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1 Introduction

Let C be a nonempty, closed, and convex subset of a real Hilbert spade {, - ) with the
induced norm - . LetPc be the nearest point projection fromH onto C. Given a non-
linear operatorT :C  H, let Fix(T) and R indicate the “xed-points set of T and the set
of real numbers, respectively. Let and represent the strong and weak convergence
in H, respectively. An operatofl : C  C is called asymptotically nonexpansive if there

exists{ },; [0,+ ) suchthatlim, y=0and
Tu.Tv @+ D)u.v | 1uv C. (1.1)
In particular, whenever | =0 | 1, T is called nonexpansive. Given a self-mapping

A on H, the classical variational inequality problem (VIP) is “ndingt  C such that
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Au,v..u 0 v C.We denote the solutions set of VIP by V{, A). To the best of our
knowledge, one of the most popular approaches for solving the VIP is the extragradient
method put forward by Korpelevich 1] in 1976, i.e., for any initial pointus  C, let{u,} be
the sequence constructed below

Vi =Pc(uy ... Auy),

(1.2)
U+ =Pc(u ... Avy) | 0,

where  (0,1) and L is Lipschitz constant ofA. Whenever VIC,A) = , the sequence
{u} converges weakly to a point in VIE,A). At present, the vast literature on Korpele-
viches extragradient approach shows that many authors have paid great attention to it and
enhanced it in various ways; see, e.®,.R6] and the references therein.

Suppose thaB;,B,:C  H are two nonlinear operators. Consider the following prob-
lem of “nding (u ,v) Cx C such that

M1Biv +u ..v ,w..u 0O w C,
(1.3)
MoBou +Vv .U ,W..V 0 w C,

with constantsp 1, 4, > 0. Problem (.3) is called a general system of variational inequali-
ties (GSVI). Note that GSVI {.3) can be transformed into the “xed-point problem below.

Lemma 1.1([6]) Forgivenx,y C,(x,y)isasolution of GSV(1.3 if and only if x
Fix(G), whereFix(G) is the “xed point set of the mapping G=Pc(l .. 11B1)Pc(l .. 12By),
andy =Pc(l ..pu2B)x .

Suppose that the mapping8;, B, are -inverse-strongly monotone and -inverse-
strongly monotone, respectively. Ldt:C  C be a contraction with coe cient [0,1)
andF:C H be -Lipschitzian and -strongly monotone with constants , >0 such
that < =1..1..(2 ... 2 (0,1]for (0,%).LetS:C C be an asymp-
totically nonexpansive mapping with a sequende,}. Let {S},_; be a countable fam-
ily of -uniformly Lipschitzian pseudocontractive self-mappings o such that =

=0 FiX(§) Fix(G) = whereS :=Sand Fix@G) is the “xed-point set of the mapping
G:=Pc(l ..u1B1)Pc(l .. 2By) for uy (0,2 )andp, (0,2 ). Recently, Ceng and Wen
[21] proposed the hybrid extragradient-like implicit method for “nding an element of
that is, for any initial pointx; C, let{x} be the sequence constructed below

ur= i+ (1. )Su,

Vi = Pe(ur .. J2Bouy),

Yi =Pc(Vi .. H1Bvi),

xisn=Pc[ f(x)+ (... F)Sy] | 1,

(1.4)

where{ |} and{ |} are sequences in (0, 1] such that
@® =gl < and g
(i) lim, (=0andlim; 1=

1<
| 0;
(ii) ;] 1...1]1< and O<liminf i limsup <L
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(iv) =1 S+ly| SY| <
Under appropriate assumptions imposed of§},_, , it was proved in R1] that the sequence
{x/} converges strongly to an element .1n 2019, Thong and Hieu 14] proposed the
inertial subgradient extragradient method with line-search process for solving the mono-
tone VIP with Lipschitz continuousA and the “xed-point problem (FPP) of a quasinonex-
pansive mappingswith a demiclosedness property. Assume that := Fix(§) VI(C,A) =

. Letthe sequence§ |} [0,1]and{ |} (O,1) be given.

Algorithm 1.1 ([14]) Initialization : Given >0, (0,2),n (0,1), letxg,x3 H be
arbitrary.

Iterative StepsComputex;.; below:

Step 1. Setvy =x + (X ..X..) and calculatevy; = Pc(w; ... |Aw;), where | is chosen to
bethelargest { , , 2,..}satisfying Aw ..Av Wy

Step 2. Calculateg = Pg (W ... |Av)) with G :={v. H: w...|Aw ..v,v..vy O}

Step 3. Calculate+1 = (1 ... )W + S7. If wy =7 = X+1 thenw

Again setl :=| +1 and go to Step 1.

Under suitable assumptions, it was proven irlf] that {x;} converges weakly to an el-
ement of . Very recently, Ceng and Shan@¥8] introduced the hybrid inertial subgra-
dient extragradient method with line-search process for solving the pseudomonotone
VIP with Lipschitz continuous A and the common “xed-point problem (CFPP) of “nitely
many nonexpansive mapping@ﬁ},’\il and an asymptotically nonexpansive mappirgin
a real Hilbert spaceH. Assume that := {10 Fix(S) VI(C,A)= with §:=S. Given
a contractionf : H H with constant [0,1), and an -strongly monotone and -
Lipschitzian mappingF:H Hwith < :=1.. 1..(@2 ... ?for (0,2/ ?),let
{1} [0,1]and{ },{ } (O,1)with |+ ;<1 | 1.Besides, one write§ := Smoan
forintegerl 1 with the mod function taking values in the sefl, 2,... N}, i.e., whenever
I =jN +qgforsomeintegerg OandO q<N,onehasthalS=Sifq=0andS§ =S§;if
0<qg<N.

Algorithm 1.2 ([22]) Initialization : Given >0, (0,1),u (0,2), letxg,xs H be
arbitrary.

Iterative StepsCalculatex;.; below:

Step 1. Setv, = §x + (SX ..SX...) and calculatey; = Pc(w; ... |Aw;), where | is chosen

tobethelargest { , , 2,..}satisfying Aw ..Ay Wy
Step 2. Calculatey = Pg, (W ... |Av)) with G :={v H: wi...|Aw; ..m,v..v O}
Step 3. Calculateq1 = (f(x)+ x+((1...) ..., F)Sz.

Again setl ;=1 +1 and go to Step 1.

Under appropriate assumptions, it was proven ir2p] that if Sz ...8*z 0, then
{x;} converges strongly tox ifand only if x; ..x+1 Oandx ..vy 0 asl
In a real Hilbert spaceH, we always assume that the CFPP and HVI denote a common
“xed-point problem of a countable family of uniformly Lipschitzian pseudocontractive
mappings{S},-, and an asymptotically nonexpansive mappirty := Sand a hierarchical
variational inequality, respectively. Inspired by the above research works, we design two
Mann implicit composite subgradient extragradient algorithms with line-search process
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for “nding a common solution of the CFPP ofS},_,, the pseudomonotone VIP with Lips-
chitz continuousA and the GSVI for two inverse-strongly monoton&;, B,. The suggested
algorithms are based on the viscosity approximation method, subgradient extragradient
method with line-search process, and Mann implicit iteration method. Under mild as-
sumptions, we prove the strong convergence of the suggested algorithms to a common
solution of the CFPP, GSVI, and VIP, which solves a certain HVI de“ned on their com-
mon solution set. Finally, using the main results, we deal with the CFPP, GSVI, and VIP in
an illustrated example.

