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Abstract
We investigate the Hyers–Ulam stability of the following cubic–quadratic functional
equation relative to elliptic curves
f (x + y + z,u+ v +w) + f (x + y – z,u+ v +w) + 2f (x,u –w) + 2f (y, v –w) = f (x + y,u+w) +
f (x + y, v +w) + f (x + z,u +w) + f (x – z,u + v –w) + f (y + z, v +w) + f (y – z,u + v –w).
The function

f (x, y) = x3 + ax + b – y2

having level curves as elliptic curves is a solution of the above functional equation.

Keywords: 2-Banach space; Elliptic curve; Hyers–Ulam stability

1 Introduction
A graph of an equation of the form y2 = x3 + ax + b is called an elliptic curve [13], where
a and b are constants. Since f (x, y) = x3 + ax + b – y2 has level curves as elliptic curves,
functional equations having the mapping f (x, y) = x3 + ax + b – y2 as a solution are helpful
to study cryptography and its applications.

We need the following definitions on 2-Banach spaces [4, 5].

Definition 1 LetX be a real linear space with dimX ≥ 2 and ‖·, ·‖ : X 2 → R be a function.
Then, we say (X ,‖·, ·‖) is a linear 2-normed space if

(a) ‖x, y‖ = 0 if and only if x and y are linearly dependent,
(b) ‖x, y‖ = ‖y, x‖,
(c) ‖αx, y‖ = |α|‖x, y‖,
(d) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖

for all α ∈R and x, y, z ∈X . In this case, the function ‖·, ·‖ is called a 2-norm on X .

Definition 2 Let {xn} be a sequence in a linear 2-normed space X . The sequence {xn} is
said to convergent in X if there exists an element x ∈X such that limn→∞ ‖xn – x, y‖ = 0 for
all y ∈X . In this case, we say that a sequence {xn} converges to the limit x, simply, denoted
by limn→∞ xn = x.
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Definition 3 A sequence {xn} in a linear 2-normed space X is called a Cauchy sequence
if for any ε > 0, there exists N ∈N such that for all m, n ≥ N , ‖xm – xn, y‖ < ε for all y ∈X .
For convenience, we will write limm,n→∞ ‖xn – xm, y‖ = 0 for a Cauchy sequence {xn}. A 2-
Banach space is defined to be a linear 2-normed space in which every Cauchy sequence is
convergent.

In the following lemma, we obtain some basic properties in a linear 2-normed space.

Lemma 1 ([9]) Let (X ,‖·, ·‖) be a linear 2-normed space and x ∈X .
(a) If ‖x, y‖ = 0 for all y ∈X , then x = 0.
(b) |‖x, z‖ – ‖y, z‖| ≤ ‖x – y, z‖ for all x, y, z ∈X .
(c) If a sequence {xn} is convergent in X , then limn→∞ ‖xn, y‖ = ‖ limn→∞ xn, y‖ for all

y ∈X .

The stability of a functional equation means, roughly speaking, that an approximate
solution of the equation (i.e., a mapping that only approximately satisfies the equation) is
not far from an exact solution of the equation. It may happen that all approximate solutions
are in fact exact solutions. Considering the Cauchy equation f (x + y) = f (x) + f (y) one
may deal with the class of its approximate solution defined by the functional inequality
introduced by Rassias [11].

∥
∥f (x + y) – f (x) – f (y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p).

It turns out that for p �= 1 each solution of the above inequality can be approximated by an
additive function A in such a way that the inequality

∥
∥f (x) – A(x)

∥
∥ ≤ kε‖x‖p

holds, with a suitable real number k, on the whole domain (for p = 0 it coincides with the
classical Hyers–Ulam result [6, 12]).

A graph of an equation of the form y2 = x3 + ax + b is called an elliptic curve [13], where
a and b are constants. Since f (x, y) = x3 + ax + b – y2 has level curves as elliptic curves,
functional equations having the mapping f (x, y) = x3 + ax + b – y2 as a solution are helpful
to study cryptography and its applications. The stability of functional equations has been
studied by some authors [1–3, 7, 8].

Jun and Kim [7] introduced the cubic functional equation

g(x + y + z) + g(x + y – z) + 2g(x) + 2g(y)

= 2g(x + y) + g(x + z) + g(x – z) + g(y + z) + g(y – z). (1)

In 2008, Park and Bae [10] introduced the following functional equations and investigated
their stability problems in Banach spaces:

g(x + y + z) + g(x – z) + g(y – z) = g(x + y – z) + g(x + z) + g(y + z) (2)
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and

f (x + y + z, u + v + w) + f (x + y – z, u + v + w)

+ 2f (x, u – w) + 2f (y, v – w)

= f (x + y, u + w) + f (x + y, v + w) + f (x + z, u + w)

+ f (x – z, u + v – w) + f (y + z, v + w) + f (y – z, u + v – w). (3)

The function f : R × R → R given by f (x, y) := x3 + ax + b – y2 is a particular solution of
(3). In 2011, Park [9] investigated approximate additive, Jensen, and quadratic mappings
in 2-Banach spaces.

In this paper, we investigate the stability of functional equations (2) and (3) in 2-Banach
spaces and quasi-Banach spaces.

2 Stability in 2-Banach spaces
In this section, let X be a normed space and Y a 2-Banach space. We will first prove the
following lemma.

Lemma 2 Let h : X → Y be a mapping. Then,

h(x) –
4n+1 – 1

3 · 8n h
(

2nx
)

+
4n – 1
6 · 8n h

(

2n+1x
)

=
n

∑

j=1

[
4j – 1
3 · 8j–1 h

(

2j–1x
)

–
5(4j – 1)

3 · 8j h
(

2jx
)

+
4j – 1
6 · 8j h

(

2j+1x
)
]

for all x ∈X and all n.

