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1 Introduction

Fractional differential equations (FDEs) and fractional differential inclusions (FDIs) in the
context of a more general field of mathematics, entitled fractional calculus, have attracted
the attention of scientific community in recent decades. The scientists and researchers
have applied a diversity of new mathematical tools and methods for studying FDEs and
EDIs. Some significant books in this field were published in the early years, in which the
basic concepts of this field were defined and introduced well for everyone. Some instances
are the books of Podlubny [1], Miller et al. [2], Deimling [3], Aubin et al. [4], and Kilbas et
al. [5].

The conducted research in different scientific fields can be found in some areas like
biomathematics, biophysics, mechanics, biology, control theory, engineering, economics,
morphology, rheology, etc. [6, 7]. In the investigation of solutions of different FDEs and
FDIs, we can find many valuable scientific articles in which the existence, uniqueness,
attractivity and stability, positivity and multiplicity, approximation, and other analyti-
cal properties of solutions are studied in the framework of different nonlinear fractional
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boundary value problems (FBVPs). A large number of mathematicians have constructive
contributions in this regard, and in all of them, a trace of fixed point theory and the rele-
vant techniques is observed. Some of their published works can be found in [8-16].
Fractional hybrid differential inclusions (FHDIs) and fractional hybrid differential equa-
tions (FHDES) of the first and second types are the generalizations of standard FDIs and
FDEs which were introduced by Dhage et al. [17] in 2010 and also by Zhao et al. [18]
in 2011. Immediately, these hybrid FBVPs found their place in various computations and
mathematical modelings so that we highlight some of the strong works in this regard by
naming the papers from Baleanu et al. [19], Nagajothi et al. [20], Matar et al. [21], Khan
et al. [22], Mohammadi et al. [23], etc. Along with these, an extended type of boundary
conditions (BCs) entitled multi-point and multi-strip conditions were introduced in some
models. In these FBVPs equipped with such generalized conditions, the sum of respective
multi-strip multi-point values is proportional to the value of unknown function and its
derivatives in some points. Examples of these BCs and FBVPs can be seen in some newly-
published works. In [24], Alam et al. investigated the Caputo multi-point strip FDE with

the help of the Laplace transform and Bielecki norm, given as

u@(t) + Diu(t) = h(t, u(t)),
Zf;?) 8]“(61) = U(O), Ig¢(b’ u(b)) = Ll(l),

where g €(1,2),0 >1,be(0,1],¢,,0, > 0,and t € [0,1]. In [25], Ahmad et al. generalized
a category of FBVPs equipped with the boundary conditions of the multi-point multi-strip
non-separated type given by

cDiu(t) = At u(t), “Dhu(t)),
YIS esu(o) + X e fi u(s)ds = hu(0) + bu(1),

SN o (o)) + X000 ok fyy w(s)ds = w/(0) + L (1),

where g € (1,2], p€ (0,1), 0 <0, <bx<d, <1, &,,€,P;,0k b1, 02,13, 1ls > 0. We see other
similar examples in articles by Lv et al. [26], by Salem et al. [27], by Ahmad et al. [28], etc.

Inspired by the above ideas and by [29], in this paper, we investigate the existence of solu-
tions of non-hybrid single-valued FBVP with integro-non-hybrid-multiterm-multipoint-

multistrip boundary conditions:

cDgu(t) = h(t: u(t)) (q € (2’ 3]: tel:= [0) 1])¢
u(B)l¢=0 =0, wW(t)|¢=0 =0, (1.1)
S uls)ds = Yy acu(®lcs, + X0y bt [ () ds + X, gl u(®)lcy,

where for j = 1,2,...,k, 6; > 0, ay,a5,...,a,,b1,by,...,b,_1,c1,¢2,..., ¢k € R are constants
and0<8; <G < - < <m<m=<---<my<n <m=<---<m<LAlso,h:IxR—
R is continuous and °D{ and Igl,...,lgk denote the fractional operators of Caputo and
Riemann-Liouville types.

As a second problem, by applying some notions of functional analysis, we study the
existence of solutions for a fully hybrid integro-multi-valued FBVP with integro-hybrid-
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multiterm-multipoint-multistrip boundary conditions given by

DY) € G u(v), [y u(s)ds) (g€ (2,3],tel:=[0,1]),
(rtacey )|f0 0 Gy )|to—0
fO u(s )d5 Ze 1 K( tu(t )|t 8

+ X bia mi_ 1(ysu1:s )d5+Z, IC]I ,&)t)))|t=n,,

(1.2)

where y: I x R — R\ {0} is continuous and G : I x R? — P(R) is a multi-valued map with
some specific properties.

The main contribution of this work is that we combine some well-known fractional
structures in the framework of two generalized FBVPs. In fact, a combination of the non-
hybrid equations, fully hybrid equations, integro-differentials, multistrip conditions in
multipoint positions, and a generalized inclusion is investigated in the supposed FBVPs
(1.1) and (1.2) in this manuscript. Regarding the first novelty of this work, to establish re-
sults in relation to the existence criteria for this new abstract model, some pure methods
arising in functional analysis will help us in this direction. In other words, with the help of
some properties of the Kuratowski measure and by defining the condensing selfmaps on
a convex and closed set, we prove our first result by Sadovskii’s theorem on FBVP (1.1).
We even have tried to derive the required conditions confirming the dependence of solu-
tions via the generalized inequality of Gronwall type. The second novelty of this study is
to apply the inclusion type of Dhage’s method for generalized fully hybrid integro-multi-
valued FBVP with the integro-hybrid-multiterm-multipoint-multistrip boundary condi-
tions (1.2).

We organize the paper as follows: some preliminaries in relation to our methods and
techniques are recollected in Sect. 2. We consider a non-hybrid single-valued FBVP (1.1)
in Sect. 3, and with the help of Sadovskii’s fixed point, we prove our result, and by ap-
plying the generalized inequality of Gronwall type, the dependence of solutions is inves-
tigated. Also, the Krasnoselskii—Zabreiko criterion gives another existence result for the
non-hybrid single-valued case. The stability property in some versions is proved in Sect. 4.
For the fully hybrid-multi-valued FBVP (1.2), some results are established in Sect. 5 via
Dhage’s method. Section 6 is devoted to preparing some examples in the direction of our
results. We end our study in Sect. 7 by giving conclusions.

2 Basic preliminaries
In this section, we recall some basic notions which are used in the next sections of the
paper. Let g > 0. The fractional Riemann-Liouville integral (RL-integral) for a real-valued

function u on [0, 00) is defined by

t -1
Ifu(t) = /0 %u(ﬁ) ds,

such that the integral exists [1, 5]. Further, let #—1 < g < n. The fractional Caputo derivative
(C-derivative) of u € C"([a, b],R) is defined by

t (¢ _ &\n—gq-1
“Diu(t) = /0 %M(s)ds,
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so that the integral exists [1, 5]. In [2], it was proved that the solution of *Du(t) = 0 is

u(t) =0p + oart+ 052’[2 4ot an_ltn—l and

n-1
I3 (“Dfu(t)) = u(t) + Z ot =ul) +ag ot + ot + -+
k=0

where «y,...,a,.1 € Rand n=[q] + 1.

Let (W, || - Ily) be a normed space. u € ) is a fixed point of the set-valued map G: Y —
P(Y) if u € G(u), where P()) is the set of all nonempty subsets of ) [3]. The Pompeiu—
Hausdorff metric Hyy, : P(Y) x P(Y) - RU {00} is defined by

Hay, (Uy, Us) =max{ sup dy(uy, Uy), sup dy(Ul,uz)},

ujell ugrelly

where dy (U1, u2) = infy, ey dy (w1, u2) and dy (wy, Uz) = infy,err, dy (u1,u2) [3].
All selections of the multi-function G at u € C([0, 1], R) are denoted by

Sgu = {% € El([O, 1],R) :x(t) € g(t,u(t))}
for almost all t € [0,1] [3, 4]. Also, Sg,, # ¥ if dim Y < oo [3].

