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Abstract
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1 Introduction
Let A = (ai1i2···im ) ∈R

[m,n] be an mth-order n-dimensional real tensor, x be a real n-vector
and N = {1, 2, . . . , n}. Denote by Axm–1 the vector in R

n with entries

(
Axm–1)

i =
∑

i2,...,im∈N

aii2···im xi2 · · ·xim .

Consider the tensor eigenvalue complementarity problems of finding (λ, x) ∈R×R
n
+\{0}

such that

0 ≤ x ⊥ (
λx – Axm–1) ≥ 0 and x�x = 1,

where a⊥b means that vectors a and b are perpendicular to each other. For the problem,
its solution (λ, x) ∈R×R

n
+\{0} is called a Pareto Z-eigenpair of tensor A.

The Pareto Z-eigenpair of a tensor was introduced by Song [1], which is a natural gen-
eralization of that of a matrix [2–5]. It is worth noting that Pareto Z-eigenvalues of A are
closely related to Z (Z+)-eigenvalues of A introduced by Lim [6] and Qi [7, 8], respectively.
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Definition 1 For a tensor A = (ai1i2···im ) ∈ R
[m,n], if there exist (λ, x) ∈ R × R

n\{0} such
that

Axm–1 = λx, x�x = 1,

then (λ, x) is called a Z-eigenpair of tensor A. Further, Z-eigenvalue λ of A is said to be a
Z+-eigenvalue, if its eigenvector x ∈ R

n
+\{0}.

Obviously, Z+-eigenvalues of A are Pareto Z-eigenvalues. However, the converse may
not hold as pointed by Zeng [9]. Therefore, the tensor Pareto Z-eigenvalue received much
attentions of researchers [9–12]. For instance, Zeng [9] proposed a semidefinite relaxation
algorithm to obtain Pareto Z-eigenvalues of tensor eigenvalue complementarity problems.
Since it is not easy to find all Pareto Z-eigenvalues in practice [1, 9, 13], it is significant to
make some characterizations to the distribution of Pareto Z-eigenvalues. Inspired by the
results obtained in [14–18], we establish some Pareto Z-eigenvalues inclusion intervals,
give comparisons among these Pareto Z-eigenvalue inclusion intervals, and propose a suf-
ficient condition to identify the strict copositivity of real tensors in this paper.

The remainder of this paper is organized as follows. In Sect. 2, we recall some prelimi-
nary results and establish Pareto Z-eigenvalue inclusion intervals. Further, we give com-
parisons among these Pareto Z-eigenvalue inclusion intervals. In Sect. 3, we propose a
sufficient condition to identify the strict copositivity of tensors.

To end this section, we give some notations needed. The set of all real numbers is de-
noted by R, and the n-dimensional real Euclidean space is denoted by R

n. For any a ∈ R,
we denote [a]+ := max{0, a} and [a]– := max{0, –a}. For any x ∈ R

n, x⊗m denotes a tensor
whose entries are defined by (x⊗m)i1i2···im = xi1 xi2 · · ·xim for all i1, i2, . . . , im ∈ N . For any
A ∈R

[m,n] and x ∈R
n, we define

Axm := x�Axm–1 =
n∑

i1,i2,...,im=1

ai1i2···im xi1 xi2 · · ·xim ,

‖A‖F :=

( n∑

i1,i2,...,im=1

a2
i1i2···im

) 1
2

,

[A]+ :=
(
[ai1i2···im ]+

) ∈ R
[m,n], [A]– :=

(
[ai1i2···im ]–

) ∈R
[m,n].