Proof The given equality is obviously true for all x ∈ X and n = 1, 2. For an integer k ≥ 2,
assume that it holds for all x ∈X and n = k – 1, k. Then,

k+1
∑

j=1

[
4j – 1
3 · 8j–1 h

(

2j–1x
)

–
5(4j – 1)

3 · 8j h
(

2jx
)

+
4j – 1
6 · 8j h

(

2j+1x
)
]

=
k–1
∑

j=1

[
4j – 1
3 · 8j–1 h

(

2j–1x
)

–
5(4j – 1)

3 · 8j h
(

2jx
)

+
4j – 1
6 · 8j h

(

2j+1x
)
]

+
4k – 1
3 · 8k–1 h

(

2k–1x
)

–
5(4k – 1)

3 · 8k h
(

2kx
)

+
4k – 1
6 · 8k h

(

2k+1x
)

+
4k+1 – 1

3 · 8k h
(

2kx
)

–
5(4k+1 – 1)

3 · 8k+1 h
(

2k+1x
)

+
4k+1 – 1
6 · 8k+1 h

(

2k+2x
)

= h(x) –
4k – 1
3 · 8k–1 h

(

2k–1x
)

+
4k–1 – 1
6 · 8k–1 h

(

2kx
)

+
4k – 1
3 · 8k–1 h

(

2k–1x
)

–
5(4k – 1)

3 · 8k h
(

2kx
)

+
4k – 1
6 · 8k h

(

2k+1x
)

+
4k+1 – 1

3 · 8k h
(

2kx
)

–
5(4k+1 – 1)

3 · 8k+1 h
(

2k+1x
)

+
4k+1 – 1
6 · 8k+1 h

(

2k+2x
)
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= h(x) –
4k+2 – 1
3 · 8k+1 h

(

2k+1x
)

+
4k+1 – 1
6 · 8k+1 h

(

2k+2x
)

for all x ∈X . By the induction on n, we obtain that it holds for all x ∈X and all n. �

The following theorem proves the stability of equation (1) in 2-Banach spaces.

Theorem 1 Let p ∈ (0, 1), ε ≥ 0, δ,η ≥ 0 and let g : X → Y be a surjection such that

∥
∥g(x + y + z) + g(x + y – z) + 2g(x) + 2g(y)

– 2g(x + y) – g(x + z) – g(x – z) – g(y + z) – g(y – z), g(t)
∥
∥

≤ ε + δ
(‖x‖p + ‖y‖p + ‖z‖p) + η‖t‖ (4)

for all x, y, z, t ∈ X . Then, there are a cubic mapping T : X → Y and an additive mapping
A : X → Y that satisfy equation (1) and the inequality

∥
∥g(x) – g(0) – A(x) – T(x), g(t)

∥
∥ ≤ (11 + 2p)δ

(2 – 2p)(8 – 2p)
‖x‖p +

4
7
(

ε + η‖t‖)

for all x, t ∈X .

Proof Define h : X → Y by h(x) := g(x) – g(0) for all x, t ∈ X . Then, h satisfies also the
functional inequality

∥
∥h(x + y + z) + h(x + y – z) + 2h(x) + 2h(y)

– 2h(x + y) – h(x + z) – h(x – z) – h(y + z) – h(y – z), g(t)
∥
∥

≤ ε + δ
(‖x‖p + ‖y‖p + ‖z‖p) + η‖t‖ (5)

for all x, y, z, t ∈X . If we replace (x, y, z) by (2x, x, x) in (5), we gain

∥
∥h(4x) + 2h(2x) + h(x) – 3h(3x), g(t)

∥
∥ ≤ ε +

(

2p + 2
)

δ‖x‖p + η‖t‖

for all x, t ∈X . Replacing (x, y, z) by (x, x, x) in (5), we obtain

∥
∥h(3x) + 5h(x) – 4h(2x), g(t)

∥
∥ ≤ ε + 3δ‖x‖p + η‖t‖

for all x, t ∈X . By the above two inequalities, we have

∥
∥h(4x) + 16h(x) – 10h(2x), g(t)

∥
∥ ≤ 4ε +

(

2p + 11
)

δ‖x‖p + 4η‖t‖ (6)

for all x, t ∈X . By Lemma 2 and (6), we obtain that

∥
∥
∥
∥

h(x) –
4n+1 – 1

3 · 8n h
(

2nx
)

+
4n – 1
6 · 8n h

(

2n+1x
)

, g(t)
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

n
∑

j=1

[
4j – 1
3 · 8j–1 h

(

2j–1x
)

–
5(4j – 1)

3 · 8j h
(

2jx
)

+
4j – 1
6 · 8j h

(

2j+1x
)
]

, g(t)

∥
∥
∥
∥
∥



Bae and Park Journal of Inequalities and Applications         (2022) 2022:80 Page 5 of 19

=

∥
∥
∥
∥
∥

n
∑

j=1

4j – 1
3 · 8j–1

[

h
(

2j–1x
)

–
5
8

h
(

2jx
)

+
1

16
h
(

2j+1x
)
]

, g(t)

∥
∥
∥
∥
∥

≤
n

∑

j=1

4j – 1
3 · 8j–1

∥
∥
∥
∥

h
(

2j–1x
)

–
5
8

h
(

2jx
)

+
1

16
h
(

2j+1x
)

, g(t)
∥
∥
∥
∥

=
1

16

n
∑

j=1

4j – 1
3 · 8j–1

∥
∥16h

(

2j–1x
)

– 10h
(

2jx
)

+ h
(

2j+1x
)

, g(t)
∥
∥

≤ 1
16

n
∑

j=1

4j – 1
3 · 8j–1

[

4ε +
(

2p + 11
)

2p(j–1)δ‖x‖p + 4η‖t‖] (7)

for all x, t ∈X and all n. We set a sequence {hn(x)} given by

hn(x) :=
4n+1 – 1

3 · 8n h
(

2nx
)

–
4n – 1
6 · 8n h

(

2n+1x
)

for all x ∈X and all n, and prove the convergence of the sequence. By (6), we see that

∥
∥hn+1(x) – hn(x), g(t)

∥
∥

=
∥
∥
∥
∥

4n+2 – 1
3 · 8n+1 h

(

2n+1x
)

–
4n+1 – 1
6 · 8n+1 h

(

2n+2x
)

–
4n+1 – 1

3 · 8n h
(

2nx
)

+
4n – 1
6 · 8n h

(

2n+1x
)

, g(t)
∥
∥
∥
∥

=
1

6 · 8n+1

∥
∥2

(

4n+2 – 1
)

h
(

2n+1x
)

+ 8
(

4n – 1
)

h
(

2n+1x
)

– 16
(

4n+1 – 1
)

h
(

2nx
)

–
(

4n+1 – 1
)

h
(

2n+2x
)

, g(t)
∥
∥

=
1

6 · 8n+1

∥
∥4n+1[10h

(

2n+1x
)

– 16h
(

2nx
)

– h
(

2n+2x
)]

–
[

10h
(

2n+1x
)

– 16h
(

2nx
)

– h
(

2n+2x
)]

, g(t)
∥
∥

≤ 4n+1 – 1
6 · 8n+1

[

4ε +
(

2p + 11
)

2pnδ‖x‖p + 4η‖t‖]

for all x, t ∈ X and all n. Hence, it follows from the last inequality that for any positive
integers m, n with m > n > 0, we have

∥
∥hn(x) – hm(x), g(t)

∥
∥ ≤

m–1
∑

k=n

∥
∥hk+1(x) – hk(x), g(t)

