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Abstract
This paper discusses the optimal control problems for a nonlinear age-structured
two-species model, where elder individuals are more competitive than younger ones,
and each species is described by a nonlinear integropartial differential equation with
a global feedback boundary condition. First, we establish the existence of a unique
nonnegative bounded solution by means of frozen coefficients and the fixed-point
theorem. More importantly, we discuss the least deviation-cost problem and the
most benefit-cost problem. For the least deviation-cost problem, the existence of an
optimal strategy is established by means of Ekeland’s variational principle, and the
minimum principle is obtained via an adjoint system. Meanwhile, the corresponding
results for the most benefit-cost problem are given. In addition, some numerical
experiment results are presented to examine the effects of parameters on the optimal
policies and indexes.
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1 Introduction
It is well known that populations consist of individuals with many structural differences,
which include age, size, gender, and status. Structured population models distinguish in-
dividuals from one another according to these structural differences, to determine the
birth, growth, and death rates, interaction with each other and with the environment, in-
fectivity, etc. (see [1]). During the past one hundred years, age- and size-structured first-
order partial differential equations have provided a main tool for modeling population
systems and have been recently employed in economics. To name a few, see [2–12] on the
well-posedness, asymptotic behaviors, and optimal control of population models with age
structure, while [1, 13–22] discussed the related problems of population systems with size
structure.

Ecological studies show that there exist dominance ranks of individuals in many species,
such as nonmammalian, primates, rodents, etc., (see [23]). Moreover, [24] pointed out that
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for many species the competition for resources that determine individual fertility and mor-
tality is based on some hierarchy in the population that is related to individuals age or any
other physiological structure. They also referred to this competitive phenomenon as “con-
test competition” (see [25]). Hierarchical structuring in a biotic population is the ranking
of individuals one above the other based on their age, body size, height, or any other pos-
sible structuring variable that can affect their vital rates (see [26]). Further, Lomnicki [27]
showed that the rank of an individual not only influences its access to some factors such as
food resource, mates, shelter, and nesting, but also has some influence on the individual’s
vital rates. Thus, the existence of hierarchy has an impact on the dynamic behaviors of
the population. Just as Gurney and Nisbet [26] said, the hierarchy of ranks in a population
is one of the significant forces to maintain its ecological stability and species persistence.
During the past decade, both discrete-time and continuous hierarchical structured pop-
ulation models have been studied by several researchers (see [28–37]). The hierarchical
model is considered as a generalization of the age- and size-structure model. The key is
to consider the so-called “internal environment” in the modeling. For example, Ackleh
and Deng [29] discussed the following nonlinear hierarchical age-structured population
model

⎧
⎪⎪⎨

⎪⎪⎩

∂p(a,t)
∂t + ∂p(a,t)

∂a = –μ(a, t, Q(p)(a, t))p(a, t), 0 < a < ∞, t > 0,

p(0, t) =
∫ ∞

0 β(a, t, Q(p)(a, t))p(a, t) da, t > 0,

p(a, 0) = p0(a), 0 ≤ a < ∞,

(1.1)

where the environment Q(p)(a, t) is a function of the density p, which is given by

Q(p)(a, t) = α

∫ a

0
p(r, t) dr +

∫ ∞

a
p(r, t) dr, 0 ≤ α < 1. (1.2)

Parameter α is used to measure the degree of hierarchy in the population structure, and
is called the hierarchical coefficient. More precisely, α is the weight of the lower ranks
(i.e., age smaller than a) in the competition for resources. From [38], α = 0 (i.e.,“contest
competition”) implies an absolute hierarchical structure, whereas values of α tending to 1
mean that, when competing for resources, the effect of higher ranks is similar to the effect
of lower ranks. Moreover, the limit case α = 1 (i.e., “scramble competition”) corresponds to
the environment given by the total size of population at time t, i.e., without any hierarchical
structure.