2 Preliminaries
Let the nonempty setC be convex and closed in a real Hilbert spaté. Given a sequence
{i} H,let ; (resp., i ) indicate the strong (resp., weak) convergence{of}
to .AnoperatorS:C H iscalled

(a) L-Lipschitz continuous (or L-Lipschitzian) if L >0such that Su..S Lu..

u, C;
(b) pseudocontractive if Su..S ,u... u... 2 u, G;
(c) pseudomonotoneif Su, ..u O S, .u 0 u, C;
(d) -strongly monotoneif = >Osuchthat Su..S ,u... u... 2 u, (%
(e) -inverse-strongly monotone if > O0such that Su..S ,u ... Su..S 2 u,
C;
(f) sequentially weakly continuous if { i} C, the following relation holds:
i Si S.
Itis clear that each monotone mapping is pseudomonotone, but the converse is not true.
Itisknownthat u H, !(nearestpoint)Pcu Csuchthat u..Pcu u... C;

Pc is refereed to as a metric (or nearest point) projection ¢ onto C. Recall that the
following conclusions hold (seeq7]):

(a) u... ,Pcu..Pc Pcu..Pc 2 u, H;

(b) w=Pcu u.w, .w 0 u H, C;

(¢ u.. 2 u.Pcu?+ .Pcu? u H,v G
(d u.. 2= u?.. 2. ..., u, H;

() su+(l..9 ?=su?+(1.9 2.91..9u.. 2 u  H,s [0,1]
The following concept will be used in the convergence analysis of the proposed algo-
rithms.

De“nition 2.1 ([21]) Let {S},-; be a sequence of continuous pseudocontractive self-
mappings onC. Then{S},_, is called a countable family of -uniformly Lipschitzian pseu-
docontractive self-mappings orC if there exists a constant > 0 such that each§ is -
Lipschitz continuous.

The following propositions and lemmas will be needed for demonstrating our main re-
sults.

Proposition 2.1 ([28]) Let C be a nonemptyclosed convex subset of a Banach space X
Suppose thaf{S},_, is a countable family of self-mappings on C such that,_; suf Sx...
S+1X X C}< .Then for eachy C, {Sy} converges strongly to some point of C
Moreover let S be a self-mapping on Gle“ned by Sy=1Iim; Sy forally C. Then
lim, sud Sx..§x :x C}=0.
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Proposition 2.2 ([29]) Let C be a nonemptyclosed convex subset of a Banach space X
and T:C C be a continuous and strong pseudocontraction mappifigpen, T has a
unigue “xed point in C.

The following inequality is an immediate consequence of the subdi erential inequality
of the function - 2
u+ 2 u?+2 u+ u, H.

Lemma?2.1 Letthe mappingBC H be -inverse-strongly monoton&hen, for a given
01

(..Bu..(..B) ° wu.. 2..(2 ..)Bu.B 2

In particular, if 0 2 ,thenl ... Bis nonexpansive
Using Lemmaz2.1, we immediately derive the following lemma.

Lemma 2.2 Let the mappings BB, :C  H be -inverse-strongly monotone and-
inverse-strongly monotoneespectivelyLet the mapping G.C  C be de“ned as G=
Pc(l .. 1B)Pc(l .. u2B2). If0 py 2 andO0 p, 2 ,thenG:C  Cis nonexpan-
sive

Lemma 2.3 ([6, Lemma 2.1])Let A:C  H be pseudomonotone and continuoushen
u Cisasolutiontothe VIPAu, ..u 0O Cifandonlyif A, .u 0 C.

Lemma 2.4 ([30]) Let{a} be a sequence of nhonnegative numbers satisfying the following
conditionsai+; (L1...))a+ ;; | 1,where{ }and{ |} are sequences of real numbers
such that(i) { |} [0,1]and ,; 1= ,and (ii) limsup i 0or 4] 1]<
Thenlim, a =0.

Lemma 2.5 ([31]) Let X be a Banach space which admits a weakly continuous duality
mapping C be a nonemptyclosedconvex subsetof)and T :C  C be an asymptotically
nonexpansive mapping witlrix(T) = . Then | ...T is demiclosed at zera.e,, if {ux} is a
sequence in C suchthatu u Cand(l..T)ux 0,then(l ...T)u=0,where | is the
identity mapping of X

The following lemmas are crucial to the convergence analysis of the proposed algo-
rithms.

Lemma2.6([259]) Let{ m}beasequence ofreal numbersthatdoes notdecrease atin“nity
in the sense that there exists a subsequeficg, } of{ } which satis“es 1, < m,+1 for
each integer k 1.De"ne the sequencg (m)}m m, Of integers by

(m=maxk m: < 1},

whereintegerm lissuchthattk mg: k< k+1}= .Then the following hold
® (mg) (mg+1) --- and (m) ;

(i) (my+1 and m m+1 M M.
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3 Mainresults
In this section, let the feasible s&f be a nonempty, closed, convex subset of a real Hilbert
spaceH, and assume always that the following conditions hold:

+ Ais pseudomonotone and L-Lipschitzian self-mapping on H such that

Au liminf, A , foreach{ ,} Cwith 5, u.

+ B1,B2:C  Hare -inverse-strongly monotone and -inverse-strongly monotone,
respectively, andf :C ~ Cisa -contraction with constant [0, 1).

+ {Si}n=; is a countable family of -uniformly Lipschitzian pseudocontractive
self-mappings on Cand S:H  C is an asymptotically nonexpansive mapping with a
sequence { n}.

o = oFiX(&) Fix(G) VI(C,A)= with §:=S and Fix(G) is the fixed point set
of mapping G=Pc(l ..x1B1)Pc(l .. 12By) for O<p; <2 and O<pp<2 .

¢+ =1SUp p SiX..Sw1X < for any bounded subset D of C and
Fix(§ = - Fix(&) where S:C  Cis definedas Sx=Ilimp, §x x C.

«{ (O,1and{ }{ n}.{ n} (©,Dwith + o+ =1 n 1such that:

©) g n= L limg n=0and lim, —:: ;
(ii) O0<liminf, n limsup, n<l
(iii) O <liminf, n limsup, n<l

Algorithm 3.1 Initialization : Given >0,u (0,1), (0,1), pick aninitialx; C arbi-
trarily.

Iterative stepsComputexn.+1 below:

Step 1. Calculatal, = X, + (1 ... n)Su, and wy = Gu,, and sety, = Pc(Wp ... nAW,),
where , is chosentobethelargest { , , 2,..)} satisfying

AW, LAY M Wh Y (3.2)

Step 2. Calculat&, = Pc,(Wh ... nAYn) With Cr:={y H: Wn ... /AW, ..¥n,Y..¥n O}
Step 3. Calculate

Xne1 = nf (Xn) + nXn+ nSZn. (3.2)
Again putn:=n+ 1 and return to Step 1.

