no literature on very weak solutions to the ho-
mogenous Dirac-harmonic equation. This motivated us to study very weak solutions to
equation (1.1) for differential forms.
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On the other hand, since the Lp integrability of operators involving the function spaces
and differential forms has a significant and active role in analysis (see, for instance, [11–
13]), the solutions of nonlinear partial differential equations are also extensively applied
to the operators for differential forms. This is due to the fact that differential forms are
coordinate-system independent. We refer to [14–16] for details. For example, according
to the properties of weak solutions to A-harmonic equations, Agarwal et al. [14] and Ding
[17] gave a complete investigation on the estimates for the operators in terms of various
norms, such as the Lp, Lipschitz, and BMO norms, and compared these norms with the
same integral exponent 1 < p < ∞. In addition, Bi et al. [18] stated the higher embedding
inequality of the operator T applied to the differential l-form u satisfying the homoge-
nous A-harmonic equation (1.3) with the operator A satisfying the monotonicity condi-
tion

∣
∣A(x, ξ )

∣
∣ ≤ a|ξ |p–1 and

〈

A(x, ξ ), ξ
〉 ≥ |ξ |p, (1.5)

where a > 0 is a constant, and 1 < p < ∞. Note that the higher regularity of the Hodge–
Dirac operator D applied to the very weak solution to equation (1.1) has not been previ-
ously established. So we present an exhaustive study of very weak and weak solutions to
equation (1.1).

Before going further, observing formulation (1.2), we notice that the integral degree of
the weak harmonic tensor u is the same as the exponent p appearing in the structural as-
sumption. In contrast with the weak solutions, our concern arises from the question of
what is the minimal integral degree of the solution to equation (1.1). To answer this ques-
tion, in this paper, we introduce a generalized definition of the solution to the homogenous
Dirac-harmonic equation (1.1), develop new techniques, and combine them with methods
previously given by others to explore the properties of very weak solutions. Precisely, in
Sect. 2, we first give the definition of a very weak solution to equation (1.1) and give some
basic discussion for a further proof of the main results. Then, using the Hodge decom-
position for differential forms and the interpolation theorem, in Sect. 3, we establish the
higher integrability of the Hodge–Dirac operator D applied to the very weak solutions; see
Theorems 3.2 and 3.3. Finally, as an application of our main results, we present a relation
between the very weak solutions and weak solutions to the homogenous Dirac-harmonic
equation (1.1).

Throughout this paper, we use the following notation. Let B = B(x,ρ) be the ball in R
n

with radius ρ centered at x, which satisfies diam(σB) = σ diam(B). For a bounded convex
domain �, the homotopy operator T is the bounded linear operator in Lp with values in
W 1,p(�), 1 ≤ p ≤ ∞, defined by

Tu(x; ξ ) =
∫ 1

0
tl–1

∫

�

φ(y)u(tx + y – ty; x – y, ξ ) dy dt (1.6)

for x ∈ � and vectors ξ = (ξ0, . . . , ξl), ξi ∈ R
n, i = 0, . . . , l, where the function φ from

C∞
0 (�,�l) is normalized so that

∫

�
φ(y) dy = 1; see [15] and [19] for details about T . The

definition of T can be extended to any bounded domain [14]. This definition of T allows
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us to construct the new notation

u� =

⎧

⎨

⎩

1
|�|

∫

�
u(y) dy, l = 0,

u� = dTu, l = 1, 2, . . . , n,
(1.7)

for u ∈ Lp(�,�l), 1 ≤ p ≤ +∞. We denote by –
∫

�
the integral mean over �, that is, for

u ∈ Lp(�,�l), we have

–
∫

�

∣
∣u(y)

∣
∣dy =

1
|�|

∫

�

∣
∣u(y)

∣
∣dy.