∥
∥

≤
m–1
∑

k=n

4k+1 – 1
6 · 8k+1

[

4ε +
(

2p + 11
)

2pkδ‖x‖p + 4η‖t‖]

for all x, t ∈X . Since p < 1, the right-hand side of the above inequality tends to 0 as n tends
to infinity and thus the sequence {hn(x)} is a Cauchy sequence in Y . Therefore, we may
define a mapping G : X → Y by

G(x) := lim
n→∞ hn(x) = lim

n→∞

[
4n+1 – 1

3 · 8n h
(

2nx
)

–
4n – 1
6 · 8n h

(

2n+1x
)
]
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= lim
n→∞

[
4n+1 – 1

3 · 8n g
(

2nx
)

–
4n – 1
6 · 8n g

(

2n+1x
)
]

for all x ∈X and hence we arrive at the formula

∥
∥g(x) – g(0) – G(x), g(t)

∥
∥

≤ 1
16

∞
∑

j=1

4j – 1
3 · 8j–1

[

4ε +
(

2p + 11
)

2p(j–1)δ‖x‖p + 4η‖t‖]

=
(11 + 2p)δ

(2 – 2p)(8 – 2p)
‖x‖p +

4
7
(

ε + η‖t‖)

by letting n → ∞ in (7).
By (4), we have

4n+1 – 1
3 · 8n

∥
∥g

(

2nx + 2ny + 2nz
)

+ g
(

2nx + 2ny – 2nz
)

+ 2g
(

2nx
)

+ 2g
(

2ny
)

– 2g
(

2nx + 2ny
)

– g
(

2nx + 2nz
)

– g
(

2nx – 2nz
)

– g
(

2ny + 2nz
)

– g
(

2ny – 2nz
)

, g(t)
∥
∥

≤ 4n+1 – 1
3 · 8n

[

ε + 2pnδ
(‖x‖p + ‖y‖p + ‖z‖p) + η‖t‖]

and

4n – 1
6 · 8n

∥
∥g

(

2n+1x + 2n+1y + 2n+1z
)

+ g
(

2n+1x + 2n+1y – 2n+1z
)

+ 2g
(

2n+1x
)

+ 2g
(

2n+1y
)

– 2g
(

2n+1x + 2n+1y
)

– g
(

2n+1x + 2n+1z
)

– g
(

2n+1x – 2n+1z
)

– g
(

2n+1y + 2n+1z
)

– g
(

2n+1y – 2n+1z
)

, g(t)
∥
∥

≤ 4n – 1
6 · 8n

[

ε + 2p(n+1)δ
(‖x‖p + ‖y‖p + ‖z‖p) + η‖t‖]

for all x, y, z, t ∈X . Thus, it follows from the above two inequalities that

∥
∥hn(x + y + z) + hn(x + y – z) + 2hn(x) + 2hn(y) – 2hn(x + y) – hn(x + z)

– hn(x – z) – hn(y + z) – hn(y – z), g(t)
∥
∥

=
∥
∥
∥
∥

4n+1 – 1
3 · 8n

[

g
(

2nx + 2ny + 2nz
)

+ g
(

2nx + 2ny – 2nz
)

+ 2g
(

2nx
)

+ 2g
(

2ny
)

– 2g
(

2nx + 2ny
)

– g
(

2nx + 2nz
)

– g
(

2nx – 2nz
)

– g
(

2ny + 2nz
)

– g
(

2ny – 2nz
)]

–
4n – 1
6 · 8n

[

g
(

2n+1x + 2n+1y + 2n+1z
)

+ g
(

2n+1x + 2n+1y – 2n+1z
)

+ 2g
(

2n+1x
)

+ 2g
(

2n+1y
)

– 2g
(

2n+1x + 2n+1y
)

– g
(

2n+1x + 2n+1z
)

– g
(

2n+1x – 2n+1z
)

– g
(

2n+1y + 2n+1z
)

– g
(

2n+1y – 2n+1z
)]

, g(t)
∥
∥
∥
∥
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≤ 4n+1 – 1
3 · 8n

[

ε + 2pnδ
(‖x‖p + ‖y‖p + ‖z‖p) + η‖t‖]

+
4n – 1
6 · 8n

[

ε + 2p(n+1)δ
(‖x‖p + ‖y‖p + ‖z‖p) + η‖t‖]

for all x, y, z, t ∈X . Taking n → ∞, since 0 < p < 1, we obtain that G is a solution of (1). By
Theorem 2.1 in [7], there exist a cubic mapping T , an additive mapping A, and a constant
c such that G(x) = T(x) + A(x) + c for all x ∈X . Since h(0) = 0, we obtain hn(0) = 0 for all n.
Hence, c = G(0) = limn→∞ hn(0) = 0. �

In the case p > 1 in Theorem 1, one can also obtain a similar result.
The following theorem proves the stability of equation (2) in 2-Banach spaces.

Theorem 2 Let p ∈ (0, 2), ε ≥ 0, δ,η ≥ 0 and let g : X → Y be a surjection such that

∥
∥g(x + y + z) + g(x – z) + g(y – z) – g(x + y – z) – g(x + z) – g(y + z), g(t)

∥
∥

≤ ε + δ
(‖x‖p + ‖y‖p + ‖z‖p) + η‖t‖ (8)

for all x, y, z, t ∈ X . Then, there is a unique quadratic mapping G : X → Y satisfying (2)
such that

∥
∥g(x) – g(0) – G(x), g(t)

∥
∥ ≤ (5 + 2p)δ

2p(4 – 2p)
‖x‖p +

2
3
(

ε + η‖t‖) (9)

for all x, t ∈X .

Proof Let h : X → Y be a mapping given by h(x) := g(x) – g(0) for all x ∈X , then h(0) = 0.
Letting x = y = z in (8), we have

∥
∥h(3x) – 2h(2x) – h(x), g(t)

∥
∥ =

∥
∥g(3x) – 2g(2x) – g(x) + 2g(0), g(t)

∥
∥

≤ ε + 3δ‖x‖p + η‖t‖

for all x, t ∈X . Replacing x, y, z by 2x, x, x in (8), respectively, we have

∥
∥h(4x) – h(3x) – 2h(2x) + h(x), g(t)

∥
∥

=
∥
∥g(4x) – g(3x) – 2g(2x) + g(x) + g(0), g(t)

∥
∥ ≤ ε +

(

2p + 2
)

δ‖x‖p + η‖t‖

for all x, t ∈X . By the above two inequalities, we obtain

∥
∥h(4x) – 4h(2x), g(t)

∥
∥ ≤ 2ε +

(

2p + 5
)