Most studies on the hierarchical population model mainly discuss the existence and
uniqueness of solutions (see [28, 30, 36, 37]), numerical approximation of solutions (see
[28, 29, 32, 33, 37]), and the asymptotic behavior of solutions (such as stability and persis-
tence, see [31, 34, 35, 38]). However, studies on optimal control problems of hierarchical
species models are rather rare. As far as we know, so far only [39, 40] have investigated op-
timal control problems in hierarchical species. However, there is no investigation on the
optimal boundary control of hierarchical multispecies model. The purpose of this paper
is to make some contribution in this direction. In this paper, we will discuss the optimal
control problems in a hierarchical system composed of two interacting species with age
structure. The control variables describe the inflow rate of the baby individual from an
external source (such as artificially stocking fry or artificially planting saplings), which ap-
pear in the boundary conditions.
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2 Description of the problem
Our study is inspired by that of Ackleh and Deng [29]. To build our model, we assume
that there are age structures in two species and they have the same life expectancy (i.e.,
maximal age) and is A ∈ (0, +∞). Moreover, we assume that the mortality and fertility
of species depend mainly on the number of elderly individuals in addition to the age of
individuals. From [29], this phenomenon can be described as that the vital rates of an
individual depend not only on its age, but also on an “internal environment”. Let pi(a, t)
be the density of species i with age a at time t (i = 1, 2). In a similar way as we developed
(1.2), the “internal environment” E(pi) of species i can be defined as

E(pi)(a, t) = αi

∫ a

0
pi(r, t) dr +

∫ A

a
pi(r, t) dr, 0 ≤ αi < 1. (2.1)

Here, constant αi is the degree of hierarchy. This means that younger individuals are less
competitive than older ones. Moreover, when two species interact, we assume that the
fertility of a species is only related to its own “internal environment”, and the mortality of
one species is not only related to its own “internal environment”, but also dependent on
the “internal environment” of the another species. Thus, we can assume that the fertil-
ity and mortality of species i are βi(a, E(pi)(a, t)) and μi(a, E(p1)(a, t), E(p2)(a, t)), respec-
tively. Hence, we propose the following hierarchical age-structured two-species model
with boundary control (i = 1, 2)

⎧
⎪⎪⎨

⎪⎪⎩

∂pi(a,t)
∂t + ∂pi(a,t)

∂a = –μi(a, E(p1)(a, t), E(p2)(a, t))pi(a, t), (a, t) ∈ Q,

pi(0, t) =
∫ A

0 βi(a, E(pi)(a, t))pi(a, t) da + ui(t), t ∈ (0, T),

pi(a, 0) = p0
i (a), a ∈ [0, A),

(2.2)

where Q = (0, A) × (0, T) and T ∈ (0, +∞) represents the control horizon. p0
i (a) is the ini-

tial age distribution of species i. The control variable ui(t) stands for the number of baby
individuals influx into species i at time t. Moreover, we assume that the control variable
ui(t) belongs to

ui ∈ Ui
.=
{

v ∈ L∞(0, T) | 0 ≤ v(t) ≤ Ui, t ∈ (0, T)
}

.

The positive constant Ui represents the maximum number of baby individuals influx into
species i. Let U .= U1 × U2 = {(v1, v2) ∈ [L∞(0, T)]2|0 ≤ vi(t) ≤ Ui, t ∈ (0, T), i = 1, 2}. For
any u = (u1, u2) ∈ U , let (pu

1(a, t), pu
2(a, t)) be the solution of (2.1) and (2.2) with the control

variable u.
Compared with known closely related ones, our model has the following features. It

is clear that our model includes some existing two species models with age structure. If
we take μi(a, E(p1)(a, t), E(p2)(a, t)) = μi(a, t) – λi(a, t)Pj and βi(a, E(pi)(a, t)) = βi(t)mi(a, t)
(i, j = 1, 2; i �= j), then our model can be reduced to the model discussed in [9]. More-
over, if there is only one species and ui(t) ≡ 0, our system can be reduced to the system
(1.1) and (1.2). In [29], Ackleh and Deng assumed that the vital signs β and μ in (1.2)
are, respectively, decreasing and increasing with respect to “internal environment” Q (i.e.,
–∞ < βQ ≤ 0 and 0 ≤ μQ < ∞). Based on these, the authors proved that the system has
a unique solution by establishing a comparison principle and constructing monotone se-
quences. Moreover, they gave conditions for extinction and persistence of the population.



Liu et al. Journal of Inequalities and Applications         (2022) 2022:76 Page 4 of 24

Undoubtedly, the above works are important and helpful to understand the evolution
of hierarchical species. However, it is also an important topic for human beings to use or
transform nature (such as renewable-resource development, pest control, etc.) to serve
human survival and development on the basis of understanding of nature. The research
in this field corresponds to the control problem of the model mathematically. It is widely
known that investigations on optimal control problems in hierarchical populations are
rather rare. The purpose of this paper is to make some contribution in this direction.