Theorem 2.1 ([30]) Let) bea separable Banach space, G : [0,1] x Y — Py ()) bean Lr-
Carathéodory, and F : £1([0,1], ) — C([0,1],)) be a continuous linear mapping. Then
FoSg:C([0,1],)) = Ppev(C([0,1], Y)) via the action uw > (F o Sg)(u) = F(Sg,u) has a
closed graph. Here, P, () is all compact convex subsets.

Theorem 2.2 ([31]) Let Y be a Banach algebra and F,:Y — Y and F5: Y — Py, (V)
be such that
(i) Fi is Lipschitz with the constant L* > 0,

(i) F3 is upper semi-continuous and compact,

(iii) 2L*V < 1 such that V = || F)|.
Then either

(a) there is a solution for u € (Fiu)(Fau); or

(b) O ={u* € Y|eu* € (Fru*)(Fu*),c > 1} is unbounded.

The Kuratowski measure of noncompactness (denoted by w(W)) is defined by

n
w(W) = inf{a >0: W= U Wy and diam(Wj) < e for k € N7 ¢,
k=1

where diam(Wy) = sup{ju — v'| : u,u’ € Wi} and W is bounded in Y, and 0 < w(W) <
diam(W) < +o00 [32].

Lemma 2.3 ([32]) Consider Y as a Banach space and W, W1, Wo C Y as three bounded
subsets belonging to Y. Then

(1) W is precompact if and only if o(W) = 0;
Also, for each a e R,
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(2) if W1 © Wa, then o(W1) < o(W2);
(3) wl@a+ W) <w(W);

4) w@W) = |alo(W);

(5) o(W1 + W3) < o(W1) + o(W2);

(6) w(W1 U W3) <max{w(W1), o(W2)}.

In the following lemmas, we consider ) as a Banach space.

Lemma 2.4 ([32]) For every bounded set W C ), there is a countable set Wy C W with
(W) < 20(Wp).

Lemma 2.5 ([32]) For a bounded and equi-continuous set W < C([a,b],)), o(W (1)) is
continuous on [a,b] and o(W) = sup(, , (W (1)).

Lemma 2.6 ([32]) If W = {u,},>1 € C([a,b],)) is countable bounded, then w(W (%)) is
Lebesgue integrable on [a, b], and

w({/(;tu,,(s)ds}Pl) < ZAtw({un(s)}nzl) ds.

Definition 2.7 ([32]) Leth:DD C Y — )Y be bounded and continuous. Then b is condens-
ing if w(h(W)) < o(W) for each bounded closed set W C D.

We recall Sadovskii’s fixed point theorem by assuming the same hypothesis on ) given
above.

Theorem 2.8 ([32]) Let W C Y be bounded, convex, closed and by : W — W be condensing.
Then there isu € W such that hu = u.

Theorem 2.9 ([33]) Consider ¢ as a nonnegative locally integrable map on [0,T < 00]
and  as a nondecreasing nonnegative continuous map on [0, T| along with y(t) < M so
that M is assumed to be a nonzero constant. In addition, let it > 0 be locally integrable on
[0, T with

t
(0 < (0 + Y (0 /0 (t- )" ii(s) ds,

so that g > 0. Then

¢ oo
i <00+ [ Z[%(f—swwa)}@ (te 0, 77).
J=1

Note that the above inequality is known as the generalized Gronwall inequality.

Theorem 2.10 ([34], Krasnoselskii—Zabreiko) Let K be completely continuous on ). If
there is a bounded linear function I on Y so that 1 is not its eigenvalue and

[K(uw) - L)
flu =00 lull o

then there is u* € Y such that Ku* = u*.
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3 Results for non-hybrid FBVP (1.1)

In this section, a non-hybrid version of the given FBVP, defined by (1.1), is studied. In
other words, in the first step, we aim to investigate the existence of solution for the
given non-hybrid single-valued FBVP with integro-non-hybrid-multiterm-multipoint-
multistrip boundary conditions (1.1).

Lemma 3.1 Let, for j=1,2,...,k, 6; > 0, ay,ay,...,a,,b1,b,...,bp_1,¢1,¢2,...,cc €R be
constants and 0< 8, <8y <--- <8, <m <my <-- - <my<m <N <---<m<landfe
C(L,R). Then u* satisfies the linear non-hybrid FBVP with integro-multiterm-multipoint-
multistrip boundary conditions:

“Diu(t) = f(t), ge(23],
u(t)|t 0= u,(t)|f 0= (3'1)
Jo uls)ds = z@ Lagu(t)] s, +Z, 2bis [ u(s)ds + 3, Gl u(d)l e,

which is given by

1 t t2 1 1 s
- _ &)1 = _ 7)1
) /(; (t—5)Tf(s)ds + " (F(q) /0 /(; (s—1)T f(r)dr ds

1 1
r( )/ (8¢~ )" f(s)ds ~ Zr( )/m”/ (5 - 1) () dr ds

k
ZFW 7 / (- 9)" f(s)ds> (Ve (32)

where [ is a constant given as follows:

k
b (m® —md ) 2¢; 0+2
—_Z 52 4 i1\ i-1 J 1 0. 3.3
+Zw ) 3 +ZF(9 5 7 (3.3)

i=2

Proof Let the function u* be a solution of the linear non-hybrid FDE (3.1). Then
(‘DEu*) (1) = §(1). (3.4)
By applying I{ on both sides of the non-hybrid differential equation (3.4), we get
1 t
ut(t) = — / (t—5)71(s) ds + ap + ay t + atpt? (3.5)
I'(q) Jo

for some o, 1,00 € R.
In the first step, the first given initial condition u*(t)|¢-o = 0 yields &g = 0. So

ur(t) = TG )/ (t—5)1"15(s) ds + a1t + ar 2.

Further, since

( ) (t) / (t 5)q Zf(ﬁ)dﬁ +0o; + 20[2t,
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thus the second given condition (u*)'(t)|{-o = 0 gives &1 = 0 immediately. In consequence,

ut(4) = P )/ (t—5)1"15(s) ds + o t®. (3.6)

On the other hand, we have

fol u*(s)ds / f s — 1)1 (1) drcb5+ 3%

andforj=1,...,k,

(Ig/u*) (’[) _ 2+6;

)

t
/ (t— )71 f(s) ds + s

F(q+91) 0 F(3+91)

andfori=2,...,p,

m; ; ZL m; 5 o <m3_m3>
/rni_lu(s)ds F(Q)/m,-_l/o (s —t)T f(r)dr ds + — )

By considering the nonzero constant p defined in (3.3) and by the third boundary condi-

tion, we obtain the following coefficient:

1
a2:;<r(q)/ / (s —7)7f(r)dr ds - Z / (80— 5)7f(s) ds
r i
/ / (s — )7 (r)dr ds — Z F(q+9)/ (771'—5)‘“9/'_1f(5) dg).

By substituting the above value «; in (3.6), we have

1 t t2 1 1 s
- _&)a-1 R _ )1 d
) /0 (t—95)Tf(s)ds + " (F(q) /o /0 (s — 1) f(r)dr ds

F()/ (8 — )" 1f(s) ds - Z fm/(s—ﬂq 1f(z) dr ds

k .

i kK +6j—-1
Yt -9 ) ds ) (e
;r(qwj)/o e ) )

=g
*

Thus we see that 11 satisfies (3.2) and it is the solution of the mentioned integral equation,

and so the proof is completed. g

Before starting our theorems, we introduce the Banach space ) = {u(t) : u(t) € C(I, R)}
under the norm ||u||y = sup, .y |u(t)|.

The Kuratowski measure of noncompactness will help us to continue our research on
the non-hybrid FBVP (1.1).