δ‖x‖p + 2η‖t‖

for all x, t ∈X . Replacing x by x
2 , we have

∥
∥
∥
∥

h(x) –
1
4

h(2x), g(t)
∥
∥
∥
∥

≤ 1
4

(

1 +
5
2p

)

δ‖x‖p +
1
2
(

ε + η‖t‖)
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for all x, t ∈X . Thus, we obtain

∥
∥
∥
∥

1
4j h

(

2jx
)

–
1

4j+1 h
(

2j+1x
)

, g(t)
∥
∥
∥
∥

≤ 1
4

(

1 +
5
2p

)

δ‖x‖p
(

2p

4

)j

+
1
2
(

ε + η‖t‖)
(

1
4

)j

for all x, t ∈X and all j. For given integers l, m (0 ≤ l < m), we obtain

∥
∥
∥
∥

1
4l h

(

2lx
)

–
1

4m h
(

2mx
)

, g(t)
∥
∥
∥
∥

≤
m–1
∑

j=l

[
1
4

(

1 +
5
2p

)

δ‖x‖p
(

2p

4

)j

+
1
2
(

ε + η‖t‖)
(

1
4

)j]

(10)

for all x, t ∈X . Since p ∈ (0, 2), the sequence { 1
4j h(2jx)} is a Cauchy sequence for all x ∈X .

Since Y is a 2-Banach space, the sequence { 1
4j h(2jx)} converges for all x ∈ X . Define G :

X → Y by

G(x) := lim
j→∞

1
4j h

(

2jx
)

for all x ∈X . Then,

G(2x) = lim
j→∞

1
4j h

(

2j+1x
)

= 4 lim
j→∞

1
4j+1 h

(

2j+1x
)

= 4G(x)

for all x ∈X . By (8), we have

∥
∥
∥
∥

1
4j

[

h
(

2j(x + y + z)
)

+ h
(

2j(x – z)
)

+ h
(

2j(y – z)
)

– h
(

2j(x + y – z)
)

– h
(

2j(x + z)
)

– h
(

2j(y + z)
)]

, g(t)
∥
∥
∥
∥

=
∥
∥
∥
∥

1
4j

[

g
(

2j(x + y + z)
)

+ g
(

2j(x – z)
)

+ g
(

2j(y – z)
)

– g
(

2j(x + y – z)
)

– g
(

2j(x + z)
)

– g
(

2j(y + z)
)]

, g(t)
∥
∥
∥
∥

≤ 1
4j

[

ε + 2jpδ
(‖x‖p + ‖y‖p + ‖z‖p) + η‖t‖]

for all x, y, z, t ∈ X and all j. Letting j → ∞, we see that G satisfies (2). Setting l = 0 and
taking m → ∞ in (10), one can obtain the inequality (9).

Let H : X → Y be another quadratic mapping satisfying (2) and (9). By the proof of
Lemma 2.1 in [10], H(2x) = 4H(x) – 3H(0) for all x ∈X . Thus, we obtain

∥
∥G(x) – H(x), g(t)

∥
∥

=
1
4n

∥
∥
∥
∥

G
(

2nx
)

– H
(

2nx
)

–
(

1 –
1
4n

)

H(0), g(t)
∥
∥
∥
∥
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≤ 1
4n

∥
∥G

(

2nx
)

– g
(

2nx
)

+ g(0), g(t)
∥
∥

+
1
4n

∥
∥–g(0) + g

(

2nx
)

– H
(

2nx
)

, g(t)
∥
∥ +

1
4n

(

1 –
1
4n

)
∥
∥H(0), g(t)

∥
∥

≤ 2
4n

[
2(n–1)p(5 + 2p)δ

4 – 2p ‖x‖p +
2
3
(

ε + η‖t‖)
]

+
1
4n

(

1 –
1
4n

)
∥
∥H(0), g(t)

∥
∥

→ 0 as n → ∞

for all x, t ∈X . Hence, G is a unique quadratic mapping, as desired. �

In the case p > 2 in Theorem 2, one can also obtain a similar result.
Theorem 2 leaves the case p = 2 undecided. This is not a mere coincidence. It turns out

that 2 is the only critical value of p > 0 to which Theorem 2 can not be extended. Note
that R

2 is a 2-Banach space with the 2-norm given by |A, B| = the area of the triangle
OAB, where O is the origin. In fact, we shall show that, for δ,η > 0 one can find a mapping
g : R →R

2 such that

∣
∣g(x + y + z) + g(x – z) + g(y – z) – g(x + y – z) – g(x + z) – g(y + z), g(t)

∣
∣

≤ δ
(|x| + |y| + |z|) + η|t|

for all x, y, z, t ∈R, but, at the same time, there is no constant λ,μ ∈ [0,∞) and no quadratic
mapping G : R →R

2 satisfying the condition

∣
∣g(x) – g(0) – G(x), g(t)

∣
∣ ≤ λ|x| + μ|t|

for all x, y, z, t ∈R.
The following theorem proves the stability of equation (3) in 2-Banach spaces.

Theorem 3 Let p ∈ (0, 1), ε > 0, δ,η ≥ 0 and let f : X ×X → Y be a surjection such that

∥
∥f (x + y + z, u + v + w) + f (x + y – z, u + v + w) + 2f (x, u – w)

+ 2f (y, v – w) – f (x + y, u + w) – f (x + y, v + w) – f (x + z, u + w)

– f (x – z, u + v – w) – f (y + z, v + w) – f (y – z, u + v – w), f (s, t)
∥
∥

≤ ε + δ
(‖x‖p + ‖y‖p + ‖z‖p + ‖u‖p + ‖v‖p + ‖w‖p) + η

(‖s‖ + ‖t‖) (11)

for all x, y, z, u, v, w, s, t ∈ X . Then, there exists a mapping F : X × X → Y satisfying (3)
such that

∥
∥f (x, y) – f (0, 0) – F(x, y), f (s, t)

∥
∥

≤ 5 + 3 · 2p – 4p

2p(2 – 2p)
δ‖x‖p +

5 + 9 · 2p – 2 · 4p

2p(4 – 2p)
δ‖y‖p +

28
9

[

ε + η
(‖s‖ + ‖t‖)]

for all x, y, s, t ∈X .