Lemma 3.1 The Armijo-like search rulg3.1) is well de“ned and the following inequality
holds min{ ,u /L}

Proof Thanksto Aw, ..APc(Wn ... MAw,) L Wn..Pc(Wy... MAw,) , we know that

(3.1) holds foreach ™ £ and so , is well de“ned. Obviously, , . In the case of
n= ,theconclusion is true. In the case of, < , from (3.1) one gets Aw, .. APc(wj ...
AW, > A w, L Pe(Wy .. Aw,) |, which hence leads to, > /L. O

(nl)

Lemma 3.2 Let the sequencdsin}, {Wn}, {yn}, {zn} be constructed by Algorithr3.1 Then
foreachp ,onehas

2

Zn..p Un..P 2o (L.H) YnooZn 24 YoooWp 2

3.3)
~H2(2 ..2) Balp .. Bop Z.pa(2 1) By n..Big ?

where o= Pc(p .. 1u2B2p) and = Pc(un .. {2Boup).
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Proof De*ne Tpx:= Xp+ (1 ... n)SX, x C, foreachn 0. ThenT, is continuous by
the continuity of S, and

TaX..Tay, X,y = ... 0) SX..SV,X..y
(1..,) x..y?
Xy 2

where ,:=1..., (0, 1) and this implies thafl , is a strong pseudocontractive mapping.
Hence, by Propositior2.2, there exists a unique elemeni, C such that foreachn 0,

U= nXnt+(1... n)Sun.
Observe that for eactp Cc G,

Zn..p 2= Pc,(Wh ... nAYn) ..Pc,p 2
Zn .. P,Wh o nAYR LD

2 2 2
Zn..p S WP “.lZh Wy weon Zn --P,AVL

NI -

which hence yields

2

Zn..p Wy ..p 2

i Zn Wi 220 Zn P AY

Owing to z, = P, (Wh ... nAYn) With Cy:={y H: Wy ... hAW, ..¥n,Y..¥n O}, One gets
Wn ... nfAW, .. ¥n,Zn .. ¥n 0. Combining @.1) and the pseudomonotonicity ofA guaran-

tees that
Zn. P2 Wo.p 2.z Wn 220 AV Yn P+ Zn . Yn
Wn P 2o Zn o Wa 2. 20 AVn,Zn - Yn
= Wn.P 2 ZnoYn 2 YW 2+ 2 W oo nAYR .Y Zn - Y

= Wn.P 2 ZnoYn 2 YW 2+ 2 W oo nAWh .. Y Zn .. Yn
(3.4)
+2 n AW, . AVN,Zn . Yn
2 ZnYn 2 YnoWn 22U Wn ¥ Zn.Yn
e Zn oY 2 Yn o Wn ZHU W Yn 2t Zn.Yn 2
= Woo P2 (LM YnoZn 2F Yo.ow, 2

Note thatq=Pc(p .. 42B2p), n=Pc(Un ..12Boupn), andw, =Pc( n..M1B1 ). Thenw, =
Gun. By Lemma2.1, one has

2

n..0 Un..p 2..H2(2 ..12) Boup..Bop 2

and

Wy ..p n..g 2. 112 ..p1) By n..Biq 2
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Combining the last two inequalities, one gets

WnoP 2 Un..p 2.2 ..H2) Boup..Bop ?..p1(2 ..p1) B on..Biq 2
This, together with 3.4), implies that inequality 8.3) holds. O
Lemma 3.3 Suppose thafu,}, {x,} are bounded sequences constructed by AlgoritBh
Assumethaty .. X1 O,Un..Gu, 0,and 9'%,..S"!x, 0,and suppose there exists

asubsequencin } { xn}suchthatx, z C.Thenz

Proof From Algorithm 3.1, we obtain that for eachp ,

Un..p 2= nXn . PUn .. p +(1...n) SUn..p,UL .. P

D XnPUn..p +@...0) Un..p 2
which hence yields
Up.P 2 Xn..pUp..P
1 2 2 2
=5 Xn..P S+ Up..p ... Xp..Up
This immediately implies that
Un..P 2 Xp..P 2. Xn..lpn 2. (3.5)

So it follows from 3.3) and the last inequality that

2 2

Zn..p Un..Pp 2. (L) Yn.Zn 2+ Yn..Wn

2

2 X Un 2 (AH) YneZn 2 Ynow, 2,

Xn ..p

which, together with Algorithm 3.1, leads to

2
Xp+1 .- P

= nf(a)..p + alXn..p)+ n Sz ..p ?

nf) P S+ nXn P 2F 0 Sz P P Xn..S'2

n FOW) D 2 n Xn P 2+ oL+ )2 20 2nn XSz

2 2

n FO) D n Xn P 2+ a1+ )2 Xn oD 2. Xn..Un

(L) YneZn 2 YnoWn 2 inn Xn..S'z 2

n f(xn)..p 2+ Xn..p 2+ n(2+ n) Xn..p Z.. n(1+ n)2 Xn .. Up 2

+(11) VYnoZn 24 YooWn 2 eoinon Xn..S'z 2
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This immediately ensures that

2
n(1+ n)2 Xn .. Un 2"’(1--“) Yn .- Zn 2+ Yn .- Wn Z2 o+ nn Xn..S'Z,

Xn oD 2o Xoer P 24 F(X0) P 2F n2F 1) Xn..p 2

Xn .. Xpe1  Xn P+ Xpsr P o+ o T(X0) .. p 2+ n(2+ n) Xn..p 2,

Note that limp, n =0 and O <liminf, n limsup, n < 1. Thus we know that
liminf, n=liminf,  (1...n...n)=1..limsup, n>0.Since,  0,Xy..Xn+1
Oandp (0,1), by the boundedness ¢k,}, we get

nIim Xn .. Un :nlim Vn .. Zn :nlim Vi .. Wy :nlim X ..S'z, =0. (3.6)
So it follows that w,, .. X, Gu, ..Uy, + Up..Xn O(n ),
Zn .. Xn Zn .. Wn + W .. Xn
Zn¥n t Yno-Wn o+ Wh X 0 (n ),
and Xn ..¥n Xn-Zn * Zn..Yn o ).

We show thatlim, Xn -.S% =0. In fact, using the asymptotical nonexpansivity of
S, one obtains that

Xn .. S% Xn..S'z, + Sz,..S% + X, ..S"x,
+ S, ..S"z, + Sz, ..S%
Xn .Sz +@A+ p) Zn Xy + % .. S,
+(1+ n41) XnoeZn +(1+ 1) 20 .. X

=2+ 1) X0 ..S'Z0 + @2+ 0t 1) Zn X + X, . .S, .
Sincex, ..z, 0,%X,..z, 0andS'%,..S"x, 0, we obtain

lim x,..5% =0. (3.7)

We show thatlim,, X ..S% =0whereS:=(2 ..9!Infact, noticinguy = nXn +
1...0)Swupandx,..u, 0,weget

1...n) SUp ..Uy = § Xpn..Up Xn .. Up 0 (n ),
which, together with 0 <liminf,, (1 ... ), yields
nIim Sun..u, =0.

Since{S,},-; is -uniformly Lipschitzian on C, we deduce fromx, ..u, 0 andSu ...
u, Othat

SiXn .. Xn SiXn ..SHun + SUp ..Uy + Up .. Xpn

( +1) up..Xn + SUp..Uy 0 (n ).
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Itis clearthatS:C  Cis pseudocontractive and -Lipschitzian whereSx=Ilim,  §X
x C.We claim thatlim, S* ..Xn =0. Using the boundedness dk,} and putting
D =ton¥x,:n 1} (the closed convex hull of the sefx, : n  1}), by the hypothesis, we
get _;Sup p SX..Sw1X < .So, by Propositior2.1, we havdim,  supg, p SiX...

Sx =0, which immediately arrives at

nIim SiXn ..S¥% =0.
Consequently,
Xn .. S¥ Xn . .SXn + SiXn ..S¥% 0 (n ).

Now, let us show thatif we de“neS:= (2 ..S)~1thenS:C  Cisnonexpansive, Fix) =
Fix(9= ,.,Fix(&), andlim,  x,..S% =0.As a matter of fact, it is known thatS
is nonexpansive and Fixg) = Fix(S) = =1 FIX($)) as a consequence o8, Theorem 6].
Fromx, ..Sx 0, it follows that

Xn ..S% =

8l

X0 .. S% )
K o Xn .