Page 7 of 35
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Theorem 3.2 Let ) be a continuous function with the real values defined on 1 x ). More-
over, assume that there is a continuous function o : 1 — R* such that an inequality

b(tu®)| <o) (3.7)
holds for any t € 1 and u € Y. Furthermore, assume that there is a function ny : 1 — R*
such that

w(h(t, W)) < ny(H(W) (3.8)

for each bounded set W C Y. Then the non-hybrid FBVP with integro-non-hybrid-
multiterm-multipoint-multistrip conditions (1.1) has at least one solution on I if

~ 1
npW < 7 (3.9)
where
r p 1 1
\’I\I _ 1 n i 1 n Z 6l55z n Z l 1(qu+ - Wl?_+1
Flg+1)  [ul\T(g+2) “ZTg+1) = [(g+2)
k 7+6;
C]‘T]j

+ —, 3.10
; I'(g+6+ 1)) ( )

and ny = sup |ny(4)].

Proof In relation to the non-hybrid-FBVP with integro-non-hybrid-multiterm-
multipoint-multistrip boundary conditions (1.1), by Lemma 3.1, we define 3 : B, > B,
by

~ 1 t . t2 1 1 s .
‘B(u)(i)—ﬁq)/o (t—s)1 h(s,u(s))d5+;(@/0 /0 (s—1)7'h(7,u(r))dr ds
F( )/ (8¢ —8)7'h(s,u(s)) ds

p .
_ bi—l m;j 5 ~ .
2 T'(q) /mi_I/O (s —7)"'h(r,u(r))dr ds

k i
+0/'—1
;qu / (n; - 5)° h(s,u(s))ds) (Vtel), (3.11)

where B, :={ue): lully <eeeR*}

To hold Theorem 2.8, we prove the continuity of 3 on B,. Let {uydn=1 C B, such that
u, — u for all u € B,. For the sake of the continuity of the function h on I x ), we ob-
tain lim,, o0 h(t, u,(t)) = h(t, u(t)). By the dominated convergence theorem attributed to
Lebesgue, it gives

Jim (Bu,)() = = f (t- 9" lim b(s,u,(5)) ds
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el 1 [ -1
;(@/0 [eermtmstenonie

1_( )/ (8p — )77t lim b(s u,(s)) ds

F(q)/ / 5 — tqlllmhru,,( ))drdﬁ
k ,
G K +0-1 1;
- —— (-97 1 U, (s)) ds
FZIF(q+9}-)/O U VanOlOb(g u (5)) )
1 t
= — _g)1
e )/ (t-5)7""p(s,u(s)) ds

( [ [y ras

ay g-1
ZF(LI)./O (8, — )0 (s, u(s)) ds

1
F(q ~/m,1[ (s - 1) 'h(v,u(r)) dr ds

) nj
- Z #}w/) fo (ny - )7 (5, u(s)) ds)
j=1

= (Pu)().

Hence, we get lim,,_, o (Pu,,)(t) = (Pu)(t). Now, consider the member u € B,. By (3.7), we

estimate

1 t
- _ &)1
Bt < F(q)/o (t—5)7"b(s,u(s))| ds

ﬁ L e _ 7)1
+ M(F(q)/o /(; (s—1) ’b(r,u(r))‘drds
r 5

ag ¢ -1
*ZW) [ 6c=9)" [h(su(e) | ds

1
F(q fmllf 5—1)1" ’bru(r)|drd§

. nj
+ Izzlj ﬁ /(; (771' _5)q+9j*1 ’b(ﬁ,u(s))‘ ds)

t oty [ 1 [ [° 1
RELAhce I _ d
= Tlg+ 1)9({“ n (F(q)/o fo oot drds

X5 h Yo S)qld“zr@/m,l/(s o drds
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k

_9 K . _ g)at9-1
+Z=1:F(q+9j)/(; (= o™ ds)

.o e 1
< +—
Fg+1)  n\TI(g+2)
r q+1 q+1

a,8] L bi(m] —m]_] a ,q+91
-F;F(q+1)+,Z C(g+2) +ZFq+0+1

i=2 j=1

=Wo*,

where W is introduced in (3.10). In consequence, the above estimate becomes ||Pu|ly <
‘i’g* < 00. Thus m(@) is uniformly bounded. Let t;,t; e Twith t; <t; andu e B,. Then,
by assuming sup ,,)c1.ss, Dt W) = b. >0, it gives

t1
|(Pu)(t2) - (Bu)(t)] < %q) /0 [t =) = (& — )] (s, u(s)) | ds

1 [- )
+ ?q) \ ({2 — 5)q |b(§, u(ﬁ))| CLG

(t2 tz( // )7 h(7,u(r))|dr ds

+iﬂfae(a —5)1 7 |p(5,u(s))| ds
T Jo ‘ ,

1
F(q) /r‘n, 1/ 5—1)1" |f) T, u(t))|drd5

. nj
+ Z F(qci ej) ‘/0 (771' _5)q+0/—1h(5’u(5)) dﬁ)

[(ta—t)?+2(] - t])]

0‘21

=<

(g D

+
w ['(g+2

ug(SZ
Fg+1)

) "4

q+1 g+1

-
=1
z zl(m -—m;_, a 7*91'
+ = 4 — 0,
Z I'(g+2) ]ZFq+o9 +1)

i=

as t, tends to t, (independent of u € B, ). Hence 8 is equi-continuous. It follows that 3 is
completely continuous by the Arzela—Ascoli theorem, and it is compact on B,.

We show that 3 is condensing on B,. Lemma 2.4 gives this fact that there is a countable
set Wy = {u,},>1 C W for each bounded set W C B, such that w(P(W)) < 20(P(W)).
Hence, by Lemmas 2.3, 2.5, and 2.6, we get the following inequalities:

w(‘l‘(W(t))) = 20)(%({%}@1))

< | (=9 o(b(s, (1)) 1)) ds
“I'(g Jo Pz

Page 10 of 35
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262
— 1)1y
L2 <F(q) / / (s - O w(H(z, fun()},,)) de ds

P [ 5ol [ @),,) ds

—~ T Jo
" [omretbt i), e
k
+ ]:Zl A 5) ™ o (b(s, {uals)},,)) ds)

IA

t)q_lnh(r)a)({un(t)}nzl) drds

Fi/ (o ({un(9)},.,) ds

+;% A (5@— )1 lnh(s)a)({u,,(g)}nzl)dg

p bl— m; s B
ZZTqI)/mH/O (s—1)7 1nh(r)a)({un(r)}nzl)dfd5

k

, nj
+ ]:Zl #iﬂ,) /0 (n; - 5)q+9f1nh(s)a)({u,,(s)}nzl) d5>

4n (W) 1 4ny 1
- - d
I'(g) /(;(t o der = (F(q)/f(s Ty drds
_ &)1 _ \q-1
r()/ (8, —5) d5+ZF(q)/m11/(5 7)7 1 dr ds
k .
i Voo +0-1

4n}§w(W) 4n;w(W) 1
+
(g+1) W (g +2)

IA

IA

r g+1 gq+1

ae8! P 1m —m J 7

04 l i-1 J

+ E + E + E

Z=11(q+1) =y I'(g+2) pa I q+9+1>

Hence,
o(PW)) < 4n; Go(W),

where U is defined in (3.10). Accordingly, by (3.9), we get w(P(W)) < w(W). So B is a con-
densing map on B,. By Theorem 2.8, I3 has at least one fixed point in 9B, and accordingly,
there is a solution for the given non-hybrid single-valued-FBVP with integro-non-hybrid-

multiterm-multipoint-multistrip boundary conditions (1.1). d
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In the present step, we aim to investigate the dependence of solutions for the non-hybrid
single-valued FBVP with integro-non-hybrid-multiterm-multipoint-multistrip boundary
conditions (1.1). Indeed, this part of the paper states that the solution of the non-hybrid
single-valued FBVP (1.1) depends on some parameters so that the nonlinear map § sat-
isfies Theorem 3.2, which ensures the existence of solutions, and the continuous depen-
dence of solutions on the coefficients and orders gives the stability in relation to the solu-
tions of (1.1). We act on the solutions of the non-hybrid single-valued FBVP with integro-
non-hybrid-multiterm-multipoint-multistrip boundary conditions (1.1) by changing the
order of the non-hybrid single-valued FBVP (1.1) to a small value. The generalized Gron-

wall inequality will be useful for our purpose.