Bae and Park Journal of Inequalities and Applications         (2022) 2022:80 Page 10 of 19

Proof Define f1, f2 : X → Y by f1(x) := f (x, 0) and f2(y) := f (0, y) for all x, y ∈ X . Putting
u = v = w = 0 in (11), we have

∥
∥f1(x + y + z) + f1(x + y – z) + 2f1(x) + 2f1(y) – 2f1(x + y) – f1(x + z)

– f1(x – z) – f1(y + z) – f1(y – z), f (s, t)
∥
∥

≤ ε + δ
(‖x‖p + ‖y‖p + ‖z‖p) + η

(‖s‖ + ‖t‖)

for all x, y, z, s, t ∈X . By Theorem 1, there exist a cubic mapping F1 : X → Y and an addi-
tive mapping A1 which satisfy equation (1) and the inequality

∥
∥f1(x) – f1(0) – A1(x) – F1(x), f (s, t)

∥
∥ ≤ 5 + 2p

2p(2 – 2p)
δ‖x‖p +

16
9

[

(ε + η
(‖s‖ + ‖t‖)]

for all x, s, t ∈X . Setting x = y = z = 0 in (11), we have

∥
∥2f2(u + v + w) + 2f2(u – w) + 2f2(v – w) – 2f2(u + v – w)

– 2f2(u + w) – 2f2(v + w), f (s, t)
∥
∥

≤ ε + δ
(‖u‖p + ‖v‖p + ‖w‖p) + η

(‖s‖ + ‖t‖)

for all u, v, w, s, t ∈X . By Theorem 2, there exists a quadratic mapping F2 : X → Y satisfy-
ing (2) such that

∥
∥f2(y) – f2(0) – F2(y), f (s, t)

∥
∥ ≤ 5 + 2p

2p+1(4 – 2p)
δ‖y‖p +

1
3
[

ε + η
(‖s‖ + ‖t‖)]

for all y, s, t ∈X . Setting y = z = v = w = 0 in (11), we have

∥
∥f (x, u) – f1(x) – f2(u) + f (0, 0), f (s, t)

∥
∥ ≤ ε + δ

(‖x‖p + ‖u‖p) + η
(‖s‖ + ‖t‖)

for all x, u, s, t ∈X .
If we define

F(x, y) := A1(x) + F1(x) + F2(y)

for all x, y ∈X , then we conclude

∥
∥f (x, y) – f (0, 0) – F(x, y), f (s, t)

∥
∥

=
∥
∥f (x, y) – A1(x) – F1(x) – F2(y) – f (0, 0), f (s, t)

∥
∥

≤ ∥
∥f (x, y) – f1(x) – f2(y) + f (0, 0), f (s, t)

∥
∥

+
∥
∥f1(x) – f1(0) – A1(x) – F1(x), f (s, t)

∥
∥ +

∥
∥f2(y) – f2(0) – F2(y), f (s, t)

∥
∥

≤ 5 + 3 · 2p – 4p

2p(2 – 2p)
δ‖x‖p +

5 + 9 · 2p – 2 · 4p

2p(4 – 2p)
δ‖y‖p +

28
9

[

ε + η
(‖s‖ + ‖t‖)]

for all x, y, s, t ∈X . �
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In the case p ∈ (1, 2) ∪ (2,∞) in Theorem 3, one can also obtain a similar result. Taking
δ = η = 0 in Theorem 3, we solve the Ulam stability problem for the functional equation
(3).

Corollary 1 Let ε > 0 and let f : X ×X → Y be a surjection such that

∥
∥f (x + y + z, u + v + w) + f (x + y – z, u + v + w) + 2f (x, u – w)

+ 2f (y, v – w) – f (x + y, u + w) – f (x + y, v + w) – f (x + z, u + w)

– f (x – z, u + v – w) – f (y + z, v + w) – f (y – z, u + v – w), f (s, t)
∥
∥ ≤ ε

for all x, y, z, u, v, w, s, t ∈ X . Then, there exists a mapping F : X × X → Y satisfying (3)
such that

∥
∥f (x, y) – f (0, 0) – F(x, y), f (s, t)

∥
∥ ≤ 28

9
ε

for all x, y, s, t ∈X .

3 Stability in quasi-Banach spaces
Definition 4 Let X be a real linear space. A quasinorm is a real-valued function on X
satisfying the following:

(i) ‖x‖ ≥ 0 for all x ∈X and ‖x‖ = 0 if and only if x = 0.
(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈R and all x ∈X .
(iii) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈X .

The pair (X ,‖ · ‖) is called a quasinormed space if ‖ · ‖ is a quasinorm on X . The smallest
possible K is called the modulus of concavity of ‖ · ‖. A quasi-Banach space is a complete
quasinormed space. A quasinorm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈X . In this case, a quasi-Banach space is called a p-Banach space.

A quasinorm gives rise to a linear topology on X , namely the least linear topology for
which the unit ball B = {x ∈X : ‖x‖ ≤ 1} is a neighborhood of zero. This topology is locally
bounded, that is, it has a bounded neighborhood of zero. Actually, every locally bounded
topology arises in this way.

From now on, assume that X is a quasinormed space with quasinorm ‖ · ‖ and that Y is
a p-Banach space with p-norm ‖ · ‖Y . Let K be the modulus of concavity of ‖ · ‖Y .

We will use the following lemma in this section.

Lemma 3 ([8]) Let 0 ≤ p ≤ 1 and let x1, x2, . . . , xn be nonnegative real numbers. Then,

(x1 + x2 + · · · + xn)p ≤ xp
1 + xp

2 + · · · + xp
n.

The following theorem proves the stability of equation (1) in quasi-Banach spaces.
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Theorem 4 Let q ∈ (0, 1), ε > 0 and δ ≥ 0 and let g : X → Y be a mapping such that

∥
∥g(x + y + z) + g(x + y – z) + 2g(x) + 2g(y)

– 2g(x + y) – g(x + z) – g(x – z) – g(y + z) – g(y – z)
∥
∥
Y

≤ ε + δ
(‖x‖q + ‖y‖q + ‖z‖q) (12)

for all x, y, z ∈ X . Then, there are a cubic mapping T : X → Y and an additive mapping
A : X → Y that satisfy equation (1) and the inequality

∥
∥g(x) – g(0) – A(x) – T(x)

∥
∥
Y ≤ 1

16

(
8(2εp + 3δp‖x‖pq)

2p – 1

) 1
p

(13)

for all x ∈X .