On the one hand, if the system describes the interaction between pests or annoying
animals (such as rodents), we always hope that each species can be reduced to an ideal
distribution level that does not affect crop growth and will not become extinct. Thus, in
this paper, we first consider the following optimization problem

min
(u1,u2)∈U

J(u1, u2) .=
2∑

i=1

{∫ A

0

[
pu

i (a, T) – p̄i(a)
]2 da + σi

∫ T

0
u2

i (t) dt
}

. (2.3)

Here, the first integral represents the deviation between final state pu
i (a, T) and ideal dis-

tribution p̄i(a), while the second one stands for the costs of control with factor σi. Thus,
an optimal policy for (2.3) is to manipulate the system with any given initial distribution
as close as possible to an ideal distribution with least control cost. Hence, control problem
(2.3) can be called the least deviation-cost problem.

On the other hand, if species in the system are of renewable resources (such as forest re-
sources or fish resources), optimal harvesting is always one of the most fascinating topics.
Thus, in this paper, we also consider the following optimization problem

max
(u1,u2)∈U

J(u1, u2) .=
2∑

i=1

{∫ A

0
gi(a)pi(a, T) da – σi

∫ T

0
u2

i (t) dt
}

. (2.4)

Here, function gi(a) represents the price of individuals with age a in species i. The moti-
vation for (2.4) is as follows: How to input baby individuals during the period [0, T], such
that one can obtain the most benefit by exploiting the final distributions of species with the
least control cost? Hence, one can say optimization problem (2.4) is the most benefit-cost
problem.

Similar to the hypothesis of model (2.1) in [2, p.30], here, we make the following assump-
tions (i = 1, 2). Denote R+ = [0, +∞).

(A1) 0 ≤ βi(a, x) ≤ β∗
i for any (a, x) ∈ (0, A) × R+, where β∗

i is a positive constant. This is
reasonable because the birth rate of any species is a bounded function. Moreover,
for any M > 0, there is L1(M) > 0 such that

∣
∣βi(a, x1) – βi(a, x2)

∣
∣ ≤ L1(M)|x1 – x2|, for a ∈ [0, A), x1, x2 ∈ [0, M].

This means that the derivative of the birth rate of the species with respect to its
“internal environment” is a bounded function.

(A2) μi(a, x, y) > 0 for any (a, x, y) ∈ (0, A) × R+ × R+. For any (x, y) ∈ R+ × R+, μi(·, x, y) ∈
L1

loc[0, A] and
∫ A

0 μi(a, x, y) da = +∞. This condition will guarantee that there are
no individuals with age beyond A for each species. Moreover, for any M > 0, there
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is L2(M) > 0 such that for a ∈ [0, A) and x1, x2, y1, y2 ∈ [0, M]

∣
∣μi(a, x1, y1) – μi(a, x2, y2)

∣
∣ ≤ L2(M)

(|x1 – x2| + |y1 – y2|
)
.

(A3) For any a ∈ (0, A), 0 ≤ p0
i (a) ≤ p∗

i with positive constant p∗
i . This ensures that the

initial distribution of each species is bounded.

3 Well-posedness of the state system
The purpose of this section is to discuss the well-posedness of (2.1) and (2.2). Here, we
assume T > A and omit the proof for the case T ≤ A (which is analogous, but easier). Let
X = [L∞(0, T ; L1(0, A))]2 .= L∞(0, T ; L1(0, A)) × L∞(0, T ; L1(0, A)). For any w = (w1, w2) ∈ X,
define a new norm in X by

‖w‖∗ = Ess sup
t∈(0,T)

{

e–λt
[∫ A

0

∣
∣w1(a, t)

∣
∣da +

∫ A

0

∣
∣w2(a, t)

∣
∣da

]}

,

for some λ > 0. It is clear that (X,‖ · ‖∗) is a Banach space. Let M∗
i = max{(Aβ∗

i p∗
i +

Ui) exp{Tβ∗
i }, p∗

i } and M∗ = max{M∗
1, M∗

2}. Further, define the solution space as follows

X =
{

(w1, w2) ∈ X
∣
∣
∣
∣
wi(a, t) ≥ 0 a.e. (a, t) ∈ Q and

∫ A
0 wi(a, t) da ≤ M∗

a.e. t ∈ (0, T), i = 1, 2

}

.

Note that X is a nonempty closed subset in X. Hence, (X ,‖ · ‖∗) is also a Banach space.
Moreover, for any w = (w1, w2) ∈ X, we denote

∥
∥w(·, t)

∥
∥

[L1(0,A)]2 =
2∑

i=1

∥
∥wi(·, t)

∥
∥

L1(0,A) =
2∑

i=1

∫ A

0

∣
∣wi(a, t)

∣
∣da.