Theorem 3.3 Let g > 0 such that 2 < q — o < g < 3. Moreover, assume that h:1x Y — Y

is continuous and there is 8 > 0 so that
b(tu®) - b(LwW'(®)| < Blu®) - w'(H)] (3.12)

for all w,u' €)Y and t € 1. Moreover, let u be the solution of the non-hybrid single-
valued FBVP with integro-non-hybrid-multiterm-multipoint-multistrip boundary condi-
tions (1.1) and v be the solution of

DY o(t) = h(t (b)),
0(8)]¢=0 =0, v’ ()]0 =0, (3.13)
fo s)ds = Ze 1“(“(" l¢=s, + Z, 2 bis d5+2 Cll U(’t | ¢= nj-

Then the following inequality is valid:

)(

‘FZJ 17( q T((g—a)+1)

lu-olly < ) (3.14)
/3/
1-B-BY. 7\ fog-arD
provided that B+ B} m <1, where
4 e ‘
= su
B vy R vy
+ sup Ilhll‘ ’
tel M( Fg+2) T(q- a+2)
r q r q-o
ﬂg5( 6{(5@
+ 116l - (3.15)
;F(q+1) ;F(q—a+1)
30 Bl =y —Z bt =~
Py [(g+2) F(g-a+2)
k q+91 k q-o+0;

)

In/ Jn}
+ ol ]X; F(g+6+1) ,21: F(g—c+6+1)
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and
B 1 1 i a8
T u INg-—oa+2) = (g-—a+1)
L4 g-a+l qfot+1 k q-a+6;
l l(m C
3.16
+ZZ: I'(g- Ol+2 +]2:Fq a+9+1)'>'3 (3.16)

and [[blly = supi; [b(t u(®))].

Proof Prior to proceeding to derive inequality (3.14), we know that the existence of solu-
tion for two non-hybrid single-valued-FBVPs (1.1) and (3.13) is guaranteed by the same
proof done above, and so the solutions of these two non-hybrid-single-valued-FBVPs are
obtained by (3.2) and

o(t) =

t
/ (t-5)"""h(s,0(s)) ds

F(q—ot) 0

tz ! 1 ’ —a-1
+;(F(‘1—<¥)/o /O(S_T)q h(z,0(r))drds

r

-2 e /5e (6 —9)7*"'h(s,0(s)) ds
=1 I'(g-a) Jo

Z

q-a-1
F(q a) m”/ (s =)™ h(r, v(r)) dr ds

— Z [‘(q = 9) / q—a+9; 1[](5 U(S)) ) (Vtel), (3.17)

respectively. Then, the following estimate for 1 — v is calculated as follows:

< ti(t—s)11  (t—sg)7o!

lu(t) —v(t)| < /0 ( (g  T(g-a) )f)( ,u(s))dg‘
t(t—g)11

"o ﬁ!h(s,u(s))—h(s,n(g))\dg

(s —7)rot
( ( r(q)  T(g-a) )h(fxu(f))drds‘

*(s—1)r!
+/o 0 Wih(f’“(f))—’J(T,U(f))ldrds

8¢ 8y —g)a-1 S, — g)a-a-1
) /0 <az( 1{(;) _az(rz(qf)a) )h( ,u(s))ds‘
=1

—a—1

[0 a8y —5)?
' ;/o WW(S'U(E)) ~b(s,0(s))| ds

i 1(5 - r)q Db -yt
/m/( T Tg-a) )h(”“(ﬂ)drds‘
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r m; 5 bi— _ \g-a-1
+Z /0 &W(t,u(r))—h(r,n(r))|drd§

I'g—-oa)

k nj Cj(’?j - 5)q+9,'—1 C/’(ﬂj _ 5)q—a+0/—1
Z,/o ( I'(q +6) - T(g-a+0) )h(ﬁ,u(s))dg
-5 q D(+0‘—1

) g
Z/ %—a+e)|h(5’”(5))—h(5,n(s))|ds>

g—a-1

<F+Blu-vly +/0 %ﬁlu(@ - v(s)|ds,

so that F and B are introduced by (3.15) and (3.16). Thus, by the generalized Gronwall
inequality presented in Theorem 2.9 and by assuming (t) = |u(t) — v(t)|, #(t) = F + B|lu -
vlly and ¥ (t) = r(q o we obtain

- t Igj(t_s)J(q—a)—l
|u(t) - v(t)| _]:+B||U—U||y+/0 ;[—F(j(q—a)) (]—'+B||u—0||y)i|d5

Hence,
ﬂ!
oty < T ) e
B/ ?
1-B- BZ/ 1 T (j(g—a)+1)
and the latter inequality completes the proof. 0

The next fixed point theorem is due to Krasnoselskii and Zabreiko, and we prove our
existence result with the help of it for the non-hybrid single-valued FBVP (1.1).

Theorem 3.4 Let
(J5) h:Ix R — R be continuous and for some t € I, h(t,0) #0 and

lim 2w

lul=o00 U

(J6) there be A € R, such that
bt w)| < Aluy).

Then there exists at least one solution for the non-hybrid single-valued FBVP (1.1) on L such
that

1
Pmax = ntlea]lx|p(t)| < E: (319)
where U is given by (3.10).
Proof Assume that {u,},cn tends to u. We know that § is continuous. As n — 00, we get

[b(t,1,) — h(t,u)| — 0.

Page 14 of 35
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Thus, for t € I, and by defining 3 : Y — ) given by (3.11), we write

[P, (t) — Pu(t)]

< L/t(’n—s)‘”\h(s u,(s)) - b(s,u(s))| ds
- F(q) o ’

1
e [ [ o= 0 b(eue)- (e

SN
;F(Q)/o e =9

p
+Zr(q) m”/(s o

dr ds

h(s,1a(s)) = b(s,u(s))| ds

dr ds

b(7,un(7)) = b(7,u(r))

k

G K 0i-1
+ - J -5 q+Uj
;F(q-wj)/o i =)

Thus (3.20) tends to zero. This yields the continuity of 3. For r > 0, we set

b(s,ua(s)) — b(s,u(s)| ds) — 0. (3.20)

N = {ue CO,R); lull <7}

and [[b]l = supquerxn [H(5,u(s))]. So

bo u>|<t>_r( ](t &7 [p (s, u(s)) | ds

+t2<1"(q //(5 )77 (7, u(r))|dr ds
q-1
F()/ (5 - )71 (5, u(s)) | ds
gq-1
F(q)/m”/(s )7 (z,u(r))|dr ds
k

+Zr(q+9)/ =9 olonte )|d5)

- gq-1
r(q+1> <F(q)//(5 D deds

r ﬂ . i1 mj 5 ~ .
+Zr(q)f0 (8¢ —8)T" ds+Z (q)f f(s 7)7 dr ds

mi_1 0

N
>
A

+91
r(q+9)/(”"5)q ds

Ss~~—

IA

BN
e
3

Page 15 of 35
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which yields ||Bu|| < AUr, where ¥ is given by (3.10). This gives the uniform boundedness
of .

The equicontinuity of %3 is established similar to the proof of Theorem 3.2. Immediately,
the Arzela—Ascoli theorem confirms the compactness of 3 on N.

Now, by considering the non-hybrid single-valued FBVP (1.1), and by taking

b(tu(t)) = p(tu(t),

the operator I, by Lemma 3.1, is defined by

Lu(t) = /(t 5)1- 1p(ﬁ)u(5)d5+—(r(q)f / (s —7)7p(t)u(r)dr ds

1
r@ / (6¢ — 5" p(s)u(s) ds

_7)a-1
F(q) /m, 1/ )T p(t)u(r)dr ds

k .