Proof Define h : X → Y by h(x) := g(x) – g(0) for all x ∈X . Then, h satisfies also the func-
tional inequality

∥
∥h(x + y + z) + h(x + y – z) + 2h(x) + 2h(y)

– 2h(x + y) – h(x + z) – h(x – z) – h(y + z) – h(y – z)
∥
∥
Y

≤ ε + δ
(‖x‖q + ‖y‖q + ‖z‖q) (14)

for all x, y, z ∈X . If we replace (x, y, z) by (2x, x, x) in (14), we have

∥
∥h(4x) + 2h(2x) + h(x) – 3h(3x)

∥
∥
Y ≤ ε +

(

2 + 2q)δ‖x‖q

for all x ∈X . Replacing (x, y, z) by (x, x, x) in (14), we obtain

∥
∥h(3x) + 5h(x) – 4h(2x)

∥
∥
Y ≤ ε + 3δ‖x‖q

for all x ∈X . By the above two inequalities, we obtain

∥
∥h(4x) + 16h(x) – 10h(2x)

∥
∥

p
Y ≤ [

ε + δ
(

2 + 2q)‖x‖q]p + 3p(ε + 3δ‖x‖q)p

≤ (

1 + 3p)εp +
(

2p + 3p + 2pq)δp‖x‖pq (15)

for all x ∈X .
By Lemma 2 and (15), we obtain that

∥
∥
∥
∥

h(x) –
4n+1 – 1

3 · 8n h
(

2nx
)

+
4n – 1
6 · 8n h

(

2n+1x
)
∥
∥
∥
∥

p

Y

=

∥
∥
∥
∥
∥

n
∑

j=1

[
4j – 1
3 · 8j–1 h

(

2j–1x
)

–
5(4j – 1)

3 · 8j h
(

2jx
)

+
4j – 1
6 · 8j h

(

2j+1x
)
]
∥
∥
∥
∥
∥

p

Y

=

∥
∥
∥
∥
∥

n
∑

j=1

4j – 1
3 · 8j–1

[

h
(

2j–1x
)

–
5
8

h
(

2jx
)

+
1

16
h
(

2j+1x
)
]
∥
∥
∥
∥
∥

p

Y
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≤
n

∑

j=1

(
4j – 1
3 · 8j–1

)p∥
∥
∥
∥

h
(

2j–1x
)

–
5
8

h
(

2jx
)

+
1

16
h
(

2j+1x
)
∥
∥
∥
∥

p

Y

=
1

16p

n
∑

j=1

(
4j – 1
3 · 8j–1

)p
∥
∥16h

(

2j–1x
)

– 10h
(

2jx
)

+ h
(

2j+1x
)∥
∥

p
Y

≤ 1
16p

n
∑

j=1

(
4j – 1
3 · 8j–1

)p
[(

1 + 3p)εp +
(

2p + 3p + 2pq)2pq(j–1)δp‖x‖pq] (16)

for all x ∈X and all n. We set a sequence {hn(x)} given by

hn(x) :=
4n+1 – 1

3 · 8n h
(

2nx
)

–
4n – 1
6 · 8n h

(

2n+1x
)

for all x ∈X and all n, and prove the convergence of the sequence. By (15), using Lemma 3,
we see that

∥
∥hn+1(x) – hn(x)

∥
∥

p
Y

=
∥
∥
∥
∥

4n+2 – 1
3 · 8n+1 h

(

2n+1x
)

–
4n+1 – 1
6 · 8n+1 h

(

2n+2x
)

–
4n+1 – 1

3 · 8n h
(

2nx
)

+
4n – 1
6 · 8n h

(

2n+1x
)
∥
∥
∥
∥

p

Y

=
(

1
6 · 8n+1

)p
∥
∥2

(

4n+2 – 1
)

h
(

2n+1x
)

+ 8
(

4n – 1
)

h
(

2n+1x
)

– 16
(

4n+1 – 1
)

h
(

2nx
)

–
(

4n+1 – 1
)

h
(

2n+2x
)∥
∥

p
Y

=
(

1
6 · 8n+1

)p
∥
∥4n+1[10h

(

2n+1x
)

– 16h
(

2nx
)

– h
(

2n+2x
)]

–
[

10h
(

2n+1x
)

– 16h
(

2nx
)

– h
(

2n+2x
)]∥

∥
p
Y

≤
(

4n+1 – 1
6 · 8n+1

)p
[(

1 + 3p)εp +
(

2p + 3p + 2pq)2pqnδp‖x‖pq]

for all x ∈X and all n. Hence, it follows from the last inequality that for any positive inte-
gers m, n with m > n > 0, we have

∥
∥hn(x) – hm(x)

∥
∥

p
Y ≤

m–1
∑

k=n

∥
∥hk+1(x) – hk(x)

∥
∥

p
Y

≤
m–1
∑

k=n

(
4k+1 – 1
6 · 8k+1

)p
[(

1 + 3p)εp +
(

2p + 3p + 2pq)2pqkδp‖x‖pq]

for all x ∈ X . Since 0 < p ≤ 1 and 0 < q < 1, the right-hand side of the above inequality
tends to 0 as n tends to infinity and thus the sequence {hn(x)} is a Cauchy sequence in Y .
Therefore, we may define a mapping G : X → Y by

G(x) := lim
n→∞ hn(x) = lim

n→∞

[
4n+1 – 1

3 · 8n h
(

2nx
)

–
4n – 1
6 · 8n h

(

2n+1x
)
]
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= lim
n→∞

[
4n+1 – 1

3 · 8n g
(

2nx
)

–
4n – 1
6 · 8n g

(

2n+1x
)
]

for all x ∈X . By letting n → ∞ in (16), we have

∥
∥g(x) – g(0) – G(x)

∥
∥
Y

≤ 1
16

( ∞
∑

j=1

(
4j – 1
3 · 8j–1

)p
[(

1 + 3p)εp +
(

2p + 3p + 2pq)δp∥∥2j–1x
∥
∥

pq]
) 1

p

≤ 1
16

( ∞
∑

j=1

(
4j

3 · 8j–1

)p
[(

1 + 3p)εp +
(

2p + 3p + 2pq)δp∥∥2j–1x
∥
∥

pq]
) 1

p

=
1

16

(
8p(3–p + 1)

2p – 1
εp +

2p(3–q)(2p + 3p + 2pq)
3p(2p(1–q)–1)

δp‖x‖pq
) 1

p

≤ 1
16

(
8

2p – 1
(

2εp + 7 · 3–pδp‖x‖pq)
) 1

p
≤ 1

16

(
8

2p – 1

[

2εp +
7
3
δp‖x‖pq

]) 1
p

≤ 1
16

(
8(2εp + 3δp‖x‖pq)

2p – 1

) 1
p

for all x ∈X . Thus, we arrive at the formula (13).
By Lemma 3 and (12), we have

(
4n+1 – 1

3 · 8n

)p
∥
∥g

(

2nx + 2ny + 2nz
)

+ g
(

2nx + 2ny – 2nz
)

+ 2g
(

2nx
)

+ 2g
(

2ny
)

– 2g
(

2nx + 2ny
)

– g
(

2nx + 2nz
)

– g
(

2nx – 2nz
)

– g
(

2ny + 2nz
)

– g
(

2ny – 2nz
)∥
∥

p
Y

≤
(

4n+1 – 1
3 · 8n

)p
[

εp + δp2pqn(‖x‖q + ‖y‖q + ‖z‖q)p]

and

(
4n – 1
6 · 8n

)p
∥
∥g

(

2n+1x + 2n+1y + 2n+1z
)