Moreover, when 1 < p < ∞, we have the estimate [19]

‖u�‖p,� ≤ An(p)μ(�)‖u‖p,�. (1.8)

We denote by D
′(�,�k) the set of all differentiable k-forms defined in M. We use the

symbol d to denote the exterior differential operator from D
′(�,�k) to D

′(�,�k+1), and
d� = (–1)nk+1 � d� : D′(�,�k+1) → D

′(�,�k) is the formal adjoint of d, 0 ≤ k ≤ n – 1; see
[20] and [21] for more descriptions. We denote by Lp(�,�k) the classical Lp-space for
differential forms, 1 < p < ∞, equipped with the norm

‖u‖p,� =
(∫

�

|u|p dx
) 1

p
=

(∫

�

(
∑

I

|uI |2
) p

2
dx

) 1
p

and by W 1,p(�,�k) the classical Sobolev space for differential forms, equipped with the
norm

‖u‖W 1,p(�) =
(

diam(�)
)–1‖u‖p,� + ‖∇u‖p,�. (1.9)

Analogously to the Lp-space, W 1,p(�,�k) is a Banach space when 1 < p < n. For appropri-
ate properties, see [22] and [23].

2 Preliminaries
In the preparation for the main results, in this section, we give some useful lemmas and
basic discussion. We start with the following definition.

Definition 2.1 Suppose there exists an exponent s > 1 with max{1, p – 1} < s < p such that,
in the distributional sense, a differential form u ∈ W 1,s

loc(�,�) satisfies the identity

∫

�

〈

A(x, Du), dψ
〉

= 0 (2.1)

for every ψ ∈ W 1,s/(s–p+1)
0 (�,�) with

∫

�
ψ dx = 1. Then such a differential form u is called

a very weak solution (or a very weak Dirac-harmonic tensor).

For any differential form u ∈ D
′(�,�l), 1 ≤ l ≤ n, according to the expression of a dif-

ferential form, du and d�u can be written as

du(x) =
∑

I

ξI dxi1 ∧ · · · ∧ dxil+1
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and

d�u =
∑

J

ηJ dxj1 ∧ · · · ∧ dxjl–1 ,

where I = {1 ≤ i1 < · · · < il+1 ≤ n}, J = {1 ≤ j1 < · · · < jl–1}, and all coefficients ξI ,ηJ are
differentiable functions on �. Then by simple calculation we derive that

|du| =
(

∑

I

|ξI |2
)1/2

≤
(

∑

I

|ξ |2 +
∑

J

|η|2
)1/2

=
∣
∣du + d∗u

∣
∣ = |Du|.

Similarly, we have that

∣
∣d�u

∣
∣ =

(
∑

J

|ηJ |2
)1/2

≤
(

∑

I

|ξ |2 +
∑

J

|η|2
)1/2

=
∣
∣du + d∗u

∣
∣ = |Du|,

which implies that

(∫

�

|du|p dx
)1/p

≤
(∫

�

|Du|p dx
)1/p

(2.2)

and

(∫

�

∣
∣d�u

∣
∣
p dx

)1/p

≤
(∫

�

|Du|p dx
)1/p

. (2.3)

Also, from Corollaries 3 and 4 in [9] it follows that for any u ∈ Ls(�,�l), s > 1, if du ∈
Ls(�,�l), then there is a constant C > 0 such that

1
diam(�)

(

–
∫

�

|u – u�|s dx
)1/s

≤ C(n, s)
(

–
∫

�

|du|ns/(n+s–1) dx
)(n+s–1)/ns

, (2.4)

where u� is a closed form; if d�u ∈ Ls(�,�l), then there is a constant C > 0 such that

1
diam(�)

(

–
∫

�

∣
∣u – u∗

�

∣
∣
s dx

)1/s

≤ C(n, s)
(

–
∫

�

∣
∣d�u

∣
∣
ns/(n+s–1) dx

)(n+s–1)/ns

, (2.5)

where u∗
� is a coclosed form.

Consequently, by (2.2) and (2.4) we derive the following result.