For any i, j ∈ N , set

Ri(A)+ :=
n∑

i2,...,im=1

[aii2···im ]+, Ri(A)– :=
n∑

i2,...,im=1

[aii2···im ]–,

Rj
i(A)+ := Ri(A)+ – [aij···j]+, Rj

i(A)– := Ri(A)– – [aij···j]–,

Pj
i(A)+ :=

∑

i2,...,im∈N
j /∈{i2,...,im}

[aii2···im ]+, Pj
i(A)– :=

∑

i2,...,im∈N
j /∈{i2,...,im}

[aii2···im ]–.
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2 Pareto Z-eigenvalues inclusion intervals
First, we recall some results of strictly copositive tensors [19, 20], and then establish Pareto
Z-eigenvalue inclusion theorems of tensor A. Some comparisons among different Pareto
Z-eigenvalue inclusion intervals are also made in this section.

Definition 2 Tensor A ∈R
[m,n] is said to be:

(i) strictly copositive if Axm > 0 for any x ∈ R
n
+\{0};

(ii) symmetric if ai1i2···im = aiπ (1)···iπ (m) ,∀π ∈ �m, where �m is the permutation group of m
indices.

Lemma 1 ([1, Corollary 3.5]) Let A = (ai1i2···im ) ∈R
[m,n] be symmetric. Then A always has

Pareto Z-eigenvalues; A is strictly copositive if and only if all of its Pareto Z-eigenvalues
are positive.

Lemma 2 ([20, Proposition 2.1]) Let A = (ai1i2···im ) ∈R
[m,n]. If A is strictly copositive, then

ai···i > 0,∀i ∈ N .

Based on the above lemmas, we have the following conclusion.

Theorem 1 Let A ∈ R
[m,n]. Denote the set of Pareto Z-eigenvalues by σ (A) and assume

σ (A) 
= ∅. Then,

σ (A) ⊆ �(A) :=
{
λ ∈ R : max

{
–ā · n

m
2 , –

∥∥[A]–
∥∥

F

} ≤ λ ≤ min
{

ā · n
m
2 ,

∥∥[A]+
∥∥

F

}}
, (1)

where ā = maxi1,...,im∈N |ai1i2···im |.

Proof Suppose that (λ, x) is a Pareto Z-eigenpair of A. Then

λ

n∑

i=1

x2
i = Axm ≤ [A]+xm ≤ ∥∥[A]+

∥∥
F

∥∥x⊗m∥∥
F

=
∥∥[A]+

∥∥
F

( n∑

i1,i2,...,im=1

x2
i1 x2

i2 · · ·x2
im

) 1
2

=
∥∥[A]+

∥∥
F

( n∑

i=1

x2
i

) m
2

=
∥∥[A]+

∥∥
F (2)

and

–λ

n∑

i=1

x2
i = –Axm ≤ [A]–xm ≤ ∥

∥[A]–
∥
∥

F

∥
∥x⊗m∥

∥
F

=
∥
∥[A]–

∥
∥

F

( n∑

i1,i2,...,im=1

x2
i1 x2

i2 · · ·x2
im

) 1
2

=
∥
∥[A]–

∥
∥

F

( n∑

i=1

x2
i

) m
2

=
∥
∥[A]–

∥
∥

F . (3)
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Combining (2) with (3) yields

–
∥∥[A]–

∥∥
F ≤ λ ≤ ∥∥[A]+

∥∥
F . (4)

Meanwhile, from the definition of Pareto Z-eigenpair, we obtain

|λ| =
|Axm|
∑n

i=1 x2
i

≤ ā(
∑n

i=1 xi)m
∑n

i=1 x2
i

≤ ā
(√

x2
1 + x2

2 + · · · + x2
n · √1 + 1 + · · · + 1

)m

= ān
m
2 , (5)

where the second inequality holds via Cauchy–Schwartz inequality. The desired result
follows by combining (4) and (5). �

In the following, we will use some important elements of tensor to describe Pareto Z-
eigenvalues inclusion intervals.

Theorem 2 Let A ∈R
[m,n] and σ (A) 
= ∅. Then,

σ (A) ⊆ �(A) =
⋃

i∈N

�i(A) :=
{
λ ∈R : |λ| ≤ max

{
Ri(A)+, Ri(A)–

}}
.