+ g
(

2n+1x + 2n+1y – 2n+1z
)

+ 2g
(

2n+1x
)

+ 2g
(

2n+1y
)

– 2g
(

2n+1x + 2n+1y
)

– g
(

2n+1x + 2n+1z
)

– g
(

2n+1x – 2n+1z
)

– g
(

2n+1y + 2n+1z
)

– g
(

2n+1y – 2n+1z
)∥
∥

p
Y

≤
(

4n – 1
6 · 8n

)p
[

εp + δp2pq(n+1)(‖x‖q + ‖y‖q + ‖z‖q)p]

for all x, y, z ∈X and all n. Thus, it follows from the above two inequalities that

∥
∥hn(x + y + z) + hn(x + y – z) + 2hn(x) + 2hn(y) – 2hn(x + y)

– hn(x + z) – hn(x – z) – hn(y + z) – hn(y – z)
∥
∥

p
Y

=
∥
∥
∥
∥

4n+1 – 1
3 · 8n

[

g
(

2nx + 2ny + 2nz
)

+ g
(

2nx + 2ny – 2nz
)

+ 2g
(

2nx
)
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+ 2g
(

2ny
)

– 2g
(

2nx + 2ny
)

– g
(

2nx + 2nz
)

– g
(

2nx – 2nz
)

– g
(

2ny + 2nz
)

– g
(

2ny – 2nz
)]

–
4n – 1
6 · 8n

[

g
(

2n+1x + 2n+1y + 2n+1z
)

+ g
(

2n+1x + 2n+1y – 2n+1z
)

+ 2g
(

2n+1x
)

+ 2g
(

2n+1y
)

– 2g
(

2n+1x + 2n+1y
)

– g
(

2n+1x + 2n+1z
)

– g
(

2n+1x – 2n+1z
)

– g
(

2n+1y + 2n+1z
)

– g
(

2n+1y – 2n+1z
)]

∥
∥
∥
∥

p

Y

≤
(

4n+1 – 1
3 · 8n

)p
[

εp + δp2pqn(‖x‖q + ‖y‖q + ‖z‖q)p]

+
(

4n – 1
6 · 8n

)p
[

εp + δp2pq(n+1)(‖x‖q + ‖y‖q + ‖z‖q)p]

for all x, y, z ∈ X and all n. Taking n → ∞, since 0 < p < 1, we obtain that G is a solution
of (1). By Theorem 2.1 in [7], there exist a cubic mapping T , an additive mapping A, and a
constant c such that G(x) = T(x) + A(x) + c for all x ∈X . Since h(0) = 0, we obtain hn(0) = 0
for all n. So c = G(0) = limn→∞ hn(0) = 0. �

The following theorem proves the stability of equation (2) in quasi-Banach spaces.

Theorem 5 Let q ∈ (0, 1), ε > 0 and δ ≥ 0 and let g : X → Y be a mapping such that

∥
∥g(x + y + z) + g(x – z) + g(y – z) – g(x + y – z) – g(x + z) – g(y + z)

∥
∥
Y

≤ ε + δ
(‖x‖q + ‖y‖q + ‖z‖q) (17)

for all x, y, z ∈X . Then, there exists a unique quadratic mapping G : X → Y satisfying (2)
such that

∥
∥g(x) – g(0) – G(x)

∥
∥
Y ≤

(
5εp

4p – 1
+

δp2pq[2(3 + 2p) + 2pq]
4p – 2pq ‖x‖pq

) 1
p

(18)

for all x ∈X .

Proof Let h : X → Y be a mapping given by h(x) := g(x) – g(0) for all x ∈X , then h(0) = 0.
Letting x = y = 0 in (17), we have

∥
∥h(–z) – h(z)

∥
∥
Y ≤ ε + δ‖z‖q

for all z ∈X . Replacing z by x + y in (17), we obtain

∥
∥h(2x + 2y) + h(–y) + h(–x) – h(2x + y) – h(x + 2y)

∥
∥
Y

≤ ε + δ
(‖x‖q + ‖y‖q + ‖x + y‖q)

for all x, y ∈X . Taking z = x in (17), we see that

∥
∥h(2x + y) + h(y – x) – h(y) – h(2x) – h(x + y)

∥
∥
Y ≤ ε + δ

(

2‖x‖q + ‖y‖q)
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for all x, y ∈X . Interchanging x and y in the above inequality, we see that

∥
∥h(x + 2y) + h(x – y) – h(x) – h(2y) – h(x + y)

∥
∥
Y ≤ ε + δ

(‖x‖q + 2‖y‖q)

for all x, y ∈X . By the above four inequalities and Lemma 3, we have

∥
∥h(2x + 2y) + h(x – y) + h(y – x) – 2h(x + y) – h(2x) – h(2y)

∥
∥

p
Y

≤ 3εp + δp[(2 + 2p)(‖x‖pq + ‖y‖pq) + ‖x + y‖pq]

+
∥
∥h(x) – h(–x)

∥
∥

p
Y +

∥
∥h(y) – h(–y)

∥
∥

p
Y

≤ 5εp + δp[(3 + 2p)(‖x‖pq + ‖y‖pq) + ‖x + y‖pq]

for all x, y ∈X . Putting y = x in the above inequality, we obtain

∥
∥h(4x) – 4h(2x)

∥
∥

p
Y ≤ 5εp + δp[2

(

3 + 2p) + 2pq]‖x‖pq

for all x ∈X . Hence,
∥
∥
∥
∥

h(x) –
1
4

h(2x)
∥
∥
∥
∥

p

Y
≤ 1

4p

(

5εp + δp2pq[2
(

3 + 2p) + 2pq]‖x‖pq)

for all x ∈X . Thus, we obtain
∥
∥
∥
∥

1
4j h

(

2jx
)

–
1

4j+1 h
(

2j+1x
)
∥
∥
∥
∥

p

Y
≤ 1

4p(j+1)

(

5εp + δp2pq[2
(

3 + 2p) + 2pq]2pqj‖x‖pq) (19)

for all x ∈X and all j. For given integers l, m (0 ≤ l < m), we obtain

∥
∥
∥
∥

1
4l h

(

2lx
)

–
1

4m h
(

2mx
)
∥
∥
∥
∥

p

Y
≤

m–1
∑

j=l

1
4p(j+1)

(

5εp + δp2pq[2
(

3 + 2p) + 2pq]2pqj‖x‖pq) (20)

for all x ∈ X . By (20), the sequence { 1
4j h(2jx)} is a Cauchy sequence for all x ∈ X . Since Y

is complete, the sequence { 1
4j h(2jx)} converges for all x ∈X . Define G : X → Y by