First, let q(a, t) = (q1(a, t), q2(a, t)) ∈ X be arbitrary but fixed, so is the function

E(qi)(a, t) = αi

∫ a

0
qi(r, t) dr +

∫ A

a
qi(r, t) dr, i = 1, 2. (3.1)

Consider the following linear system

⎧
⎪⎪⎨

⎪⎪⎩

∂pi(a,t)
∂t + ∂pi(a,t)

∂a = –μi(a, E(q1)(a, t), E(q2)(a, t))pi(a, t), (a, t) ∈ Q,

pi(0, t) =
∫ A

0 βi(a, E(qi)(a, t))pi(a, t) da + ui(t), t ∈ (0, T),

pi(a, 0) = p0
i (a), a ∈ [0, A).

(3.2)

Clearly, system (3.1) and (3.2) has a unique nonnegative solution (p1(a, t; q), p2(a, t; q)).
Using the characteristic lines (see [2]), the solution has the form (i = 1, 2):

pi(a, t; q) =

⎧
⎨

⎩

pi(a – t, 0)�i(a, t, t; q), a ≥ t;

bi(t – a; q)�i(a, t, a; q), a < t,
(3.3)

where bi(t – a; q) .= pi(0, t – a; q) and

�i(a, t, s; q) = e–
∫ s

0 μi(a–τ ,E(q1)(a–τ ,t–τ ),E(q2)(a–τ ,t–τ )) dτ . (3.4)
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Thus, we can claim that bi(t; q) (i = 1, 2) satisfies

bi(t; q) = Fi(t; q) +
∫ t

0
Ki(t, a; q)bi(t – a; q) da, t ∈ (0, T), (3.5)

where

Ki(t, a; q) =

⎧
⎨

⎩

βi(a, E(qi)(a, t))�i(a, t, a; q), (a, t) ∈ Q;

0, otherwise,
(3.6)

Fi(t; q) =

⎧
⎨

⎩

∫ A
t βi(a, E(qi)(a, t))p0

i (a – t)�i(a, t, t; q) da + ui(t), t ∈ (0, A);

0, otherwise.
(3.7)

Moreover, (A1)–(A3) imply that

0 ≤ Ki(t, s; q) ≤ β∗
i , 0 ≤ Fi(t; q) ≤ Aβ∗

i p∗
i + Ui. (3.8)

Lemma 3.1 For any qi = (qi
1, qi

2) ∈X (i = 1, 2), there are positive constants M1 and M2 such
that for 0 < t < T

∣
∣Fi

(
t; q1) – Fi

(
t; q2)∣∣

≤ M1

[
∥
∥q1(·, t) – q2(·, t)

∥
∥

[L1(0,A)]2 +
∫ t

0

∥
∥q1(·, s) – q2(·, s)

∥
∥

[L1(0,A)]2 ds
]

, (3.9)

∣
∣bi

(
t; q1) – bi

(
t; q2)∣∣

≤ M2

[
∥
∥q1(·, t) – q2(·, t)

∥
∥

[L1(0,A)]2 +
∫ t

0

∥
∥q1(·, s) – q2(·, s)

∥
∥

[L1(0,A)]2 ds
]

. (3.10)

Proof It is easy to show that (3.5) has a unique nonnegative solution. Moreover, using
(3.5)–(3.8) and Gronwall’s inequality, we can derive that bi(t; q) ≤ Bi with positive constant
Bi = (Aβ∗

i p∗
i + Ui) exp{Tβ∗

i } (i = 1, 2). For any qi = (qi
1, qi

2) ∈ X , it follows from (3.1) that
(i, j = 1, 2)

E
(
qi

j
)
(a, t) = αj

∫ a

0
qi

j(r, t) dr +
∫ A

a
qi

j(r, t) dr ≤
∫ A

0
qi

j(r, t) dr ≤ M∗. (3.11)

Moreover, we have

∣
∣E

(
q1

j
)
(a, t) – E

(
q2

j
)
(a, t)

∣
∣

=
∣
∣
∣
∣αj

∫ a

0

[
q1

j (r, t) – q2
j (r, t)

]
dr +

∫ A

a

[
q1

j (r, t) – q2
j (r, t)