Lemma 2.2 Let u ∈ W 1,s(�,�l), l = 1, 2, . . . , s > 1, where � ⊂ R
n is a cube or a ball. Then

there exists a constant C(n, s) > 0, independent of u and Du, such that

1
diam(�)

(

–
∫

�

|u – u�|s dx
)1/s

≤ C(n, s)
(

–
∫

�

|Du|ns/(n+s–1) dx
)(n+s–1)/ns

, (2.6)

where u� is a closed form of u.

Similarly, combining (2.3) with (2.5), we get the following higher-order Poincaré-type
inequality.
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Lemma 2.3 Let � be a cube or a ball, and let u ∈ W 1,s(�,�l). Then there exists a constant
C(n, s) > 0, independent of u and Du, such that

1
diam(�)

(

–
∫

�

∣
∣u – u�

�

∣
∣
s dx

)1/s

≤ C(n, p)
(∫

�

|Du|ns/(n+s–1) dx
)(n+s–1)/ns

, (2.7)

where u�
� is a coclosed form.

In particular, if the closed form u� in (2.6) and coclosed form u�
� in (2.7) are both har-

monic forms, denoted by u

�, then we immediately establish the following result.

Lemma 2.4 Let u ∈ W 1,s(�,�l), l = 1, 2, . . . , s > 1, where � ⊂ R
n is a cube or a ball. Then,

there exists a constant C(n, s) > 0, independent of u and Du, such that

1
diam(�)

(∫

�

∣
∣u – u


�

∣
∣
s dx

)1/s

≤ C(n, s)
(∫

�

|Du|ns/(n+s–1) dx
)(n+s–1)/ns

, (2.8)

where u

� is harmonic form of u.

Morrey [23] extended the Hodge decomposition into Sobolev space W 1,s(�,�), 1 < s <
n, where � ⊂ R

n is a smoothly bounded domain. Namely, given the differential form u ∈
Ls(�,�), there exist α ∈ W 1,s

T (�,�l–1), β ∈ W 1,s
N (�,�l+1), and h ∈H

l
s such that

u = dα + d�β + h. (2.9)

Then, for the differential forms α,β , and h, we derive the following bounded estimate in
terms of the norm of u:

‖dα‖s,� +
∥
∥d�β

∥
∥

s,� + ‖h‖s,� ≤ ‖u‖s,�. (2.10)

In addition, to facilitate the upcoming theorem, we need some lemmas.

Lemma 2.5 ([24]) Let (X,μ) be a measure space, and let E be a separable complex Hilbert
space. For all r ∈ [r1, r2], if T : Lr(X, E) → Lr(X, E) is a linear bounded operator and r/r2 ≤
1 + ε ≤ r/r1, 1 ≤ r1 ≤ r2 ≤ ∞, then we have

∥
∥T

(|f |εf
)∥
∥

r/(1+ε) ≤ K |ε|‖f ‖1+ε
r

for all f ∈ Lr(X, E) ∩ Ker T , where

K =
2r(r2 – r1)

(r – r1)(r2 – r)
(‖T‖r1 + ‖T‖r2

)

. (2.11)

Lemma 2.6 ([1]) Let u =
∑

I uI dxI ∈ D
′(�,�) be a l-form, and let η be a differentiable

function in �. Then

D(uη) = (Du)η + (–1)lu(dη) + (–1)m
∑

I–k

uI
∂η

∂xk
dxI–k , (2.12)
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where m and k are integers, 1 ≤ k ≤ n, and I – k is an abusive notation to represent an
(l – 1)-tuple with îk missing in (i1, . . . , îk , . . . , ik) and k ∈ J meaning that k �= js for any js in
an (n – l)-tuple J . Also,

∑

I means the sum of all possible l-tuples.