= (2 ..9%p .. Xn = Xpn..SK% 0 (n

2]

Next, let us showz VI(C,A). Indeed, noticingwy, ..., 0 and xn, z, we have
W,  Z. We consider two cases below.

If Az=0, thenitis clearthatz VI(C,A) becauseAz,x..z 0 x C.

Assume thatAz=0. Sincew,,  zask , utilizing the assumption onA, instead of
the sequentially weak continuity oA, we get0< Az liminfy Aw,, . So, we could
suppose that Aw,, =0 k 1. Moreover, fromy, = Pc(W, ... nAW,), we have Wy ...

nAWh .. Y0, X..¥n 0 x C,andhence

1
— Wh .Y X .. Yn + AW,V . Wy AWp, X .. Wp x C. (3.9
n

According to the Lipschitz continuity of A, one knows that{Aw,} is bounded. Note that
{yn} is bounded as well. Using Lemm?a.1, from (3.9 we getliminfy Awp,, X..Wp, 0

x C.
To show thatz VI(C,A), we now choose a sequendex} (0,1) satisfyingx 0 as
k . Foreachk 1, we denote bym, the smallest positive integer such that
Aan,X ---an +x O ] M. (310)

Since{ «} is decreasing, it can be readily seen th@itnc} is increasing. Noticing that
AWm, =0 k 1 (dueto{Awm,} { Awp}), we set n, = :WL?Z, we get AWm,, m, =1

k 1.So, from 8.10 we get AWp,,X+ k m --Wm, O k 1.Again from the pseu-
domonotonicity of A, we have A(X+ k m),X+ k m,--Wm, O k 1.Thisimmediately

leads to

AX, X .. Wi, AXCAXE Kk m ) Xt Kk me Wi -k AX my k 1. (3.11)
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We claim that limy k m = 0. Note that {wm,} { wy}and x 0 ask . So
. . T lim sup, —
it follows that 0 limsup, k m =limsup Aernk T, AWEK =0. Hence
weget x m, Oask . Thus, lettingk , we deduce that the right-hand side of

(3.11) tends to zero by the Lipschitz continuity ofA, the boundedness ofwm, },{ m,} and
the limit limy k m, = 0. Therefore, we getAx,x ..z = liminfy AX, X .. Win, 0

x C.ByLemma2.3 we havez VI(C,A).

Next we show thatz .Infact, fromx, ..u, Oandx,  z wegetu,  z Note
that the condition u, ..Gu, 0 guaranteesl,, ..Gu, 0. From Lemma2.5, it follows
thatl ..Gis demiclosed at zero. Hence we gét.(G)z=0,i.e.z Fix(G). Inthe meantime,
let us show thatz izo FIX(§). Again from Lemma2.5, we know thatl ..Sand| ..Sare
demiclosed at zero. Noticingx,, ...S%, 0 (due to 3.7)) and x,, ...§qu 0 (due to
(3.8), we deduce fronx,, ~ zthatz Fix(S) andz Fix(S) = iz FiX(§). Consequently,
z izoFIX(S) Fix(G) VI(C,A)= with §:=S. This completes the proof. O

Theorem 3.1 Let{x,} be the sequence constructed in Algoritl8rilL Then %, X ,
provided 9x, ..S™!x,  0,where x is the unique solution to the HVI (I ..f)x ,p...
X 0p

Proof First of all, since 0 diminf, n limsup, n <1 andlim, =0, we may
assume, without loss of generality, thdt .} [a,b] (0,1) and , % n 1. We
claimthatP f:C Cisacontraction. In fact, it is clear thaf  f is a contraction.
Banaches contraction mapping principle guarantees that f has a unique “xed point,
sayx C,i.e.,x =P f(x ). Thus, there exists a unique solutior = =oFix(S)
Fix(G) VI(C,A) of the HVI

s

(. fx,p.x 0 p . (3.12)

Next we divide the rest of the proof into several steps.
Step 1.We show that{x} is bounded. In fact, take an arbitraryp = o Fix(S)
Fix(G) VI(C,A). ThenSp=p,Sp=p n 1,Gp=pand@3.3 holds, i.e.,

2 2

Zn..p Un..Pp 2. (L.1) Yn..Zn 2+ Yn..Wn

(3.13)
~H2(2 .2) Bolp .. Bop Z.pi(2 ) By n..Big ?

whereq=Pc(p..12Bzp) and , = Pc(un .. 12Boup). Again from (3.4) and 3.5), we deduce
that

Zy..p Wh..p = Gu,..p Up..p Xn .. P n 1 (3.14)

Thus,using@.19and ,+ o+ =1 n 1, fromthe asymptotical nonexpansivity d,
we obtain

Xn+1 .- P n f(Xn)..p + n Xp..p + 4 S'Z,..p
n fGn).f(P) + f(P..p + nXn..p + n(1+ 1) z0..p
n Xn.p + nf@E..p+ X p +(nt n) Xn.p
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1..
hn Xn P+t o fE.p Q. ) Xn.p ”(2 ) Xn ..P
1..
= 1.. "(2 ) Xn..p + n f(p)..p
1.. 1...)2f(p)..
_— n(2 ) Xy oD + n(2 ) ip) p
max X,..p fo)# :

By induction, we obtain X ...p max Xi ...p Zqﬁ} n 1. Therefore,{x,} is
bounded, and so are the sequencfs}, {Wn}, {yn}, {za}, {f (Xn)}, {AVn}, {Shun}, {S'20}.
Step 2We show that
N XnoUn ZH(LLH) YnoZo ZF YnoWn 2 HH2(2 LHR)
X Boun..Bop 2+ p1(2 ..p1) By n..Biq ? (3.15)

Xn P 2. Xns1 P 2+ 02+ )Mo+2 1Mo
and

n o Uneeentq.p 2+ n.wWa+p..q?2
Xn P 2. Xns1..P 242U Bop..Boun 0.9 (3.16)
+2U1 Big..B1 0 Wh..p + n(2+ n)Mo+2 1My,

forsomeMg > 0. In fact, using 8.5), (3.13, (3.14), and the convexity of the function (s) =
¢ s R,weget

Xns1 .. P 2

= nf0) ) + an D)+ 0 Szo.p + o f(P).p
0 F ) o F(P) + nCn P)F 0 S'Znp 22 nf(D) P Kot P
n F0n) F@) 2+ 0 Xn P 2+ 0 2P 242 1 f(D) P Xner P
n Xn P2t 0 X P2t n(A* )2 Zh..p 242 o f(P)..PXne1 .. P

N Xn P2t X PPt ot a2+ 0 Z0.p 242 0 f(P)..PXns1 P

n Xn..p 2+ n Xn..p 2+ n Un..p 2---(1-U) Yn..Zn 24 Yn .- Wn 2
H2(2 .H2) Bl .Bop a2 1) By g ..Biq
+ 02+ n) Xn..p 2+2 o f(P)..P Xne1 - P (3.17)

n X P2t a X PPt X PZiXooUp 2o (L.H) Yn..Zn 2
+ Yo oW 2 (2 ..H2) Boun ..Bop Z.p1(2 ..ft1) By on..Biq 2
+ 02+ p) Xn..p 242 o F(P)..P Xne1 . P

=1...1..0) XnP2.in Xnoln 21 H) YnoZn 2F Voo, 2

+H2(2 ) BoUp..Bop 2+ (2 ..H1) By n..Big 2
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+ 02+ n) Xn..p 242 o f(P)..P Xne1 - P
Xn P Zoin Xnolp 2+ W) YnoZn 2 YoooW, 2
+Ha(2 42) Boln .Bop 2+ a(2 .. p1) By n..Biq ?