G K +0;—1
Y [ -9 (el ds | (vee D,
;r(qwj)/o R ) )

We further claim that 1 is not an eigenvalue of L. If it is so, then by (3.19) we compute

llull = sup|Lu(t)|
tel

IA

1 [t »
iiﬁ’[ﬁq) | t=o1tpteute)|

,[2 1 1 s .
*ﬁ(ﬁaﬁ‘ﬂ“‘”q““m“”“”“

r

ZF() "6 - )7 p(s)]|u(s)| ds

q-1
F(q) /m 1/ - 1) p(o)|[u(r)| dr ds
k

+Zn+mf“bW%%wwwaﬂ

< poax W llull < flull (Ve

This is invalid. Hence our claim is correct. To conclude the proof, we claim that ||(u) -
L(u)||/||u|| vanishes when |[u]| — oo. For t € I, one may write

t
-1
[P ~Luo)| = f (t— 97 [B(s,u(s)) - pls)u(s)| ds

2 1 s
+ %(%q)/o /(; (s - T)q*1|h(1;,u(1:)) - p(‘L’)u(‘L')| dr ds
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1
F( ; / (8¢ -5 b(5,1(5)) - p(s)u(s)| ds

g-1
F(q)/m,l/ - ) b(7,u() - p(r)u(r)| dr ds

k ‘ ”
+ }:Zl ﬁ /(; (77;‘ —5)q+9j—1 ]h(s,u(s)) - ,O(s)u(s)] d5>

<o | gt et —p(s)]|u<s)| ds
%(%q) | 1 | “e— oy W ~ (o) u(r)] dr ds
r()f s
r(q)/m”/ -0 My - uodras
+,i1 Ry /om( w-o %_p“)‘ws)'dﬁ)’
This means that
mﬂ;nL . %) / (= b(ig()sn -’ (s)lds
t2<r(qr / [ e - ()‘dtdﬁ
+;%f08l(ag 51! (5(2()5)) ()‘ds
fz fmf< ~ot 2D () drds
Xklzr(qﬂﬂ/ - Wl%‘ ()‘ )

By (3.18) and letting |[u|| — oo, it is concluded that |w — p(-)] = 0. Thus we obtain

1B - L)l

|00 [l

Consequently, by Theorem 2.10, the supposed non-hybrid single-valued FBVP (1.1) has a
solution in ). The proof is completed. 0

4 Stability criteria
We investigate the stability property in the sense of Ulam—Hyers and its generalized
version for solutions of the non-hybrid-single-valued-FBVP with integro-non-hybrid-
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multiterm-multipoint-multistrip boundary conditions (1.1). For simplicity, let C(I,R) :=
Q. For more details, see [35-40].

Definition 4.1 The non-hybrid single-valued FBVP with integro-non-hybrid-multiterm-
multipoint-multistrip conditions (1.1) is Ulam—Hyers stable if there is 0 < oy, € R such
that, for each € > 0 and for each u*(t) € Q satisfying

|°Diu*(t) - h(t u*(1))] <, (4.1)
there is u(t) € Q satisfying the non-hybrid single-valued FBVP (1.1) with
[u*(t) —u(t)| < €0y, Vtel

Definition 4.2 The non-hybrid single-valued FBVP via integro-non-hybrid-multiterm-
multipoint-multistrip conditions (1.1) is generalized Ulam—Hyers stable if there is oy €
C(R*,R*) with 0(0) = 0 such that, for each € > 0 and for each u*(t) € Q satisfying the
inequality

’CDgu*(t) - h(t, u*(t))} <¢,
there is u(t) € Q satisfying the non-hybrid single-valued FBVP (1.1) with
() —u(t)| < o (e).
Remark 4.3 We have Def. 4.1 = Def. 4.2.
Remark 4.4 Notice that u*(t) € 9 is a solution for (4.1) if and only if there is z € Q de-
pending on u* such that, for each t € [,
(i) 1z(t)] <€
(i) “Diu*(t) = h(t, u* (1) + z(1).
The Ulam—Hyers stability is discussed here for the non-hybrid single-valued FBVP (1.1).
Theorem 4.5 Suppose that there is a constant 8 > 0 such that

Ih(tu(®) = (L w'(®)] < Blu®) —u'(1)] (4.2)

for each w,v' € Y and t € 1. Then the non-hybrid single-valued FBVP with integro-non-
hybrid-multiterm-multipoint-multistrip conditions (1.1) is Ulam—Hyers stable on I and is
the generalized Ulam—Hyers stable provided that B < 1, where U is given by (3.10).

Proof For every € > 0 and for each u*(t) € C(I, R) satisfying
“Diu(t) - h(tLu®)| <e,
we can find a function z(t) satisfying

‘Diu(t) = h(tu(t)) +z(1)
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with |z(t)| <. Ityields

k=

1 t
* — _&\a-1 *
(t) ) fo (t-8)7'h(s,u*(s)) ds

tz 1 1 s —1 *
it f Lo o
) r ag 8¢ e N

=1 I'(q) ~/0 (=) [7(5’“ (5)) &

p

,22: T@) S, 1/ (5 - 1) (7, u*(r)) dr ds
G K . +6j—-1 %
_;mfo (nj— )79 (s, u"(s)) d5>
q-1 v -
F( )/ (t-oelode <F(q)/ / (s—1)7'z(r)dr ds

e [ g 3 S A
;F(Q)/O (8¢ — )T z(s)ds — ; /m,lfo s—1)1 z(r)dr ds
k

Sy lacorvans)

If u is the unique solution of the non-hybrid single-valued FBVP (1.1), then u(t) is given

by

1 t £ 1 1 ps

- el ef1 .
u(t) r(q)/o(f 5) h(ﬁ'“(ﬁ))der,L(l“(q)f() /0 (s - 1)%h (z,u(r)) dr ds

A [

;F(Q)/c; (8 =5)"h(s,u(s)) ds

p

ZF(Q) m; 1/ (5 T)q lI’)(‘L’ u(-’;)) dr ds

Cj nj +0j71

_lem/" (nj—s)? b(ﬁ,u(s))dg) Vel

Then

1 *
WO -] = )/(t 1 5(6,16)) — b(s,u(s) | ds
+§<%q)/0‘ /0 (s — D)7 h(r,u* (1)) - h(7,u(r))|dr ds

ZF() (Se 5)77 (s, u"(s)) - b(s,u(s))| ds
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bz’—l mi 5 o . )
r()f /0(5 D)7 b (r,u*(2)) - b(r,u(x))|dr ds

_9 /W( = 8)1%7 (s, u*(s)) - (s, u(s)) | ds
I'(g+6) W ’ ’

f(t 5)171z(s) ds + — ( / / (s — 1)1 t2(t)dr ds
3¢
Z% /0 (8 -8 2(s) ds
F(q)/ / (s — 1) 1z(r)dr ds

k
* Z r(q +0) / (=) d5>

<We+ W |ur —ul.

Consequently,

[u* —u| < Ve +,3\i/H *

where ¥ is defined in (3.10). In consequence, it follows that

N

" We
Ju <
- g
If welet oy = then its Ulam—Hyers stability is proved. Further, for
]
op(€) = —¢,
1- g

with 03 (0) = 0, the generalized Ulam—Hyers stability will be proved. O

5 Results for fully hybrid multi-valued FBVP (1.2)

Now, in the present step, we aim to investigate the existence of solution for the given fully
hybrid integro-multi-valued FBVP with integro-hybrid-multipoint-multistrip boundary
conditions (1.2). To reach this purpose, we provide an auxiliary lemma. Before starting
it, we introduce the Banach algebra Y = {u(t) : u(t) € C(I, R)} under the norm |uljy =
sup,cg |u(t)] and with the multiplication (u - uw')(t) = u()u'(t) for each u,u’ € Y.