Lemma 2.7 Let s, r,σ , and C be positive numbers such that 0 < r < s < ∞ and σ > 1. If

(
1

|B|
∫

B
|f |s dx

)1/s

≤ C
(

1
|B|

∫

σB
|f |r dx

)1/r

(2.13)

for any ball B with σB ⊂ �, then there exists ε > 0 such that

(
1

|B|
∫

B
|f |q dx

) 1
(s+ε) ≤ C

(
1

|B|
∫

B
|f |s dx

) 1
s

(2.14)

for all q ∈ [s, s + ε] and all balls B with σB ⊂ �.

It should be pointed out that Lemma 2.7 from [14] is the modified Gehring lemma.

3 Main results and proofs
Now, given a differential form g ∈ Ls(�,�) and f ∈ Ls/(p–1)(�,�), we consider the nonho-
mogenous Dirac-harmonic equation of the form

d�A(x, g + Du) = d�f (u) (3.1)

for u ∈ W 1,s
0 (�,�). We say that u ∈ W 1,s

0 (�,�) is a very weak solution to the nonhomoge-
neous Dirac-harmonic equation (3.1) if

∫

�

〈

A(x, g + Du), dψ
〉

=
∫

�

〈

f (u), dψ
〉

(3.2)

for all ψ ∈ W 1,s/(s–p+1)
0 (�,�) with

∫

�
ψ dx = 1, where s ≥ max{1, p – 1}.

Theorem 3.1 Suppose that u ∈ W 1,s
0 (�,�) is a very weak solution to the nonhomogeneous

Dirac-harmonic equation (3.1). Then there exists ε = ε(n, p, L1, L2) ∈ (0, p – 1) such that

∫

�

|Du|s dx ≤ C
∫

�

(|g|s + |f |s/(p–1))dx (3.3)

for p – ε ≤ s ≤ p + ε.

Proof First, for the differential form u ∈ W 1,s
0 (�,�) in equation (3.1), we take a nonlinear

perturbation of Du, that is, ω = |Du|s–pDu. Since ω ∈ L
s

s–p+1 (�,�), by the Hodge decom-
position we obtain that

|Du|s–pDu = dφ + d�β + h. (3.4)

In the meantime, we define the linear operator

T : Lr(�,�) → Lr(�,�)



Shi and Zhang Journal of Inequalities and Applications         (2022) 2022:83 Page 8 of 15

such that T(v) = h for every v ∈ Lr(�,�). Then, according to (2.10), we easily see that T is
a bounded linear operator for every 1 < r < ∞. Moreover, the element in the kernel of the
operator is of the class dW 1,s(�,�) ⊕ d�W 1,s(�,�). Thus letting f = Du and ε = s – p in
Lemma 2.5 yields that

‖h‖ s
s–p+1

=
∥
∥T

(|Du|s–pDu
)∥
∥ s

s–p+1

≤ K |s – p|‖Du‖s–p+1
s , (3.5)

where the constant K is determined by (2.11). By the definition of a very weak solution to
equation (3.1), choosing the test function ψ with

dψ = |Du|s–pDu – d�β – h

infers that
∫

�

〈

A(x, g + Du), dψ
〉

=
∫

�

〈f , dψ〉. (3.6)

On the other side, note that
∫

�

〈

A(x, Du), |Du|s–pDu
〉

=
∫

�

〈

A(x, Du) – A(x, g + Du), |Du|s–pDu
〉

+
∫

�

〈

A(x, g + Du), d�β
〉

+
∫

�

〈

A(x, g + Du), h
〉

+
∫

�

〈f , dφ〉. (3.7)

Thus by the homogeneity of the operator A we have

L2

∫

�

|Du|s dx ≤
∫

�

〈

A(x, Du), |Du|s–pDu
〉

=
∫

�

〈

A(x, Du) – A(x, g + Du), |Du|s–pDu
〉

+
∫

�

〈

A(x, g + Du), d�β
〉

+
∫

�

〈

A(x, g + Du), h
〉

+
∫

�

〈f , dψ〉

= I1 + I2 + I3 + I4. (3.8)