+ n(2+ n)MO"'2 nMOy

wheresup, { Xn..p 2+ f(P)..p X»..p} Mg for someMg > 0. This ensures that

(3.15 holds.
On the other hand, by the “rm nonexpansivity ofPc we obtain that

Wy ..p 2 n..O,Wn..p +H1 Big..B1 n,Wh..D

1
5 -l 2+ Wp.p 2. n.Whtp..g?
+H1 Big..Bi n Wh..p,

which hence gives

Wy ..p 2 Q2. n.Watp.g%+2u1 Biq..Bin Wh..p . (3.18)

In a similar way, we have

2

n..0 Un..p 2.

wUpeont0.p 2+2u5 Bop..Boun  n..q . (3.19)

Substituting 3.19 for (3.18, from (3.14) we deduce that

2 Xp.p?..Uy..n+tq.p?.. n.Whtp..g°?

+2u2 Bop..Bouy .. +2u1 Biq..B1 n Wh..p,

Wh ..

which, together with 3.14 and (3.17), leads to

2 2 2 2
Xn+1 --P n XnoP St nXn Pt nt a2+ ) zZ0.p

+2 o f(P) .. P Xne1 .- P
N Xn P2t 0 Xn P ZH o Woop 2+ 02+ 1) Xn P 2

+2 o f(P) .. P Xne1 --P

n Xn---p2+ an...p2
+ 0 XneP 2% Up..ontq.p?. n.Watp..q?2
+2|.12 ng...BzUn n..q +2|.,11 qu..Bl n Wn..p (320)

+ 02+ n) Xn P 2+2 0 (D) P Xns1 . P
1..01...) Xn.Pp 2.0 Un...n+g..p 2%+ n.Wotp..g?
+2U Bop..Bouy .. +2u; Biq..B1 n Wh..p

+ 02+ n) Xn P 2+2 0 F(D) P X1 P



Ceng et alJournal of Inequalities and Applications  (2022) 2022:78 Page 14 of 28

2 2 2
Xn P “eion Up...ntq..p“+ L.wWyt+tp..g

+2U2 Bep..Bouy n-.q

+2U1 Big..B1 0 Wh..p + n(2+ n)Mo+2 1Mo,

This ensures that 8.16 holds.
Step 3We show that

Xm1-P 2 1...1..) Xn..p?2

2 (f..Dp,Xns+1 --P +_n_(2+ n)Mg

+ (1) . .
s n s

In fact, from (3.14) and 3.17), we have

Xne1 .. P 2
n XDt a X .p 2+ nt+ o2+ ) zn.p?
+2 o f(P) .. P Xn+1 --P
n Xn P2t 0 Xn P2t oo Xn..p 2+ 22+ n)Mo

+2 nf(p)..PXns1 .- P (3.21)

1..01..) Xnoop 2+ 02+ )Mo+2 o f(P)..D Xns1 .. P
1...0.1...) Xn..p?2

by 20DRXer P o (2% Mo
1.. n 1..
Step 4We show that{x,} converges strongly to the unique solutior of the HVI

(3.12. In fact, putting p=x , we deduce from 8.2]) that

2 (f .. X ,Xps1 .. X

Xn+1 - X 2 1...4(1..0) Xp..X 24 n(1...) 1

n 2+ )Mo ©22

n 1..

Putting = X,..X 2, we show the convergence df ,} to zero by the following two
cases.
Case 1Suppose that there exists anintegas 1 suchthat{ ,}is nonincreasing. Then

the limit lim, n=h<+ andlim, ( ... n+1)=0.Puttingp=x andqg=y , from
(3.19 and (3.16 we obtain

N Xnoln 2+ H) YnoeZn 2 Yo oWn 2 +U2(2 . j2)

2 2
x  Boup ..BoXx +l.11(2 -p-l) B1 n..By

, (3.23)

Xn . X oo Xp1 .o X 24 n(2+ )Mo+2 Mg

= neepirt a2+ D)Mot+2 Mg
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and

2 2
n o Uneon®y X "+ pLWh+X Ly

Xn .. X 2...xn+1..x 2+2u2 Byx ..Byupn ney
+2Uu1 By ..Brn Wh..X + n(2+ n)Mo+2 nMg (3.24)
= n.. i1t 242 Box L Boup n-y

+2u; By ..Bin Wh..X + (2+ )Mp+2 M.

Noticing O <liminf, (1 ... ... p) =liminf, mn 0, nhn Oand ,...pn1 O,
one has from 8.23 that

nIim Xn .. Up :nlim Vn .. Zn :nlim Yn..W, =0, (3.25)
and
r]Iim Boup .. Box :nlim B; n..Byy =0. (3.26)

Since 0 diminf, mn 0, n Oand .. a1 O, from(3.29, (3.26, and the
boundedness of .}, {wn}, we deduce that

nIim Up...nty ..X :nlim nWy+x ..y =0. (3.27)
Therefore,

U,..Gu, = Up..Wy
Up...nty ..X + .Wy+X ..y (3.28)

on )

Furthermore, using 8.14), gives

2
Xn+1 X

nf(Xn)..X + pXy..X + 92 ..X
f 2 2 2
n (X)X "+ o XX + 5 SZ,.X T X .Sz,
2 2 2 2
n (X)X "+ o XpoX + a1+ ) zneX Tnn %0 ..S'zn

n (X)) .. x 2+(1... n) Xn .. X 24 n2+ 1) Xy ..X z.. nn Xn..S'z, 2

2

n (). x “+(1...0) Xp..X 24 n(2+ 1) X ..X z. nn Xn..S'z, 2

2 2
Xn .. X T+ M1+ 2+ M1i.opn %, ..8"z 5,

wheresup, { f(X))..x 2+ X,..x 2} My forsomeM; > 0. Thisimmediately implies

2 2 2
non Xn..S'z, Xn oo X o Xner X T+ M1+ o2+ OMy

(3.29)
= N n+1+ an+ n(2+ n)Ml'
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Since 0 diminf, n, 0 <liminf, mmon 0, n O,and ... 42 0, weinfer
from (3.29 that

nIim Xn ..z, =0,
which, together with the boundedness di,}, implies that

Xn+1...Xn = n f(Xn)..Xn + n QZn..Xn
n ) .. Xn + n S'7,..X, (3.30)

n fXn) .. Xn + S'z,..Xn 0 (n ).

From the boundedness ofx}, it follows that there exists a subsequengg,, } of {x,} such
that

limsup(f ..1)X ,Xp .. X :klim (f..DX Xp .. X . (3.31)
n

SinceH is re”exive and{x,} is bounded, we may assume, without loss of generality, that
Xn, X Thus, from 3.31) one gets

limsup(f ..1)x , X ..x = lim (f ..1)x ,Xq ..X

" X (3.32)
=(f..Dx,x.x .