Proof Suppose that (λ, x) is a Pareto Z-eigenpair of A. Then

λx2
i =

n∑

i2,...,im=1

aii2···im xixi2 · · ·xim . (6)

Denote xp = maxi∈N {xi}. Then, 0 < xp ≤ 1 as x�x = 1. Recalling the pth equation of (6),
we get

λx2
p =

n∑

i2,...,im=1

api2···im xpxi2 · · ·xim .

Taking the absolute value of the equation above, one has

|λ|x2
p =

∣
∣∣
∣∣

n∑

i2,...,im=1

[api2···im ]+xpxi2 · · ·xim –
n∑

i2,...,im=1

[api2···im ]–xpxi2 · · ·xim

∣
∣∣
∣∣

≤ max

{ n∑

i2,...,im=1

[api2···im ]+xpxi2 · · ·xim ,
n∑

i2,...,im=1

[api2···im ]–xpxi2 · · ·xim

}

≤ max

{ n∑

i2,...,im=1

[api2···im ]+,
n∑

i2,...,im=1

[api2···im ]–

}

x2
p. (7)

Dividing both sides by x2
p, one has

|λ| ≤ max
{

Rp(A)+, Rp(A)–
}

,

which implies λ ∈ �p(A), and hence σ (A) ⊆ �(A). �
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Theorem 3 Let A ∈R
[m,n] and σ (A) 
= ∅. Then,

σ (A) ⊆ �(A) =
⋃

i∈N

⋂

j∈N ,i
=j

�i,j(A),

where

�i,j(A) :=
{
λ ∈ R :

∣
∣λ – Rj

i(A)+
∣
∣|λ| ≤ [aij···j]+ max

{
Rj(A)+, Rj(A)–

}}

∪ {
λ ∈R :

∣
∣λ – Rj

i(A)–
∣
∣|λ| ≤ [aij···j]– max

{
Rj(A)+, Rj(A)–

}}
.

Proof Suppose that (λ, x) is a Pareto Z-eigenpair of A. Setting 0 < xp = maxi∈N {xi} and
referring to the pth equation of (6), for any q ∈ N , q 
= p, we obtain

|λ|x2
p =

∣
∣∣
∣∣

n∑

i2,...,im=1

api2···im xpxi2 · · ·xim

∣
∣∣
∣∣

=

∣
∣∣
∣∣

n∑

i2,...,im=1

[api2···im ]+xpxi2 · · ·xim –
n∑

i2,...,im=1

[api2···im ]–xpxi2 · · ·xim

∣
∣∣
∣∣

≤ max

{ n∑

i2,...,im=1

[api2···im ]+xpxi2 · · ·xim ,
n∑

i2,...,im=1

[api2···im ]–xpxi2 · · ·xim

}

≤ max

{
[apq···q]+xpxm–1

q +
∑

δqi2...im =0

[api2···im ]+xpxi2 · · ·xim ,

[apq···q]–xpxm–1
q +

∑

δqi2...im =0

[api2···im ]–xpxi2 · · ·xim

}

≤ max

{
[apq···q]+xpxq +

∑

δqi2...im =0

[api2···im ]+x2
p,

[apq···q]–xpxq +
∑

δqi2...im =0

[api2···im ]–x2
p

}

= max
{

Rq
p(A)+x2

p + [apq···q]+xpxq, Rq
p(A)–x2

p + [apq···q]–xpxq
}

,

which implies

|λ|x2
p ≤ max

{
Rq

p(A)+x2
p + [apq···q]+xpxq, Rq

p(A)–x2
p + [apq···q]–xpxq

}
. (8)

Recalling the qth equation of (6), one has

|λ|x2
q =

∣∣
∣∣
∣

n∑

i2,...,im=1

aqi2···im xqxi2 · · ·xim

∣∣
∣∣
∣

≤ max

{ n∑

i2,...,im=1

[aqi2···im ]+xqxi2 · · ·xim ,
n∑

i2,...,im=1

[aqi2···im ]–xqxi2 · · ·xim

}

≤ max

{ n∑

i2,...,im=1

[aqi2···im ]+xqxp,
n∑

i2,...,im=1

[aqi2···im ]–xqxp

}
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= max
{

Rq(A)+xpxq, Rq(A)–xpxq
}

,

which shows

|λ|x2
q ≤ max

{
Rq(A)+, Rq(A)–

}
xpxq. (9)