Lemma 5.1 Let, for j=1,2,...,k, 6; > 0, ay,ay,...,a,,b1,b,...,bp_1,¢1,¢2,...,cc €R be
constants and 0 < §; <8 <--- < <my <my <--- <M, <N <M =--- < <1and
f € C(ILR). Then u satisfies the given linear hybrid-FBVP with integro-hybrid-multiterm-



Rezapour et al. Journal of Inequalities and Applications (2022) 2022:82

multipoint-multistrip boundary conditions:

ED”( 0) f(t) (g€(2,3],tel:=[0,1]),
(Wnt 0=0, (%) lico =0,
/0 u(ﬁ )d5 ZE 1“4 tu(t |t d¢ +Zl 2bl Lm;_ 1(3/(,.1(5())))d5

+ le C/IO (y(t,ua)) Mezry»

(5.1)

which is given as

u(®) = (6 u(0) [F()/ (t- s)qls)d5+—<%// (s - 1) j(r) dr ds

L4 5
! _ -1
F( )/ (82 5)q f(s) 22 /};[ /0 (5 T)q f(.[) dr ds

k ) nj
—Z% /0 (- 5)77f(s) ds } (Ve D), (52)
j=1 /

where [ is a constant given by (3.3).

Proof Let the function 1 be the solution of the linear hybrid-FDE (5.1). Then

cnd ﬁ(t) )_
D"(y(t,a(t)) =10 (53)

By utilizing I on both sides of the hybrid differential equation (5.3), we get

t
)’(tu (at()t)) ) %q) /0 (t-5)77f(s)ds + o + ot + s’ (5.4)

for some o, 01,00 € R.
In the first step, the first given initial condition ( )|t o0 = 0yields «p = 0. So

u(t)
y(tut)) q)/ 5)ds + apt + ot

Further, since

a1 t .
(y(t,aa))) ) F(q—l)/o (t=8)7f(s) ds + o + 221,

thus the second given condition (—) |0 = 0 gives &1 = 0. In consequence,

e 1 t o )
TG /0 (t—8)T11(6) ds + art. (55)

On the other side, we have

' u(s) _L e _ 1)1 1
/o(y(s,ﬁ<s>)>d5‘r<q)/o /0(5 D) drds + e,

Page 21 of 35
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and forj=1,...,k,

0 u(t) +6;-1 2 246
b (y(t,ﬁ(t))> q+9 / (t=8)" f(5)ds+°‘2r(:«=+e,)t ’

andfori=2,...,p,

i 1(s) 1 md—m? |
/m,.1<y(s,a(s>>)d5 r(q)/m”/ G- f")d’d““z( 3 )

By assuming the nonzero constant p given by (3.3) and by the third condition, we obtain

the following coefficient:

a8 (F@// s [ o
; /m /(5—r‘11f(r)drd5

k i
- Ty %) / (=) dﬁ)

By substituting the above value «; in (5.5),

i) 1ot Gl R T Y A
-— | - “(—— - d
w4 f(s)derM(F(q)/o/o(s e drds

3¢
Y5 JRCERE L

p

Zr(q) f (s -0 f(r) dr ds

k

C/ " L +0j—1
- ; m/o (771 )7 f(s) d5> (Vtel),

from which we see that u satisfies (5.2) and it is the solution of the mentioned integral

equation, and so the proof is completed. 0

Based on the above lemma, we aim to define the solution of supposed fully hybrid
integro-multi-valued FBVP (1.2).

Definition 5.2 The absolutely continuous map u: I — R is called a solution to the fully

hybrid integro-multi-valued FBVP (1.2) if an integrable mapping s € £1(I, R) with

1
»#(t)eg <t, u(t), / u(s) ds>
0



Rezapour et al. Journal of Inequalities and Applications (2022) 2022:82 Page 23 of 35

for almost all t € I satisfies integro-hybrid-multiterm-multipoint-multistrip boundary

conditions

u(t u(t) _
( y(t, u(t )|" 0=0, (y(t,u(t)))/llzo =0,
f u(s)
0 ‘“y(s,u q)

Z,@ 1“@( tu )|t 6[+Z,2bzl m,ll(y 5) )d5+zllcjl ( tu )|t o

and

u(t)zy(t,u(t))|:r(1q)/ (t—5)1"1s(s)ds + — ( q),/ /(5—r)q Li(r)dr ds

1 1
F(q)/ (80— )7 " se(s) ds — Zr(q) m,,/ (s — 1) se(r)dr ds

k
qu+9) 5)7+01 (5)d5)} (Vte ).
j=1

The first theorem in relation to the inclusion problem (1.2) is proved here.

Theorem 5.3 Let G :1 x R* — P, ., (R) and y : 1 x R — R\{0} be continuous and.:
(J1) Thereis M :1— R* (it is bounded) so that for each u,v € R and for all t € I, we have

ly(tu() - y(t, 0()| < M@&)|ut) - v(®)];

(J2) G:Ix R? - Py, (R) is L*-Caratheodory;
(J3) Thereis A(t) € LI, RY) with

1
||g(t, u)|| = sup{l%l i€ Q(t,u(t),/ u(s) ds)} < A(t)
0

for allu € R and for almost all t € I;
(J4) Thereis a € R* such that

Yy UAlL 56)
1-MY|AlL
where
14 1 1
gL o 1 1 Z 8! 3 biy(m!™ —ml))
Tq+1)  u\T(g+2) Flg+1) = (g +2)
k 7+6)
01'7/
— ], 5.7
+;F(q+9j+1)) 67

and | Al g1 = [y |A()]ds, y* = sup,eq |y(t, 0)], M* = SUpyefo,1) MBI If

Al < )
MY[Aller < 3
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then the fully hybrid integro-multi-valued FBVP with integro-hybrid-multiterm-
multipoint-multistrip boundary conditions (1.2) has a solution.

Proof For each u € ), we define

Sgu = {% e LYD): () € g(t,u(t), /1 u(s) d5> }r
0

as the selections of G for almost all t € [, and define £ : Y — P())) by

he):
Yt u®) fo‘(t 5)115¢(s) ds
+ (s fy fle - D)7 d(r) dr ds
h(t) = “wf (8¢ — )7 3(s) ds
i’zﬁ”fm,lfo (5= 7)1 () dr ds
=Y iy Jo =970 s) ds)], € S

Eu) =

forall t € IL. By this structure, /1 satisfies the fully hybrid integro-multi-valued FBVP (1.2) if
and only if £hg = hy. Further, define F; : Y — Y by (Fiu)(t) = y(t, u(t)) and 7> : Y — P())

by
hel):
L o= 51 () ds
(o o fte = 1) se(r) dr ds
-7:2(11)({): +M VF i()fo 5§—-T »(T)dT

at) = 1 TG £(8¢ —5)T 1se(s)ds
Ijzﬁtljml o e —1)7 s(r) dr ds

1 1F(q+9,) o (1)1 se(s) ds), s € Squ

for all t € I. Then, we obtain &£ (ut) = (Fu)(Fou). We show that both operators F; and F,
satisfy Theorem 2.2. We show that F; is Lipschitz. Let uj,u; € Y. Thus assumption (J1)
implies that

[(Fiu) (@) — (Frun)(®)| = |y(bwr(9) = y(6u2(8) | < M(0)ur () — ua ()|
for all t € I. Hence, we get

|Fiu — Fruglly < M*[lug —ug|lx

for all uy,uy € Y. Thus F is Lipschitz with the constant M* > 0. Further, we claim that
is convex-valued. Let uy, u; € Fou. Choose s, 555 € Sg,, such that

W= f (t— )" e (s) ds

t2 1 1 s o
+;(Fq)./(; /0 (s =) " sg(r)dr ds
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- Z / (50 - 5)7 (s ds

(s — 1) sg(r)dr ds
F(q /mlf e

_ Zk: _9 / Y o — ) () d5> (=1,2)
1 F(q+9}) 0 /

for almost all t € I. Let ¢ € (0, 1). Then
1 t
w0+ (1=l = | a-oilen s -] ds

2 1 s
%(%q)/o /0 (s — )" [esar (1) + (1 - O)sea(r)] d dls

Z ), " — )" [e3a1(8) + (1 - ¢)30a(s) ] ds

— ql O
F(q)/m”/ ) ea(r) + (1= )sa(r) ] dr ds

k .
— L K . _ e)at0i-1 1- ds
; T(q +6)) /0‘ (nj = 9)"9 [eza1(s) + (1 - )302(5)] ds ).