SinceS'x,..S"™x, 0 (duetothe assumption)y,..Gu, 0 (dueto 3.29),Xn ..Xn+1

0 (dueto 3.30), andx,,  xfor{x,} { Xn}, by Lemma3.3 we obtain thatx .Hence

from (3.12 and (3.32), one gets

limsup(f ..1)x ,Xp..x = (f ..])x ,Xx..x 0, (3.33)
n

which, together with 3.30, leads to
limsup(f ..1)X ,Xp+1 .. X
n
=limsup (f ..1)X ,Xps1 . X0 + (F .. 1)X ,Xp .. X (3.34)
n

limsup (f..1)X Xper--Xp + (F..0)X X, .. X 0.
n

Note that{ »(1...)} [0,1], . n(1..)= ,and

2 (f .. X ,Xnsp .. X L. 2+ Mg
1... n 1...

limsup
n
Consequently, applying Lemma.4to (3.22, one hadim,, Xn..X 2=0.
Case 2Suppose that{ ,} { n}suchthat , < n+1 k N, whereN isthe setof

all positive integers. De“ne the mapping : N N by

(n):=maxXk n: < 1}
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By LemmaZ2.6, we get
(n) m+1 and (n)+1-
Puttingp=x andq=y , from (3.15 and (3.16, we obtain

W X U@ @) Yo Ze Pt Y@ W 2 HH22 - p2)
2 2
x  Bou (n) .. Box +u1(2 ..41) By (n) ..B1y (3.35)

M- o+t @2+ @Mo+2 Mo
and

2
m U@ oty X + @ WetX ..y
(n) «-+ (n)+1+2u2 Box ..Bou (n) n --Y (3.36)
+2u; By ..B; n Wa.X + (n)(2+ (n))MO+2 (n)MO-

So it follows from 3.39 that

nIim X@--Um = r]Iim Y®--Zn :nlim Ym--Wam =0, (3.37)
and

nIim Bou () ..Box = nIim Bi ..Biy =0. (3.38)
Further, from (3.36, (3.38), and the boundedness df )}, {w ()}, we deduce that

nIim Ugm... mty -.X :nlim M -Wmtx ..y =0.

Therefore,

u (n)...GU m = Um.--Wm
Um ... mty ..X + M -Wmtx ..y (339)
on )

Utilizing the same inferences as in the proof of Case 1, we deduce that
nIim X me+1--X @ =0 (3.40)
and

limsup(f ..1)X ,X (ny+1 .. X 0. (3.41)
n
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On the other hand, from @.22 we obtain

2(F ..DX X @1 X

(n)(l ) (n) M -+ @+t (n)(l )

1..
L @2+ @)Mo
(n) 1..
2 (f..1x,x X 2+ M
m@...) (1) ()+1 +_ M ( ™Mo ’
1. (n) 1..

which hence yields

2 (F..)x X (y+1 .. X + (n)_(2+ mIMo

0.
1. o 1.

limsup () limsup
n n

Thus, limp, X @ --X 2=0.Also, note that

2
X (n)+1 --X e X ) - X
=2X M+1 - X ()X @) - X F X1 --X (n) 2 (3.42)

2 X M+ X () X@-X T Xm+1..X (n) 2,
Owingto (n)+1, We get

2
Xn..x X(n)+l..x
2
XX "+2Xm1--X@m X@-X + Xm..X(n) 2

0 (n ).
Thatis,x, X asn . This completes the proof. O

Theorem 3.2 LetS:H  C be nonexpansive and the sequefgg} be constructed by the
modi“ed version of Algorithm3.1, that is, for any initial x; C,

Un= nXn+ (1 ... n)Shun,

w, = Gu,,

Yn = Pc(Wn ... nAWy), (3.43)
2, = Pc,(Wh ... nAYn),

Xne1 = nf(Xn)+ nXn+ nSz% n 1,

where foreachn 1,C, and , are chosen as in Algorithr3.1. Then x, X , Where
X is the unique solutionto the HVI (I ..f)x ,p..X 0p

Proof We divide the proof into several steps.
Step 1We show that{x,} is bounded. Indeed, using the same arguments as in Step 1 of
the proof of Theorem3.1, we obtain the desired assertion.
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Step 2We show that

n Xn..Un 2+(1--U) Yn .- Zn 2+ Yn .. Wh 2 +L12(2 --“2)
X Boln..Bop 2+ p1(2 ..p1) By n..Big 2

Xn P 2. Xps1..P 242 1Mo
and

n Uneent0.p 2+ L.wa+p..q?2
Xn..p 2. Xn+1 .- P 2+2u2 sz...BzUn n--g
+2[,l1 qu..Bl n Wh..p +2 My,
wheresup, { Xn..p 2+ f(p)..p X»..p} MgforsomeMg> 0. Infact, using the same

arguments as in Step 2 of the proof of Theore®.1, we obtain the desired assertion.
Step 3We show that

2 (f..Dp,Xn+1 --P
1.. '

Xe1 P 2 L1.on@..) Xn..p 2+ a(1..)

In fact, using the same arguments as in Step 3 of the proof of Theor&m, we obtain the
desired assertion.

Step 4We show that{x,} converges strongly to the unique solutior to the HVI
(3.12, with § = Sa nonexpansive mapping. In fact, putting = x , we deduce from Step 3
that

2 (f .. X ,Xpsp .- X

Xn+1 . X 2 1...0,1...) Xp..X 24 n(...) 1

(3.44)

Putting n= X,..X 2, we show the convergence df ,} to zero by the following two
cases.

Case 1Suppose that there exists anintegas 1 suchthat{ ,}is nonincreasing. Then
the limit lim, n=h<+ andlim;, ( n... n+1) =0.Puttingp=x andqg=y , from
Step 2 we obtain

n Xn..Un 2+(1--U) Yn .- Zn 2+ Yn .. Wh 2 +L12(2 --“2)

2
x  Boup ..Box +u1(2 .|J.1) B, n---Bly
no.-- n+1+2 nMO
and

n Up...nty ..X 24 n--Wp+X .y
ne-- n+]_+2|.12 BZX ..BZUn n ...y
+2u1 By .Bi n W,..X +2 Mo

By the same inferences as in Case 1 of the proof of Theor8r, we deduce that

nIim un..Gu, =0, (3.45)
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nIim Xn .. Xper =0 and limsup(f ..1)X ,Xps1 .. X 0. (3.46)
n

Consequently, applying Lemma.4to (3.44), we obtainlim Xn..X 2=0.
Case 2Suppose that{ ,} { n}suchthat , < .+ k N, where\ isthe set of
all positive integers. De“ne the mapping : N A by

(n):=maxXk n: < 1}
By LemmaZ2.6, we get
(n) (n)+1 and n (n)+1-

The conclusion follows using the same arguments as in Case 2 of the proof of Theo-
rem 3.1 O

Next, we introduce another composite subgradient extragradient algorithm.

Algorithm 3.2 Initialization : Given >0,u (0,1), (0,1), pick aninitialx; C arbi-
trarily.

Iterative stepsComputexn+1 below:

Step 1. Calculatal, = Xp + (1 ... n)Su, and wy = Gu,, and sety, = Pc(Wp ... nAW,),
where , is chosento bethelargest { , , ?2,...} satisfying

AW, LAY M Wh Y (3.47)

Step 2. Calculat&, = Pc,(Wh ... nAYn) With Cr:={y H: Wn ... /AW, ..¥n,Y..¥n O}
Step 3. Calculate

Xpe1= nf(Xn) + nUn+ nS'z,. (3.48)
Again putn:=n+1 and return to Step 1.

It is worth pointing out that inequality (3.5 and Lemmas3.1..3.3are still valid for Al-
gorithm 3.2

Theorem 3.3 Let{x,} be the sequence constructed in Algoriti2 Then %, X ,
provided 9x, ..S"'x, 0,where x is the unique solutionto the HV)I (I ..f)x ,p...
X 0p

Proof Using the same arguments as in the proof of Theorefl, we deduce that there
exists the unique solutiorx = oFix(@§) Fix(G) VI(C,A)tothe HVI(3.12. We
divide the rest of the proof into several steps.