Now we divide our work into four parts. For the term I1, by the Lipschitz continuity of the
operator A we get

I1 =
∣
∣
∣
∣

∫

�

〈

A(x, Du) – A(x, g + Du), |Du|s–pDu
〉
∣
∣
∣
∣

≤
∫

�

∣
∣A(x, Du) – A(x, g + Du)

∣
∣ · ∣∣|Du|s–pDu

∣
∣dx

≤
∫

�

L1|g|(|Du| + |g + Du|)p–2|Du|s–p+1 dx
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≤ L1

∫

�

|g|(|Du| + |g + Du|)p–2(|Du| + |g + Du|)s–p+1 dx

≤ L1

∫

�

|g|(|Du| + |g + Du|)s–1 dx.

Since 1/s + (s – 1)/s = 1, by the Hölder inequality it follows that

I1 ≤ C1‖g‖s,�
∥
∥|Du| + |g + Du|∥∥s–1

s,� . (3.9)

Then, repeating this argument for I2, I3, and I4, we obtain that

I2 ≤
∫

�

∣
∣A(x, g + Du)

∣
∣ · ∣∣d�β

∣
∣dx

≤ L1

∫

�

|g + Du|p–1∣∣d�β
∣
∣dx

≤ C2‖g + Du‖p–1
s,�

∥
∥d�β

∥
∥

s/(s–p+1),�, (3.10)

I3 ≤
∫

�

∣
∣A(x, g + Du)

∣
∣ · |h|dx

≤ L1

∫

�

|g + Du|p–1|h|dx

≤ C3‖g + Du‖p–1
s,� ‖h‖s/(s–p+1),�, (3.11)

and

I4 ≤
∫

�

|f ||dψ |dx ≤ C3‖f ‖ s
p–1 ,�‖dψ‖s/(s–p+1),�. (3.12)

Then by substituting inequalities (3.9), (3.10), (3.11), and (3.12) into (3.8) it follows that

L2

∫

�

|Du|s dx ≤ C1‖g‖s,�
∥
∥|Du| + |g + Du|∥∥s–1

s,�

+ C2‖g + Du‖p–1
s,� ‖h‖s/(s–p+1),�

+ C3‖g + Du‖p–1
s,�

∥
∥d�β

∥
∥

s/(s–p+1),�

+ C4‖f ‖s/(p–1),�‖dψ‖s/(s–p+1),�. (3.13)

Observe that |Du|s–pDu ∈ L
s

s–p+1 (�,�), so applying inequality (2.10) gives that

∥
∥d�β

∥
∥

s/(s–p+1),� ≤ C5‖Du‖s–p+1
s,� ,

‖dψ‖s/(s–p+1),� ≤ C6‖Du‖s–p+1
s,� .

(3.14)

Plugging formula (3.14) and (3.5) into (3.11), by the Minkowski inequality we have that

L2

∫

�

|Du|s dx ≤ C1‖g‖s
(‖Du‖s + ‖g + Du‖s

)s–1

+ C7K |s – p|(‖g‖s + ‖Du‖s
)p–1‖Du‖s–p+1

s



Shi and Zhang Journal of Inequalities and Applications         (2022) 2022:83 Page 10 of 15

+ C8‖g‖p–1
s ‖Du‖s–p+1

s + C9‖f ‖s/(p–1)‖Du‖s–p+1
s . (3.15)

Applying the inequality (k1 + k2)n ≤ 2n(kn
1 + kn

2 ) for positive numbers k1, k2 ∈R and integer
n ≥ 0 to (3.15), we get that

∫

�

|Du|s dx ≤ C10
(‖g‖s

s + ‖g‖s‖Du‖s–1
s

)