As G is convex-valued, Sg,, is too, and this gives csr; (t) + (1 — ¢)255(t) € Sg ., and so Fru is
convex for eachue Y.
We investigate the complete continuity of 7. For ¢* € R*, set

Ver = {ueY:|ully <&}

For every u € V.« and i € F,u, there is » € Sg,,, such that

t
B(t) = %q) fo (£ = 57 5e(s) ds
1 5
+§(%q)/o /0 (s — 7)1 (7)) dr ds

r a Se 3
_\ % 5, — )i
gzl F(q)/o (8¢ —8)T " 5(s)ds

p
Z F(q) / (s — 1) ' se(t)dr ds

i=2
k

Zr(q+0)/ (<) %(S)ds)
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Then

1 t o tZ 1 1 s .
o] = s [ - |%(5)|d5+;(@/0 /0 (5= 7)1 3e(r)| dr ds

1
Z%/O (8, — )17 |se(s)| ds

P 3 mj 5
+Z ﬁkl f (5—r)q_1‘%(r)‘drd5
i=2

(61) m;_1 J0

k ‘
i Voo +0-1
" ,=21 I'(g+06) /o (1 = &)1 (3| d5>

1 t t2 1 1 5
- _ gq-1 A B o1 d
<ty 9 A(ﬁ)d“M(F(q)fo [e-ortamaras

=

p
DI
i=2

1

/ / (s-7)71A(r)dr ds
. G K g+0;-1 ds
. gt A
+;F(q+9;)/o =oAL )
Al ||A||L1
- F(q+1 F(q+2)

p 1 1 k L a+t;
N Z ﬂ@(sq + Z b,'_l(m? - mlq:rl ) + Z Cﬂl,‘
I'(g+1) I'(g+2) P [(g+6;+1)

i=2

where U is given in (5.7). Thus, ||A| < \i—’IIAIIL1 and F5()) is uniformly bounded. Let u €
Ve and h € Fru. Choose s € Sg,, such that

t
B(t) = %q) fo (£ = 57 5e(s) ds
1 5
+§(%q)/o /0 (s — 7)1 (7)) dr ds

r a Se 3
_\ % 5, — )i
gzl F(q)/o (8¢ —8)T " 5(s)ds

p
Z F(q) / (s — 1) ' se(t)dr ds

i=2
k

Zr(q+0)/ (<) Mﬁ)dﬁ)
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for all t € I. Assume that t;,t, € I with t; < t,. Then we have

t1
(k) - h(ty)| < %q) /0 [t — )7 — (& — 8)7] | c(s) | ds

1 [ o
+Tq) . (tz—ﬁ)q |%(§)}d§

+ (t2 tz) ( / / _ 7)1 1’%(‘[)|de‘3

r 8/
ay 1
2 [ s, —s) ds
0 gﬂ F(q)./o (8¢ — )| 5(s)|

1
r(q)/m”/ (s-—1)" {%(t)|drds
k

* Z F(q+9) / (= )] ds)

||A||L1
Hh-t)T+2(¢ -
_F(q+1)[(2 D7+ (2 1)]
N (& - )AL 1 +i a8!
I Fg+2) < T(g+1)

q+1 k

i=2

as t) — t; (independent of u € V.«). The Arzela—Ascoli theorem gives the complete con-
tinuity of F,. Assume that u, € V, and %, € (Fou,) with u,, - u* and h,, — ~*. We claim
that i* € (Fou*). For every n > 1 and h,, € (Fau,), choose s, € Sg,,,, such that

1 t o
- /0 (L= )" s5,(s) ds

tZ 1 1 s
—| — — 1) s, (1)dr ds
+/L<F(q)/o /0 (s — 1) s,(7)dt

r

d¢
- M _g)a! ds
;r@ [RCEEERE

F(q /mI/ (s — 1) 5(7) dr ds

£ i i q+6;-1 ds
_,Zlir(qw,)/o (1~ 91, (5) ds ).

We claim that there is »* € Sg .+ such that

)= — /(t 5771 5% (s) ds

I'(q)

S L gt
i~1\1; i1 j
0:
+Z C(g+2) +ZF(q+9 +1)>
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g(%q)/olfos(s—r)q_lz*(t)drds
r()/ (e
F(Q/m,l/ s— 1)l (r)drds

k .
B Cj /"71( o )q+9j—1 *( )dﬁ)
/zzlr(61+9j) 0 e o

for all t € I. Define F: LY(I,R) — Y = C(I,R) by

F(5(t)) = u(t)

1t o
:Tq)_/o(t_S)q %(5)d5

t2 1 1 s
— — _ 7)1
' u(l"(q)/o /0 (-0 An deds

1
F( )/ (8¢ —5)T " 2¢(s)ds

F(q)/m /5 )4 (1) dr ds

_Z ’ /"i( —8)7% 5(s) ds
‘= Ta+6) Jo W '

It is linear and continuous. Hence,

|7 () = B* (1) ]| =

1 t
- _ &)1 X
) ./0 (t-s) (%,,(5) > (5)) ds

( f/ 5 — t)ql;rn(r *(‘E))dtdﬁ

d¢

—Z ‘Zj]) [ 69" (o) - (0) o
=1

)4

1
;F(q) mu/ (5 — 7)1 (56u(7) - 5" (1)) dr ds
k

j=1
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Theorem 2.1 implies that F o Sg has a closed graph. On the other hand, h, € F(Sg,,,) and
u, — u*. So there exists »* € Sg,,+ such that

- )/a 87 (s) ds
2 1 5
fﬁ(%q) [ [e-orea
F()/ (8¢ - 9171 (5)d

F(q)/m”/ (s — 1)1 5" (v)dr ds

k
+91 1, %
S —

for all t € 1. Hence, i* € (Fu*) and so F; has a closed graph, and it is upper semi-
continuous. Therefore F, is compact and upper semi-continuous. By (J1),

=R
= sup{|Foul :ue Y}

tel

Al N ANl 1

I'(g+1) w \T'(g+2)

r + + k qa+6;
aﬁg ? b,'_l(m? ! —m?_ll ¢in;

+;F(q+l)+; T'(g+2) +]Zl:l"(q+9,+l)

<$|Alp.