Step 1 We show that{x,} is bounded. In fact, using the same arguments as in Step 1 of
the proof of Theorem3.1, we obtain that inequalities 8.13 and (3.14) hold. Thus, from
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(3.14 it follows that

Xn+1 - P nf(a)..p + nun..p + n S2,..p
n f(n)..f(P) + f(P)..p + nuUn..p + n(l+ ) Z0..p
n Xp-p + f(P)..p + nXp +(nt n) X P

1..
1. ) b 1)

_ a(l...) n(1...)2f(p)..p

- 1... 2 Xn--p + 2 1
max Xp..p %

By induction, we obtain X ...p max Xi ...p m} n 1. Therefore,{x,} is
bounded, and so are the sequencfis}, {Wn}, {yn}, {20}, {f (Xn)}, {AYn}, {Shun}, {S'zn}.

Step 2We show that
no Xnoln ZH(LH) YnoZo F VoW 2 HH2(2 LHR)
X BoUp..Bop 2+u1(2 ..f1) By n..Biq 2 (3.49)

Xn P 2. Xnpe1 P 2F 02+ n)Mo+2 Mg
and

n o Uneent0.p 2+ L.wyt+p..q?
Xn P 2. Xns1 P 242U Bop..Boun  n..g (3.50)
+2U1 Biq..By n Wnh..p + n(2+ n)Mo+2 (Mo,
for someMg > 0. In fact, using 8.5), (3.13, (3.14), and the convexity of the function (s) =
¢ s R,weget
Xne1 .. P 2
n f ) F@) 2+ 0 Unop 2+ o S'Z0p 22 1 F() P Xnet -
N Xn P2t nUn.P P+ ot 02+ 0) zo.p 242 o f(P) P Xns1 D

2 Xnoln 2 () Yoz 2

N Xn P2t 0 Xn P2t o Xp.p
+ Yn..Wn 2 L H2(2 ..Hp) Boup..Bop 2..p1(2 ..pq) By n..Biq 2 (3.51)
+ 02+ n) Xn P PH2 0 F(D) P Xns1 - P

Xn P 2iin Xnoln 2+ ) YnoZn 2F Yoo, 2
+H2(2 ..{2) BoUn..Bop 2+ (2 1) By n..Biq 2

+ n(2+ n)MO"'2 nMO

wheresup, 1{ Xn..p 2+ f(p)..p X,..p} MgforsomeMg > 0. This ensuresthat§.49
holds. Further, using similar arguments to those 08(16), we obtain that 8.50 holds.
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Step 3We show that

Xw1.p 2 1..nl..) Xp..p?

2(f ..1p,Xns1 --P LY 2+ p)Mg

+ (1) . .
e n e

In fact, from (3.14) and 3.51), we have

Xne1 .. P 2
N Xn P2t nUn.p 2t at 02+ 0) Zn..p 242 o f(P)..PXne1 . P
N Xn P ZH X P 2+ o Xn P 2+ n(2+ )Mo
+2 o f(p)..p,Xns1 .- P

2 ..DpXne1 .. P L 2+ )My
1.. n 1.. '

=1..01...) Xo..p 2+ o(1...)

Step 4We show that{x,} converges strongly to the unique solutior of the HVI
(3.12. In fact, putting p=x , we deduce from Step 3 that

Xn+1 -» X 2 1...,1...) Xp..X 2

2(F X X1 X o (2+ )Mo (3.52)
1... n 1... '

+ n(1...)

Putting = X,..X 2, we show the convergence df .} to zero by the following two

cases.
Case 1Suppose that there exists anintegeg 1 suchthat{ .}isnonincreasing. Then
the limit lim, n=h<+ andlim, ( n... n+1) =0.Puttingp=x andqg=y , from

(3.49 and (3.50, we obtain that

n Xn..Un 2+(1--U) Yn .- Zn 2+ Yn .. Wh 2 +L12(2 --U—Z)
X  Boup ..Box 2+H1(2 .}.11) B1 n..B1y
nee et n(2+ n)Mo+2 Mg

and

2
n o UneondY X "+ L Wat+X LY

ne nelt 202 Box .. Baup n--y

+2|J.]_ Bly ...B]_ n Wn...x + n(2+ n)M0+2 nMO.

By the same inferences as in Case 1 of the proof of Theor@r we deduce thati,, ..Gu,
0,%,..Xn+1  Oand

limsup(f ..1)X ,Xps1 .. X 0.
n

Consequently, applying Lemma.4to (3.52), we obtainlimp, Xn..X 2=0.



Ceng et alJournal of Inequalities and Applications  (2022) 2022:78 Page 23 of 28

Case 2Suppose that{ .} { n}suchthat , < .+ k N, where\ isthe set of
all positive integers. De“ne the mapping : ' A by

(n):=maxXk n: < g1}
By LemmaZ2.6, we get

™ m+ and ()+1-

In the remainder of the proof, using the same arguments as in Case 2 of Step 4 in the proof
of Theorem 3.1, we obtain the desired conclusion. O

Theorem 3.4 LetS:H  C be nonexpansive and the sequergg} be constructed by the
modi“ed version of Algorithm3.1, that is, for any initial x; C,

U= nXnt+(1... 0)Shun,

w, = Gup,

Yn = Pc(Wp ... nAW,), (3.53)
Zn = Pc,(Wn ... nAYn),

X1 = nfXn)+ nUn+ nSz N1,

where foreachn 1,C, and , are chosen as in Algorithr3.2 Then x, X , Where
X is the unique solutionto the HVI (I ..f)x ,p..X 0p

Proof We divide the proof into several steps.

Step 1We show that{x,} is bounded. Indeed, using the same arguments as in Step 1 of
the proof of Theorem3.3 we obtain the desired assertion.

Step 2We show that

N XnoUn ZH(LH) YnoZo ZF YnoWn 2 HH2(Q2 L)
X BoUn..Bop 2+p1(2 ..{1) By n..B1g ?

Xn P 2. Xps1 .. P 242 WMo
and

n o Uneentg.p 2+ L.wy+p..q?2
Xn P 2. Xps1 P 242U Bop..Boun  n..q
+2u1 qu--Bl n Wn..p +2 Mo,
wheresup, { Xn..p 2+ f(p)..p Xn..p} MgforsomeMy> 0. Infact, using the same

arguments as in Step 2 of the proof of Theore®.3 we obtain the desired assertion.
Step 3We show that

2 (f..Dp,Xn+1 --P
1.. '

Xn+l..p 2 1 e n(l...) Xn ..p 2+ n(l...)
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In fact, using the same arguments as in Step 3 of the proof of Theor&m, we obtain the
desired assertion.

Step 4 We show that{x,} converges strongly to the unique solutior to the HVI
(3.12, with § = Sa nonexpansive mapping. In fact, putting = x , we deduce from Step 3
that

2 (f..1X ,Xpsp .- X
1..

Xort X 2 Lon(l.n) XaoX 4+ a(1..) (3.54)

Putting = X,..X 2, we show the convergence df .} to zero by the following two

cases.