+ C11K |s – p|(‖g‖p–1
s + ‖Du‖p–1

s
)‖Du‖s–p+1

s

+ C12‖g‖p–1
s ‖Du‖s–p+1

s + C9‖f ‖s/(p–1)‖Du‖s–p+1
s . (3.16)

By a simple integration we get that

∫

�

|Du|s dx ≤ C10‖g‖s
s + C10‖g‖s‖Du‖s–1

s +
(

C12

+ C11K |s – p|)‖g‖p–1
s ‖Du‖s–p+1

s

+ C11K |s – p|‖Du‖s
s + C9‖f ‖ s

p–1
‖Du‖s–p+1

s . (3.17)

Then by Lemma 2.5 there exists ε > 0 small enough such that

C11K |s – p| <
1
2

for all p – ε < s < p + ε. Recall the δ-Young’s inequality: for any 1 < p < q < ∞,

ab ≤ δap + cδ– q
p bq,

where c = 1
p–1/pq is a constant, and δ > 0 is an arbitrary number. Applying it and the inter-

polation inequalities, we get that

∫

�

|Du|s dx ≤ C10‖g‖s
s + C10τ‖g‖s

s + C10τ‖Du‖s
s + C13ς‖g‖s

s

+ C13ς‖Du‖s
s + C9γ ‖f ‖s/p–1

s/p–1 + C9γ ‖Du‖s
s, (3.18)

where γ ,η, τ are positive numbers associated with δ and ε. So we see that it is easy to
guarantee that

C9γ + C10τ + C13ς ≤ 1
2

.

Therefore putting the terms involving ‖Du‖s
s into the left side, by a simple calculation we

obtain the desired result. �

Theorem 3.2 Let ε be as in Theorem 3.1. If u ∈ W 1,s
loc (�,�) is a very weak solution to

the homogenous Dirac-harmonic equation (1.1), s ∈ (p – ε, p), then there exists a constant
C > 0, independent of u, such that

(∫

B
|Du|s dx

)1/s

≤ C(n, p)
(∫

σB
|Du|r dx

)1/r

(3.19)
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for any ball B ⊂ σB ⊂R
n with σ > 1, where r < s, and

r = max

{
ns

n + s – 1
,

ns(p – 1)
np – n + s – p + 1

}

.

Proof Observing that u is a very weak solution, we have that
∫

�

〈

A(x, Du), dφ
〉

= 0 (3.20)

for all φ ∈ W 1,s/(s–p+1)(�,�) with compact support. By the homogeneity of the operator A,
replacing λξ with ηp/(p–1)Du, it follows that

d�A
(

x,ηp/(p–1)Du
)

= d�f ,

where f = ηpA(x, Du), and η ∈ C∞
0 (σB) is a nonnegative cutoff function such that η = 1 in

B ⊂ σB ⊂ � with |∇η| < c
diam(B) .

Moreover, let v = ηq(u – u

σB), where q = p/(p – 1), and u


σB is a harmonic form of u. In
view of Lemma 2.6, we easily derive that

D(v) = ηq(Du) + (–1)l(u – u

σB

)

d
(

ηq) + (–1)m
∑

I–k

(

u – uh
σB

)

I
∂(ηq)
∂xk

dxI–k

or, shortly,

ηqDu = Dv + g, (3.21)

where

g = (–1)l(u – u

σB

)

d
(

ηq) + (–1)m
∑

I–k

(

u – u

σB

)

I
∂(ηq)
∂xk

dxI–k .

Then we obtain a nonhomogeneous Dirac-harmonic equation of the form

d�A(x, g + Dv) = d�f .