We now break up the argument into two cases for (8).
Case I. |λ|x2

p ≤ Rq
p(A)+x2

p + [apq···q]+xpxq. In this case, if xq > 0, multiplying (8) with (9)
and dividing x2

px2
q yields

(|λ| – Rq
p(A)+

)|λ| ≤ [apq···q]+ max
{

Rq(A)+, Rq(A)–
}

,

which implies λ ∈ �p,q(A).
Otherwise, xq = 0. From (8), it holds that

(|λ| – Rq
p(A)+

)|λ| ≤ 0 ≤ [apq···q]+ max
{

Rq(A)+, Rq(A)–
}

,

which shows that λ ∈ �p,q(A).
Case II. |λ|x2

p ≤ Rq
p(A)–x2

p + [apq···q]–xpxq. Following similar arguments as in the proof of
Case I, we obtain λ ∈ �p,q(A).

Combining Cases I and II, we obtain the desired results. �

Compared with Theorem 2, the result of Theorem 3 requires relatively many calcula-
tions but has accurate results. Detailed investigation is given in Corollary 1.

Corollary 1 For a tensor A ∈R
[m,n], it holds that

�(A) ⊆ �(A),

where �(A) and �(A) are defined in Theorems 2 and 3.

Proof For any λ ∈ �(A), there exist p, q ∈ N with p 
= q such that

(|λ| – Rq
p(A)+

)|λ| ≤ [apq···q]+ max
{

Rq(A)+, Rq(A)–
}

,

or

(|λ| – Rq
p(A)–

)|λ| ≤ [apq···q]– max
{

Rq(A)+, Rq(A)–
}

.

We now break up the argument into two cases.
Case I. (|λ| – Rq

p(A)+)|λ| ≤ [apq···q]+ max{Rq(A)+, Rq(A)–}.
If [apq···q]+ max{Rq(A)+, Rq(A)–} = 0, it holds that

|λ| ≤ Rq
p(A)+ ≤ Rp(A)+ ≤ max

{
Rp(A)+, Rp(A)–

}
,

or

|λ| = 0 ≤ max
{

Rq(A)+, Rq(A)–
}

,
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which indicates that

λ ∈ �p(A) ⊆ �(A) or λ ∈ �q(A) ⊆ �(A). (10)

Otherwise, [apq···q]+ max{Rq(A)+, Rq(A)–} > 0. Then,

|λ| – Rq
p(A)+

[apq···q]+
· |λ|

max{Rq(A)+, Rq(A)–} ≤ 1,

which implies

|λ| – Rq
p(A)+

[apq···q]+
≤ 1 or

|λ|
max{Rq(A)+, Rq(A)–} ≤ 1.

Consequently, (10) holds.
Case II. (|λ| – Rq

p(A)–)|λ| ≤ [apq···q]– max{Rq(A)+, Rq(A)–}. Following similar arguments
as in the proof of Case I, we can prove that λ ∈ �(A).

Combining Case I with Case II, we conclude that �(A) ⊆ �(A). �

To get accurate results, we divide precisely the index set of A and establish Theorem 4.

Theorem 4 Let A ∈R
[m,n] and σ (A) 
= ∅. Then,

σ (A) ⊆N (A) =
⋃

i∈N

⋂

j∈N ,j 
=i

Ni,j(A),

where Ni,j(A) = {λ ∈ R : (|λ| – max{Pj
i(A)+, Pj

i(A)–})|λ| ≤ max{Ri(A)+ – Pj
i(A)+, Ri(A)– –

Pj
i(A)–} · max{Rj(A)+, Rj(A)–}}.