G(x) := lim
j→∞

1
4j h

(

2jx
)

for all x ∈X . By (17), we have

∥
∥G(x + y + z) + G(x – z) + G(y – z) – G(x + y – z) – G(x + z) – G(y + z)

∥
∥

p
Y

= lim
n→∞

1
4pn

∥
∥
[

h
(

2n(x + y + z)
)

+ h
(

2n(x – z)
)

+ h
(

2n(y – z)
)

– h
(

2n(x + y – z)
)

– h
(

2n(x + z)
)

– h
(

2n(y + z)
)]∥

∥
p
Y

≤ lim
n→∞

1
4pn

[

ε + 2qnδ
(‖x‖q + ‖y‖q + ‖z‖q)]p

for all x, y, z ∈ X . Hence, the mapping G satisfies (2). Setting l = 0 and taking m → ∞ in
(20), one can obtain the inequality (18).
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To prove the uniqueness of G, let H : X → Y be another quadratic mapping satisfying
(2) and (9). It follows from (19) that

∥
∥G(2x) – 4G(x)

∥
∥
Y = lim

n→∞

∥
∥
∥
∥

1
4n h

(

2n+1x
)

–
1

4n–1 h
(

2nx
)
∥
∥
∥
∥
Y

= 4 lim
n→∞

∥
∥
∥
∥

1
4n h

(

2nx
)

–
1

4n+1 h
(

2n+1x
)
∥
∥
∥
∥
Y

≤ 4 lim
n→∞

1
4n+1

(

5εp + δp2pq[2
(

3 + 2p) + 2pq]2pqn‖x‖pq) 1
p = 0

for all x ∈X . So G(2x) = 4G(x) for all x ∈X . It follows from (18) that

∥
∥G(x) – H(x)

∥
∥

p
Y = lim

n→∞
1

4pn

∥
∥h

(

2nx
)

– H
(

2nx
)∥
∥

p
Y

≤ lim
n→∞

1
4pn

(
5εp

4p – 1
+

δp[2(3 + 2p) + 2pq]2pq(n+1)

4p – 2pq ‖x‖pq
)

= 0

for all x ∈X . So G = H . �

The following theorem proves the stability of equation (3) in quasi-Banach spaces.

Theorem 6 Let q ∈ (0, 1), ε > 0 and δ ≥ 0 and let f : X ×X → Y be a mapping such that

∥
∥f (x + y + z, u + v + w) + f (x + y – z, u + v + w) (21)

+ 2f (x, u – w) + 2f (y, v – w)

– f (x + y, u + w) – f (x + y, v + w) – f (x + z, u + w) – f (x – z, u + v – w)

– f (y + z, v + w) – f (y – z, u + v – w)
∥
∥
Y

≤ ε + δ
(‖x‖q + ‖y‖q + ‖z‖q + ‖u‖q + ‖v‖q + ‖w‖q)

for all x, y, z, u, v, w ∈ X . Then, there exists a mapping F : X × X → Y satisfying (3) such
that

∥
∥f (x, y) – F(x, y)

∥
∥
Y ≤

(
[

ε + δ
(‖x‖q + ‖y‖q)]p +

1
16p

8(2εp + 3δp‖x‖pq)
2p – 1

+
5εp

4p – 1
+

δp2pq[2(3 + 2p) + 2pq]
4p – 2pq ‖y‖pq

) 1
p

for all x, y ∈X .

Proof Define f1 : X → Y by f1(x) := f (x, 0) for all x ∈X . Also, define f2 : X → Y by f2(y) :=
f (0, y) for all y ∈X . Letting y = z = v = w = 0 in (21), we have

∥
∥f (x, u) – f1(x) – f2(u) + f (0, 0)

∥
∥
Y ≤ ε + δ

(‖x‖q + ‖u‖q)
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for all x, u ∈X . Putting u = v = w = 0 in (21), we have

∥
∥f1(x + y + z) + f1(x + y – z) + 2f1(x) + 2f1(y)

– 2f1(x + y) – f1(x + z) – f1(x – z) – f1(y + z) – f1(y – z)
∥
∥
Y

≤ ε + δ
(‖x‖q + ‖y‖q + ‖z‖q)

for all x, y, z ∈X . Setting x = y = z = 0 in (21), we have

∥
∥f2(u + v + w) + f2(u – w) + f2(v – w) – f2(u + v – w)

– f2(u + w) – f2(v + w)
∥
∥
Y

≤ ε + δ
(‖u‖q + ‖v‖q + ‖w‖q)

for all u, v, w ∈X .
By Theorem 4, there are a cubic mapping T : X → Y and an additive mapping A : X →

Y that satisfy equation (1) and the inequality

∥
∥f1(x) – f1(0) – A(x) – T(x)

∥
∥
Y ≤ 1

16

(
8(2εp + 3δp‖x‖pq)

2p – 1

) 1
p

for all x ∈X . By Theorem 5, there exists a unique quadratic mapping G : X → Y satisfying
(2) such that

∥
∥f2(y) – f2(0) – G(y)

∥
∥
Y ≤

(
5εp

4p – 1
+

δp2pq[2(3 + 2p) + 2pq]
4p – 2pq ‖y‖pq

) 1
p

for all y ∈X .
If we define

F(x, y) := A(x) + T(x) + G(y) + f (0, 0)

for all x, y ∈X , we conclude that

∥
∥f (x, y) – F(x, y)

∥
∥

p
Y ≤ [

ε + δ
(‖x‖q + ‖y‖q)]p +

1
16p

8(2εp + 3δp‖x‖pq)
2p – 1

+
5εp

4p – 1
+

δp2pq[2(3 + 2p) + 2pq]
4p – 2pq ‖y‖pq

for all x, y ∈X . �

Taking δ = 0 in Theorem 6, we obtain the Ulam stability problem for functional equation
(3).

Corollary 2 Let ε > 0 and let f : X ×X → Y be a mapping such that

∥
∥f (x + y + z, u + v + w) + f (x + y – z, u + v + w)

+ 2f (x, u – w) + 2f (y, v – w)
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– f (x + y, u + w) – f (x + y, v + w) – f (x + z, u + w) – f (x – z, u + v – w)

– f (y + z, v + w) – f (y – z, u + v – w)
∥
∥
Y ≤ ε

for all x, y, z, u, v, w ∈ X . Then, there exists a mapping F : X × X → Y satisfying (3) such
that

∥
∥f (x, y) – F(x, y)

∥
∥
Y ≤

(

1 +
1

16p–1(2p – 1)
+

5
4p – 1

)

ε

for all x, y ∈X .
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