Applying Theorem 3.1 to the domain � = σB yields

∫

σB
|Dv|s dx ≤ C1

(∫

σB
|g|s dx + |f |s/(p–1) dx

)

, (3.22)

which, taking the integral means of the both sides, can be simplified to

(

–
∫

σB
|Dv|s dx

) 1
s
≤ C3

(

–
∫

σB
|g|s dx + |f |s/(p–1) dx

) 1
s
. (3.23)

By the inequality (a + b)s ≤ 2s(as + bs) this results in

(

–
∫

σB
|Dv|s dx

) 1
s
≤ C3

(

–
∫

σB
|g|s dx

) 1
s

+ C3

(

–
∫

σB
|f |s/(p–1) dx

) 1
s
. (3.24)

Next, we focus on the estimates for the right terms of equality (3.24).
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First, to estimate the term
∫

σB |g|s dx, since the bounded function η satisfies |dη| ≤
C4|∇η|, we get that

(

–
∫

σB
|g|s dx

) 1
s

=
(

–
∫

σB

∣
∣
∣
∣
(–1)l(u – u


σB
)

d
(

ηq) + (–1)m
∑

I–k

(

u – u

σB

)

I
∂(ηq)
∂xk

∣
∣
∣
∣

s

dx
) 1

s

=
(

–
∫

σB

∣
∣
∣
∣
(–1)lq

(

u – u

σB

)

ηq–1 d(η) + (–1)m
∑

I–k

q
(

u – u

σB

)

Iη
q–1 ∂(η)

∂xk

∣
∣
∣
∣

s

dx
) 1

s

≤ C5

(

–
∫

σB

∣
∣u – u


σB
∣
∣
s|∇η|s dx +

∫

σB

∣
∣u – u


σB
∣
∣
s|∇η|s dx

) 1
s

≤ C6

diam(B)

(

–
∫

σB

∣
∣u – u


σB
∣
∣
s dx

) 1
s
. (3.25)

By Lemma 2.4 this gives that

(

–
∫

σB
|g|s dx

) 1
s
≤ C7

(

–
∫

σB
|Du|ns/(n+s–1) dx

)(n+s–1)/n

. (3.26)

On the other side, to estimate the second term on the right side of inequality (3.24), by
Lemma 2.3 we get that

(

–
∫

σB
|f |s/(p–1) dx

) p–1
s

≤ C8 diam(σB)
(

–
∫

σB

∣
∣d�f

∣
∣
ns/(np–n+s–p+1) dx

) np–n+s–p+1
ns

. (3.27)

Since d�f = d�A(x,ηqDu), we derive that

d�f = d�
(

ηpA(x, Du)
)

= ηpd�A(x, Du) + (–1)n(l–1) �
(

dηp ∧ �A(x, Du)
)

.

Since u is a very weak solution to the Dirac-harmonic equation (1.1), that is, d�A(x, Du) =
0, by the Lipschitz continuity we get that

∣
∣d�f

∣
∣ =

∣
∣dηp ∧ �A(x, Du)

∣
∣ ≤ b

∣
∣∇(

ηp)∣∣|Du|p–1. (3.28)

Substituting (3.28) into (3.27) gives

(

–
∫

σB
|f |s/(p–1) dx

) p–1
s

≤ C9

(

–
∫

σB
|Du| n(p–1)s

np–n+s–p+1

) np–n+s–p+1
ns

. (3.29)

Then, substituting (3.29) and (3.26) into (3.23), we have that

(∫

σB
|Dv|s dx

) 1
s
≤ C7

(∫

σB
|Du| ns

n+s–1 dx
) n+s–1

ns



Shi and Zhang Journal of Inequalities and Applications         (2022) 2022:83 Page 13 of 15

+ C9

(∫

σB
|Du| n(p–1)s

np–n+s–p+1 dx
) np–n+s–p+1

ns(p–1)
. (3.30)

Noting that dv = du on B and μ(σB) = σ nμ(B), we obtain that

(

–
∫

B
|Du|s dx

) 1
s
≤ μ(σB)s

μ(B)s

(∫

σB
|Du|s dx

) 1
s

≤ σ n+s
(∫

σB
|Du|s dx

) 1
s
. (3.31)

Choosing r = max{ ns
n+s–1 , n(p–1)s

np–n+s–p+1 } and substituting (3.31) into (3.30) give

(

–
∫

B
|Du|s dx

) 1
s
≤ C10

(

–
∫

σB
|Du|r dx

) 1
r
,

where σ > 1 is some expansion factor. So we have the desired result. �

Note that inequality (3.19) is the classical reverse Hölder inequality since the exponent
s in the left side is larger than the exponent r in the right one. In fact, due to this nice
result, it provides us a powerful technique for the latter discussion on the locally higher
integrability of Du.