Case 1Suppose that there exists anintegeg 1 suchthat{ ,}isnonincreasing. Then
the limit lim, n=h<+ andlim, ( ... n+1)=0.Puttingp=x andqg=y , from
Step 2 we obtain

n Xnoln ZH(LH) YooZo ZF Yo oWn 2 22 .H2)
X Boup ..BoXx 2+H1(2 .}J.]_) B1 n..B1y

n.- nt1+t2 Mg

and

2 2
n Uneon®y X "+ pLWhtX Ly

nee i1+t 202 BoX ..Bolun .y

+2u1 By .Bi n Wh,..X +2 Mo

By the same arguments as in Case 1 of the proof of Theoré& we deduce thatuy, ...
GUu, 0,Xp..-X+1 Oand

limsup(f ..1)X ,Xp+1 .. X 0.
n

Consequently, applying Lemma.4to (3.54), we obtainlimp, Xn..X 2=0.
Case 2Suppose that{ .} { n}suchthat , < .+ k N, where\ isthe set of
all positive integers. De“ne the mapping : ' A by

(n):=maxk n: (< g}
By LemmaZ2.6, we get
™ m+1 and (n)+1-

The conclusion follows using the same arguments as in Case 2 of the proof of Theo-
rem3.3 d

Remark3.1 Compared with the corresponding results in Ceng and We1], Ceng and
Shang 2], and Thong and Hieu [L4], our results improve and extend them in the following
aspects:
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(i) The problem of “nding an element of ,_,Fix(§) Fix(G) in[21] is extended to de-
velop our problem of “nding an element of _jFix(§) Fix(G) VI(C,A) where{S},_;
is a countable family of -uniformly Lipschitzian pseudocontractive mappings an§, = S
is asymptotically nonexpansive. The hybrid extragradient-like implicit method for “nding
anelementof _ Fix(S) Fix(G)in[21]is extended to develop our Mann implicit com-
posite subgradient extragradient method with line-search process for “nding an element
of oFix(§) Fix(G) VI(C,A),which is based onthe Mann implicit iteration method,
subgradient extragradient method with line-search process, and viscosity approximation
method.

(i) The problem of “nding an element of Fix§) VI(C, A) with quasinonexpansive map-
ping Sin [14] is extended to develop our problem of “nding an element of ,_, Fix(S)
Fix(G) VI(C,A) where{S},_; is a countable family of -uniformly Lipschitzian pseu-
docontractive mappings andy, = Sis asymptotically nonexpansive. The inertial subgra-
dient extragradient method with linear-search process for “nding an element of F8)(
VI(C,A) in [14] is extended to develop our Mann implicit composite subgradient extra-
gradient method with line-search process for “nding an element of ,_, Fix(§) Fix(G)
VI(C,A), which is based on the Mann implicit iteration method, subgradient extragradient
method with line-search process, and viscosity approximation method.

(iii) The problem of “nding an element of = ilio Fix(§) VI(C,A) with “nitely many
nonexpansive mapping$S}Y, is extended to develop our problem of “nding an ele-
mentof = _ Fix(§) Fix(G) VI(C,A)witha countable family of -uniformly Lip-
schitzian pseudocontractive mapping§S},-;. The hybrid inertial subgradient extragra-
dient method with line-search process in42] is extended to develop our Mann implicit
composite subgradient extragradient method with line-search process, e.g., the original
inertial approachw, = Sixn + n(SiXn ...SXn...9 is replaced by Mann implicit composite
iteration methodu, = Xn + (1 ... n)SW, andw, = Gu,. In addition, it was shown in 2]
that, under condition Sz, ..S™'z, 0, the conclusion holds:

Xn X Xn.¥n t Xn .. Xnsl 0 withx =P (I ... F+f)x .

In this paper, using Lemma2.6, we show that, under conditionS'x, ...S"'x, 0, the
following conclusion holds:

Xn X withx =P f x

4 Applications
In this section, applying our main results, we deal with the GSVI, VIP, and CFPP in an

illustrated example. Pupi =p2=3, =1,pu= =3, n=5, =3 n= zpm and
_2

n

Wes“rst provide an example of two inverse-strongly monotone mapping3;,B, : C
H, Lipschitz continuous and pseudomonotone mapping, asymptotically nonexpansive
mapping S, and countably many -uniformly Lipschitzian pseudocontractive mappings
{S}-ywith = Fix(§) Fix(G) VI(C,A)= with §:=S LetC=][...3,3]and =R
with the inner product a,b =abandinduced norm - =]-|. Theinitial point x; is ran-
domly chosen inC. Takef (x) = %x x Cwith =3, and putB;x = Box :=Bx=Xx % sinx

x C.LetA:H HandSS:C Cbede‘nedasAu = i .4, Su:= Zsinu,

= T+[sinu] - TH)
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andSu=Tu=sinu u H,i

In fact, sinceB is %-strongly monotone andg-Lipschitz continuous, we know thatB is

é-inverse-strongly monotone with =

vV ...u
Au .. Av

sinv ...

sinu

Q1+ u)@+ v)

V..u

A+ sinu )(1+ sinv)

sinv..sinu

I+ u)A+ v) (@L+ sinu)d+ sinv)

u..v + sinu..sinv

2U..V.

Page 26 of 28

1. We now claim thatB is %-inverse-strongly monotone.

= %. Let us show thatA is pseudomonotone and
Lipschitz continuous. In fact, for allu,v H, we have

This implies that A is Lipschitz continuous withL = 2. Next, we show thatA is pseu-

domonotone. For eachu,v H, itis easy to see that

1 1
1+|sinu| "1+]u|

1 1
1+|sinv] "1+|v|

Au,v..u = (v..u) 0

Av,v..u =

Besides, it is easy to verify tha is asymptotically nonexpansive with,, = (g)n n
. Indeed, we observe that

such that S™1x, ..S'x, 0 asn
n
Su.Sv 2 ShSh . 2
6 6
and
5 M-t 5
g1+an..s1Xn —= SZXn _Sx,] = —
6 6
5 n
2 — 0
6

It is clear that Fix(©) = {0} and

n

= g OO

li 7 =
M= M T3ne

n

(v..u

0.

v (1+ ) u.v

5 5
—sin(S¥,) ..=si
6sm( %) 6smxn

In addition, itis clearthatS = T is nonexpansive and FiX() = {0}. Therefore,

Fix(S) Fix(G)

M2B2) =[Pc(l % B)]?, we rewrite Algorithm 3.1as follows:

Un = 2%, + 1Tup,

Wy = [Pc(l .. 2B)]%un,
Yn = Pc(Wp ... nAWg),
Zn = Pc,(Wn ... nAYn),

_ 11 n 2
X1 = 35 2%t gpipXn t 352 n 4,

1,

=Fix(T)
VI(C,A) ={0} = .Inthiscase, noticings, =T andG = Pc(l ..p1B1)Pc(l ...

(4.2)



Ceng et alJournal of Inequalities and Applications  (2022) 2022:78 Page 27 of 28

where foreacm 1,C, and , are chosen as in Algorithn8.1 Then, by Theorem3.1, we
know that {x,} convergesto 0  =Fix(T) Fix(S Fix(G) VI(C,A).

In particular, sinceSu:= 2 sinu is also nonexpansive, we consider the modi“ed version
of Algorithm 3.1, that is,

Un = £Xn + 2Tun,

W = [Pc(l ---%B)]zun,

Yn = Pc(Wh ... nAW,), 4.2)
2z, = Pc,(Wh ... nAYn),
Xn+]_ = ﬁ : %Xn + ﬁxn + %SZ] n 1,

where foreacm 1,C, and , are chosen as above. Then, by Theoredr2, we know that
{xn} convergesto0  =Fix(T) Fix(§ Fix(G) VI(C,A).
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