Proof Suppose that (λ, x) is a Pareto Z-eigenpair of A. Setting 0 < xp = maxi∈N {xi} and
referring to the pth equation of (6), for any q ∈ N , q 
= p, one has

λx2
p =

∑

i2,...,im∈N
q∈{i2,...,im}

api2...im xpxi2 · · ·xim +
∑

i2,...,im∈N
q /∈{i2,...,im}

api2...im xpxi2 · · ·xim .

Taking the absolute value of the equation above, we obtain

|λ|x2
p ≤

∣∣
∣∣

∑

i2,...,im∈N
q∈{i2,...,im}

[api2...im ]+xpxi2 · · ·xim –
∑

i2,...,im∈N
q∈{i2,...,im}

[api2...im ]–xpxi2 · · ·xim

∣∣
∣∣

+
∣∣
∣∣

∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]+xpxi2 · · ·xim –
∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]–xpxi2 · · ·xim

∣∣
∣∣

≤ max

{ ∑

i2,...,im∈N
q∈{i2,...,im}

[api2...im ]+xpxi2 · · ·xim ,
∑

i2,...,im∈N
q∈{i2,...,im}

[api2...im ]–xpxi2 · · ·xim

}

+ max

{ ∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]+xpxi2 · · ·xim ,
∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]–xpxi2 · · ·xim

}



Yang et al. Journal of Inequalities and Applications         (2022) 2022:77 Page 8 of 13

≤ xpxq max

{ ∑

i2,...,im∈N
q∈{i2,...,im}

[api2...im ]+,
∑

i2,...,im∈N
q∈{i2,...,im}

[api2...im ]–

}

+ x2
p max

{ ∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]+,
∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]–

}
,

where the third inequality holds from 0 < xm–1
p ≤ xp ≤ 1 and 0 ≤ xq < 1. Further,

[
|λ| – max

{ ∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]+,
∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]–

}]
x2

p

≤ xpxq max

{ ∑

i2,...,im∈N
q∈{i2,...,im}

[api2...im ]+,
∑

i2,...,im∈N
q∈{i2,...,im}

[api2...im ]–

}
. (11)

In view of the qth equation of (6), we deduce

|λ|x2
q =

∣∣∣
∣

∑

i2,...,im∈N

aqi2···im xqxi2 · · ·xim

∣∣∣
∣

=
∣∣∣
∣

∑

i2,...,im∈N

[aqi2···im ]+xqxi2 · · ·xim –
∑

i2,...,im∈N

[aqi2···im ]–xqxi2 · · ·xim

∣∣∣
∣

≤ max

{ ∑

i2,...,im∈N

[aqi2···im ]+xqxi2 · · ·xim ,
∑

i2,...,im∈N

[aqi2···im ]–xqxi2 · · ·xim

}

≤ xpxq max

{ ∑

i2,...,im∈N

[aqi2···im ]+,
∑

i2,...,im∈N

[aqi2···im ]–

}
. (12)

We now break up the argument into two cases.
Case I: xq > 0. Multiplying (11) with (12) and dividing x2

px2
q, we obtain

(|λ| – max
{

Pq
p(A)+, Pq

p(A)–
})|λ| ≤ max

{
Rp(A)+ – Pq

p(A)+, Rp(A)– – Pq
p(A)–

}

× max
{

Rq(A)+, Rq(A)–
}

,

which implies λ ∈Np,q(A) ⊆N (A).
Case II: xq = 0. It follows from (11) that

|λ| ≤ max

{ ∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]+,
∑

i2,...,im∈N
q /∈{i2,...,im}

[api2...im ]–

}
,

that is,

[|λ| – max
{

Pq
p(A)+, Pq

p(A)–
}]|λ| ≤ max

{
Rp(A)+ – Pq

p(A)+, Rp(A)– – Pq
p(A)–

}

× max
{

Rq(A)+, Rq(A)–
}

,

which implies λ ∈Np,q(A) ⊆N (A). �
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In what follows, we now test the efficiency of the obtained results.