Theorem 3.3 Suppose that u ∈ W 1,s(�,�) is a very weak solution to the homogeneous
Dirac-harmonic equation (1.1) and � is a regular bounded domain, where s ∈ (p – ε, p)
and ε = ε(n, p, L1, L2), Then, for any real number t ∈ (1,∞), there exists a constant C > 0,
independent of u and Du, such that

(

–
∫

B
|Du|t dx

)1/t

≤ C
(

–
∫

σB
|Du|s dx

)1/s

, (3.32)

where B ⊂ σB ⊂ � is any ball with σ > 1 and 1 < p < ∞.

Proof Initially, to estimate inequality (3.32), we consider two cases. In the case 1 < t < s,
by the monotonic property of the Lp-space it is obvious that

(

–
∫

B
|Du|t dx

)1/t

≤ C1

(

–
∫

σB
|Du|s dx

)1/s

(3.33)

for all balls B ⊂ σB ⊂ � with σ > 1.
Now let us turn to the case s ≤ t ≤ ∞. First, by Theorem 3.2 we can easily find C > 0

such that

(

–
∫

B
|Du|s dx

)1/s

≤ C2(n, p)
(

–
∫

σB
|Du|r dx

)1/r

(3.34)

for any r < s and

r = max

{
ns

n + s – 1
,

ns(p – 1)
np – n + s – p + 1

}

.
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Applying Lemma 2.7 with (3.34), we get that

(

–
∫

B
|Du|s+δ

)1/(s+δ)

≤ C3(n, p)
(∫

σB
|Du|s dx

)1/s

(3.35)

for all δ > 0. Then repeating this process k times, from (3.35) we have that

(

–
∫

B
|Du|s+kδ dx

)1/(s+kδ)

≤ C4(n, p)
(∫

σB
|Du|s dx

)1/s

, (3.36)

for all integer k = 0, 1, . . . and δ > 0. Let t = s + kδ, Since δ is arbitrary, for all s ≤ t < ∞,
inequality (3.36) can be rewritten as

(

–
∫

B
|Du|t dx

)1/t

≤ C4(n, p)
(∫

σB
|Du|s dx

)1/s

. (3.37)

Therefore, combining (3.33) and (3.37), we have that the desired result (3.32) holds for all
1 < t < ∞ and s ∈ (p – ε, p).

We point out that for any very weak tensor u ∈ W 1,s(�,�), if s is closed enough to the
natural exponent p, then Theorem 3.3 gives us the best possible integrability in terms of
the norm of Du. Moreover, recalling the Poincaré inequality, we have that

‖u‖p,� ≤ C(n, p)‖du‖p,� (3.38)

for all 1 < p < ∞ and u ∈ W 1,p(�,�). Applying (2.2) into (3.38), it follows that

‖u‖p,� ≤ C(n, p)‖Du‖p,�. (3.39)

In particular, if u ∈ W 1,s(�,�) is defined as in Theorem 3.3, then combining (3.32) with
(3.39), we easily obtain the following result. �

Corollary 3.4 Let 1 < p < ∞, and let � be a regular bounded domain. If u ∈ W 1,s(�,�) is
a very weak tensor for s ∈ (p – ε, p), where ε is given in Theorem 3.1, then u ∈ W 1,t(�,�)
for any 1 < t < ∞. In particular, when t = p, we have that u ∈ W 1,p is also a weak tensor.
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