Then SM* < % By Theorem 2.2 in relation to J,, one of (a) or (b) will be held. By (J4), let

u € O* be such that |[u| = a. Then p,u(t) € (Fiu)(t)(Fu)(t) for all p, > 1. Choose » € Sg,,,.
Then, for each p, > 1,

« I'(g)

t2 1 1 s o1
— - d
g [

r a 8¢ o
_ z a2 S, —5)
2 F(q)./o (8¢ —5)T " 2¢(5)ds

1 1t »
u(t)—p—y(t,u(t))|:—/0 (t=5)T"se(s) ds

p

ZF(q) /(5 7)7 7 e(r) dr ds

i=2

k

C/ " L +0j—1
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Thus, one can write

1 1 ¢
= —_— —_— —_ Q*l
|u(t)| o |y(t,u(t))|[F @ /O (t—9)7"|5e(s)| ds

|u|( // 5= pen)|dr ds

r

3¢
Z%/O (80 — 8)7 | (5)| ds

1
F(Q)/m,l/ (s —-1)T |%(r)|drd5

c: nj o
' 21: T+ 9 /0 (=9t dﬁ)}

_ L _ |
_p*[|y(t,u(t)) y(t,0)| + [y(t,0)|] |:F( )/ (t—5)7|5¢(5)| ds

— ql
I,ul(l"(q)//( O pe(m)]dr ds

/(84 5)q1|%(5)|d5

F()

)4

+ZF() m,1/ (5 — 7)1 5e(7)| dr ds

k
+Zr( +9)/ = s)qw’l'%(ﬁ'dﬁ)}

t
< [M*u] +y*][%q) /0 (t-5)""Afs) ds

t2 1 1 s o1
— (= - d
! |M|(F(6I)/o /o (s =0 AModrds

— 1 _ 1
F( )/ (8¢ —9)1~ A(s)ngrZF(Q)/m,l./ (s—7)7'A(r)dr ds

k

i W _ &)a+0-1
+;r<q+9,>/o - aoe)|

<[M*a+y WAL

for all t € I. Hence, we get

YAl
1- M*\IJ||A||L1

a <
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According to condition (5.6), we find that (b) is not possible, and so u € (Fiu)(Fu).
Thus, £ has a fixed point and the fully hybrid integro-multi-valued FBVP (1.2) has a solu-
tion. O

6 Examples
Example 6.1 In view of the non-hybrid single-valued FBVP with integro-non-hybrid-
multiterm-multipoint-multistrip boundary conditions (1.1), let

DZPu(t) = CRUD sin(u(t))  (tel:=[0,1]),

u(t)[=0 =0, W(t)]t=0 =0,
J5 u(s) ds = 0.011(0.5) + 0.08u(0.75) + 0.09 [ u(s) ds + 0.05 [ u(s) ds

+0.210711(0.85) + 0.313524(0.87),

(6.1)

where g =2.25,r=k=2,p=3,a; =0.01, a, =0.08, §; = 0.5, 8, =0.75, b; = 0.09, b, = 0.05,
mp = 076, my = 078, ms = 080, C = 0.2, Cy = 03, (91 = 071, 92 = 062, nm = 0.85 and Ny =
0.87. Also, the function

_exp(=t) +9

b(tu(t) = 31008 sin(u(t))

is a real-valued continuous map on I x R. For each u,u* € R, we write

N exp(-t)+9, . o
h(tu(®) - (L u*(®)| < W|mn(u(t)) —sin(u*(1))|
exp(-t) +9 o
< 1008 |u(t) u (t)|. (6.2)
Further,
exp(-t)+9, . exp(-t) +9

[h(tu®)| < W|Sm(u( )| < 91008 o(t),

where ¢ : I — R* is a continuous function defined by o(t) = %.

If W C R is an arbitrary bounded set, then

exp(-t) +9
LW) < —o(W).
(b6 W) = = 1508 @MW)
By taking 7y (t) := ex,;;&w , we get

(bt W) <y (o(W).

Clearly, ny = supcp |15 ()| = 0.004743. By the above given values for parameters, we find

¥ ~ 3.89692. In this case, n";\if ~ 0.018 < i. By Theorem 3.2, the non-hybrid single-

valued FBVP with integro-non-hybrid-multiterm-multipoint-multistrip boundary condi-
tions (6.1) has a solution on I. On the other hand, by (6.2), and assuming 8 = 0.004743,
we get BW ~0.018 < 1. Then, by taking oy = % = 3.96835 > 0, the conclusion of The-
orem 4.5 implies that the non-hybrid single-valued FBVP (6.1) is Ulam—Hyers stable and

generalized Ulam—Hyers stable.



Rezapour et al. Journal of Inequalities and Applications (2022) 2022:82 Page 32 of 35

Example 6.2 In view of the fully hybrid-FBVP inclusion with integro-hybrid-multiterm-

multipoint-multistrip boundary conditions (1.2), we consider the following system:

cD2 .25 u(t) 9 ¢ ¢ 3 1 ,
( exp( 2( arCta“(u(t))+0.0003) € [-2, exp(t) cosu(t) + fo cosu(s)ds + 4],
u(t) -0 w(®) e
( CXSIE)(;;) amMll(u( ))+0‘0003)|t=0 ’ ( CXSIE)(72£) 1rcmn(u(t))+0.0003) |0 ’
f() exp (s) ) ds

arctan(u( ))+0.0003

=0. 01 u(0.5)
( “20735) arctan(11(0.5))+0.0003

0.08 L)
* ( xpC0.75) '1rctan(u(0‘75))+0‘0003) (6.3)
+0.09 [T u(s) )ds
0.76 eXp( ) arctan(u(s))+0.0003
0.80 u(s)
+0.05
f 0.78 ( CXP072 s) arctan(u(s))+0.0003
0.71 1(0.85)
+ 0210 ( exp( —0.85) )

077 arctan(u(0.85))+0.0003

i 10 .62 u(0.87)
0.315°( PO rctan(u(0.87))+0.0003

where g =2.25,r=k=2,p=3,a; =0.01, a, =0.08, §; = 0.5, 8, = 0.75, b; = 0.09, b, = 0.05,
=0.76, my =0.78, m3 = 0.80, ¢c; = 0.2, ¢ = 0.3, 6; =0.71, 6, = 0.62, n; = 0.85, 1, = 0.87,
and I = [0, 1]. The continuous function y : I x R — R\ {0} is defined by

exp(—t

) arctan(u(t)) + 0.0003.
5072

y(t’ u(t)) =

Further, y* = sup,; [¥(t, 0)| = 0.0003. y is Lipschitz for u,u* € R, and we write

ly(tu(®) —y(tuw*(®)| < 50(2 |arctan (u(t)) — arctan(u*(1))|
(-1 .
< 6?87 > |u(t) - u* ()|

= M()|u(t) — u*(1)].

Evidently, M* = sup,; [M(t)| 2~ 0.0001971. We define G : I x R?> — P(R) by
1 1 7
g(t,u(t),/ u(s) ds) = [—2, exp(t) cosu(t) + 3/ cosu(s)ds + 1:|
0 0
For i € G(t, u(t), fol u(s) ds), we have

1
|h| < max|:—2, exp(t) cosu(t) + 3/ cosu(s)ds + Zi| <exp(t) + —
0

Therefore

1 1
”g<t,u<t), /0 u(s) ds) H - sup{ PIEE g(t, u(t), /o u(s) ds)} <exp(0)+ )
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Set A(t) := exp(t) + 2. Thus

1 1
1Al =/0 |1\(5)|d5=/(; (exp(5)+%>d5:e—1:1‘71.

We select a > 0 such that a > 0.0020017. Also, by the above given values for the parameters,
we find W ~ 3.89692. Therefore

. 1
M WAl 21 00013134 < -

The conclusion of Theorem 5.3 gives this fact that there exists a solution for the fully
hybrid-FBVP inclusion with integro-hybrid-multiterm-multipoint-multistrip boundary

conditions (6.3).

7 Conclusions

In the present manuscript, two novel generalized non-hybrid single-valued FBVP and fully
hybrid integro-multi-valued FBVP with integro-hybrid-multiterm-multipoint-multistrip
boundary conditions were considered and the qualitative results were proved in relation to
its solutions. Precisely, on the non-hybrid-multi-valued FBVP (1.1), we established an exis-
tence theorem based on Sadovskii’s method, and in the sequel, the Krasnoselskii—Zabreiko
theorem was utilized for the second existence result. We got help from the Gronwall in-
equality in its generalized version to investigate the dependence of solutions of the non-
hybrid multi-valued FBVP (1.1). Stability analysis was implemented in the sense of Ulam—
Hyers. Further, on the fully hybrid multi-valued FBVP (1.2), we derived the corresponding
multipoint integral equation and used Dhage’s techniques to establish the third existence
theorem. Two numerical examples have been designed to examine the correctness of the-
orems. Our boundary conditions are general and cover different simple forms defined in
numerous FBVPs. We will continue our study in the context of newly-defined notions of

g-calculus and (p, g)-calculus.
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