Example 1 Consider a 3rd order 3-dimensional tensor A = (aijk) defined by

aijk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a111 = 1; a112 = –1; a131 = 1; a133 = 1;

a211 = –1; a222 = 2; a232 = 1;

a311 = 1; a322 = 3; a323 = 1;

aijk = 0, otherwise.

By calculating, we have

∥∥[A]–
∥∥

F =
√

2,
∥∥[A]+

∥∥
F =

√
19, ā · n

m
2 = 9

√
3,

R1(A)+ = 3, R1(A)– = 1, R2(A)+ = 3, R2(A)– = 1,

R3(A)+ = 5, R3(A)– = 0,

R2
1(A)+ = 3, R2

1(A)– = 1, R3
1(A)+ = 2, R3

1(A)– = 1,

R1
2(A)+ = 3, R1

2(A)– = 0, R3
2(A)+ = 3, R3

2(A)– = 1,

R1
3(A)+ = 4, R1

3(A)– = 0, R2
3(A)+ = 2, R2

3(A)– = 0,

P2
1(A)+ = 3, P2

1(A)– = 0, P3
1(A)+ = 1, P3

1(A)– = 1,

P1
2(A)+ = 3, P1

2(A)– = 0, P3
2(A)+ = 2, P3

2(A)– = 1,

P1
3(A)+ = 4, P1

3(A)– = 0, P2
3(A)+ = 1, P2

3(A)– = 0.

According to Theorem 1, we obtain

�(A) = {λ ∈R : –
√

2 ≤ λ ≤ √
19}.

Referring to Theorem 2, we deduce

�(A) =
⋃

i∈N

�i(A) =
{
λ ∈R : |λ| ≤ 5

}
.

Recalling Theorem 3, one has

�(A) =
⋃

i∈N

⋂

j∈N ,i
=j

�i,j(A) =
{
λ ∈ R : |λ| ≤ 1 +

√
10

}
,

where
�1,2(A) = {λ ∈R : |λ| ≤ 3} �1,3(A) = {λ ∈R : |λ| ≤ 1 +

√
6}

�2,1(A) = {λ ∈R : |λ| ≤ 3} �2,3(A) = {λ ∈R : |λ| ≤ 3}
�3,1(A) = {λ ∈R : |λ| ≤ 2 +

√
7} �3,2(A) = {λ ∈R : |λ| ≤ 1 +

√
10}.

It follows from Theorem 4 that

N (A) =
⋃

i∈N

⋂

j∈N ,i
=j

Ni,j(A) =
{
λ ∈R : |λ| ≤ 1 +

√
41

2

}
,
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where
N1,2(A) = {λ ∈R : |λ| ≤ 3+

√
21

2 } N1,3(A) = {λ ∈ R : |λ| ≤ 1+
√

41
2

N2,1(A) = {λ ∈R : |λ| ≤ 3+
√

21
2 } N2,3(A) = {λ ∈ R : |λ| ≤ 1 +

√
6

N3,1(A) = {λ ∈R : |λ| ≤ 2 +
√

7} N3,2(A) = {λ ∈ R : |λ| ≤ 3}.

3 Judging strict copositivity of tensors
In this section, we mainly propose a sufficient condition for judging strict copositivity ofA.

Theorem 5 Let A = (ai1i2···im ) ∈ R
[m,n] be symmetric with ai···i > 0 for i ∈ N . Then A is

strictly copositive provided that

ai···i
(

1√
n

)m–2

– Ri(A)– > 0. (13)

Proof Suppose that (λ, x) is a Pareto Z-eigenpair of A. Setting 0 < xp = maxi∈N {xi} and
referring to the pth equation of (6), we obtain

λx2
p =

n∑

i2,...,im=1

api2···im xpxi2 · · ·xim

= ap···pxm
p +

∑

δpi2 ···im =0

[api2···im ]+xpxi2 · · ·xim –
∑

δpi2 ···im =0

[api2···im ]–xpxi2 · · ·xim .

Further,

λx2
p ≥ ap···pxm

p –
∑

δpi2 ···im =0

[api2···im ]–xpxi2 · · ·xim

≥ ap···pxm
p –

∑

δpi2 ···im =0

[api2···im ]–x2
p.

Dividing both sides by x2
p, we have

λ ≥ ap···pxm–2
p –

∑

δpi2 ···im =0

[api2···im ]– = ap···pxm–2
p – Rp(A)–. (14)

Since xp = maxi∈N {xi} and x�x = 1, we deduce xp ≥ 1√
n . It follows from ai···i > 0 and (14)

that

λ ≥ ap···p
(

1√
n

)m–2

–
∑

δpi2 ···im =0

[api2···im ]– = ap···p
(

1√
n

)m–2

– Rp(A)–. (15)

Combining (13) with (15), we have λ > 0 and A is strictly copositive. �

From the conclusion, identifying the strict copositivity of tensor A requires that it is
symmetric. For general tensors, symmetry is a relatively strict condition. To tackle this
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problem, we may symmetrize the tensors A = (ai1i2···im ) ∈R
[m,n] as follows:

ãi1i2···im =

⎧
⎨

⎩
ai1i2···im if i1 = i2 = · · · = im,
1

m!
∑

i2···im∈�m ai1i2···im otherwise,

where Ã = (̃ai1i2···im ) ∈R
[m,n] is the symmetrization tensor under permutation group �m.

The following example shows that the result given in Theorem 5 can verify the strict
copositivity of tensors.

Example 2 Consider a 3rd order 2-dimensional tensor A = (aijk) defined by

aijk =

⎧
⎨

⎩
a111 = 4; a112 = –1; a121 = –1; a122 = 0;

a222 = 2; a211 = –1; a212 = 0; a221 = 0.

It is easy to see that A is symmetric with

R1(A)– = 2, R2(A)– = 1.

According to Theorem 5, we have

a111

(
1√
2

)3–2

– R1(A)– = 2(
√

2 – 1) > 0,

a222

(
1√
2

)3–2

– R2(A)– =
√

2 – 1 > 0,

which means that A is strictly copositive.
When A is asymmetric, we still identify the strict copositivity by Theorem 5.

Example 3 Consider a 3rd order 2-dimensional tensor A = (aijk) defined by

aijk =

⎧
⎨

⎩
a111 = 4; a112 = –1; a121 = –2; a122 = 0;

a222 = 2; a211 = –1; a212 = 0; a221 = 0.

Since a112 = –1, a121 = –2, and a211 = –1, we know that A is asymmetric. Therefore, we
cannot directly use Theorem 5 to judge whether A is strictly copositive. Symmetrizing A,
we obtain Ã with

ãijk =

⎧
⎨

⎩
ã111 = 4; ã112 = – 4

3 ; ã121 = – 4
3 ; ã122 = 0;

ã222 = 2; ã211 = – 4
3 ; ã212 = 0; ã221 = 0.

It is easy to see that Ã is symmetric with

R1(Ã)– =
8
3

, R2(Ã)– =
4
3

.
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According to Theorem 5, we have

a111

(
1√
2

)3–2

– R1(Ã)– =
6
√

2 – 8
3

> 0,

a222

(
1√
2

)3–2

– R2(Ã)– =
3
√

2 – 4
3

> 0,

which implies that Ã is strictly copositive. Taking into account that Ax3 = Ãx3 > 0, we
deduce that A is strictly copositive.

4 Conclusion
In this paper, we proposed sharp Pareto Z-eigenvalue inclusion intervals and established
comparisons among different Pareto Z-eigenvalue inclusion intervals for tensor eigen-
value complementarity problems. Meanwhile, we gave a sufficient condition to check strict
copositivity of real tensors. Further studies can be considered to develop some algorithms
by Pareto Z-eigenvalue inclusion intervals for tensor eigenvalue complementarity prob-
lems, as done in [5] for solving the matrix eigenvalue complementarity problems.

Acknowledgements
The authors would like to thank anonymous referees and editors for their helpful comments and suggestions, which
greatly improved the quality of this paper.

Funding
This research is supported by the Natural Science Foundation of Shandong Province (ZR2020MA025, ZR2019PA016) and
the National Natural Science Foundation of China (12071250, 11901343).

Availability of data and materials
Data sharing not applicable to this article as no data were generated or analyzed during the current study.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PY: original draft writing, review writing, and editing. YJW: conceptualization, supervision, and funding acquisition. GW:
computation and review writing. QLH: computation and review writing. All authors read and approved the final
manuscript.

Author details
1School of Management Science, Qufu Normal University, 276826, Rizhao, Shandong, P.R. China. 2Institute of Operations
Research, Qufu Normal University, 276826, Rizhao, Shandong, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 March 2022 Accepted: 24 May 2022

References
1. Song, Y.S., Qi, L.Q.: Eigenvalue analysis of constrained minimization problem for homogeneous polynomial. J. Glob.

Optim. 64, 563–575 (2016)
2. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear

Algebra Appl. 292, 1–14 (1999)
3. Adly, S., Rammal, H.: A new method for solving Pareto eigenvalue complementarity problems. Comput. Optim. Appl.

55, 703–731 (2013)
4. Judice, J., Sherali, H., Ribeiro, I.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139–156 (2007)
5. Fernandes, L., Judice, J., Sherali, H., Fukushima, M.: On the computation of all eigenvalues for the eigenvalue

complementarity problem. J. Glob. Optim. 59, 307–326 (2014)



Yang et al. Journal of Inequalities and Applications         (2022) 2022:77 Page 13 of 13

6. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: CAMSAP’05: Proceedings of the IEEE
International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta,
pp. 129–132 (2005)

7. Qi, L.Q.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)
8. Qi, L.Q., Luo, Z.Y.: Tensor Analysis: Spectral Properties and Special Tensors. SIAM, Philadelphia (2017)
9. Zeng, M.L.: Tensor Z-eigenvalue complementarity problems. Comput. Optim. Appl. 78, 559–573 (2021)
10. Fan, J.Y., Nie, J.W., Zhou, A.W.: Tensor eigenvalue complementarity problems. Math. Program. 170(2), 507–539 (2018)
11. Ling, C., He, H.J., Qi, L.Q.: On the cone eigenvalue complementarity problem for higher-order tensors. Comput. Optim.

Appl. 63, 143–168 (2016)
12. Song, Y.S., Qi, L.Q.: Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J.

Matrix Anal. Appl. 34, 1581–1595 (2013)
13. Wang, K.N., Cao, J.D., Pei, H.M.: Robust extreme learning machine in the presence of outliers by iterative reweighted

algorithm. Appl. Math. Comput. 377, 125–186 (2020)
14. Sang, C.L.: A new Brauer-type Z-eigenvalue inclusion set for tensors. Numer. Algorithms 32, 781–794 (2019)
15. Wang, G., Zhou, G.L., Caccetta, L.: Z-eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst., Ser. B 22(1),

87–198 (2017)
16. Wang, Y.N., Wang, G.: Two S-type Z-eigenvalue inclusion sets for tensors. J. Inequal. Appl. 2017, Article ID 152 (2017)
17. Wang, G., Wang, Y.N., Zhang, Y.: Brauer-type upper bounds for Z-spectral radius of weakly symmetric nonnegative

tensors. J. Math. Inequal. 13(4), 1105–1116 (2019)
18. Zhao, J.X.: A new Z-eigenvalue localization set for tensors. J. Inequal. Appl. 2017, Article ID 85 (2017)
19. Che, M.L., Qi, L.Q., Wei, Y.M.: Positive definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl.

168, 475–487 (2016)
20. Song, Y.S., Qi, L.Q.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169,

1069–1078 (2016)


	Pareto Z-eigenvalue inclusion theorems for tensor eigenvalue complementarity problems
	Abstract
	MSC
	Keywords

	Introduction
	Pareto Z-eigenvalues inclusion intervals
	Judging strict copositivity of tensors
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