]
dr

∣
∣
∣
∣

≤
∫ A

0

∣
∣q1

j (r, t) – q2
j (r, t)

∣
∣dr =

∥
∥q1

j (·, t) – q2
j (·, t)

∥
∥

L1(0,A). (3.12)
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Now, we prove inequality (3.9). From (A1)–(A3), it follows that

∣
∣�i

(
a, t, t; q1) – �i

(
a, t, t; q2)∣∣

≤ L2
(
M∗)

∫ t

0

2∑

j=1

∣
∣E

(
q1

j
)
(a – τ , t – τ ) – E

(
q2

j
)
(a – τ , t – τ )

∣
∣dτ

= L2
(
M∗)

∫ t

0

2∑

j=1

∣
∣E

(
q1

j
)
(a – t + s, s) – E

(
q2

j
)
(a – t + s, s)

∣
∣ds

≤ L2
(
M∗)

∫ t

0

∥
∥q1(·, s) – q2(·, s)

∥
∥

[L1(0,A)]2 ds (i = 1, 2). (3.13)

Thus, from (3.7) and (3.11)–(3.13), we have

∣
∣F1

(
t; q1) – F1

(
t; q2)∣∣ ≤ L1

(
M∗)p∗

1

∫ A

0

∣
∣E

(
q1

1
)
(a, t) – E

(
q2

1
)
(a, t)

∣
∣da

+ p∗
1β

∗
1

∫ A

0

∣
∣�1

(
a, t, t; q1) – �1

(
a, t, t; q2)∣∣da

≤ M1,1D(t),

where D(t) = ‖q1(·, t) – q2(·, t)‖[L1(0,A)]2 +
∫ t

0 ‖q1(·, s) – q2(·, s)‖[L1(0,A)]2 ds and positive con-
stant M1,1 = p∗

1A max{L1(M∗),β∗
1 L2(M∗)}. Similarly, we also have

∣
∣F2

(
t; q1) – F2

(
t; q2)∣∣ ≤ M1,2D(t),

where M1,2 = p∗
2A max{L1(M∗),β∗

2 L2(M∗)}. Thus, the inequality (3.9) is true with M1 =
max{M1,1, M1,2}.

Next, we prove inequality (3.10). From (A1)–(A3) and (3.5), it follows that

∣
∣b1

(
t; q1) – b1

(
t; q2)∣∣

≤ ∣
∣F1

(
t; q1) – F1

(
t; q2)∣∣ +

∫ t

0
K1

(
t, t – s; q2)∣∣b1

(
s; q1) – b1

(
s; q2)∣∣ds

+
∫ t

0

∣
∣K1

(
t, t – s; q1) – K1

(
t, t – s; q2)∣∣b1

(
s; q1)ds

≤ M1D(t) + L1
(
M∗)B1T

∥
∥q1

1(·, t) – q2
1(·, t)

∥
∥

L1(0,A)

+ β∗
1

∫ t

0

∣
∣b1

(
s; q1) – b1

(
s; q2)∣∣ds

+ L2
(
M∗)B1Tβ∗

1

∫ t

0

2∑

j=1

∥
∥q1

j (·, s) – q2
j (·, s)

∥
∥

L1(0,A) ds

≤ M3D(t) + β∗
1

∫ t

0

∣
∣b1

(
s; q1) – b1

(
s; q2)∣∣ds,
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where M3 = M1 + B1T max{L1(M),β∗
1 L2(M)}. Then, using Gronwall’s inequality, we can

obtain

∣
∣b1

(
t; q1) – b1

(
t; q2)∣∣ ≤ M2,1D(t),

where M2,1 = M3[1 + β∗
1 exp{β∗

1 T}(1 + T)]. Similarly, we also have

∣
∣b2

(
t; q1) – b2

(
t; q2)∣∣ ≤ M2,2D(t),

where M2,2 = [M1 + B2T max{L1(M),β∗
2 L2(M)}][1 + β∗

2 exp{β∗
2 T}(1 + T)]. Hence, (3.10) is

true with M2 = max{M2,1, M2,2}. The proof is complete. �

Now, for any q = (q1, q2) ∈X , we define the mapping A : X → X by

Aq = A(q1, q2) =
(
A1(q1, q2),A2(q1, q2)

)
,

where Ai(q1, q2) (i = 1, 2) is defined by the right-hand sides of (3.3). Moreover, for any
q ∈ X , it is easy to show that Aq ∈ X . Thus, if A is a contractive mapping on Banach
space (X ,‖ · ‖∗), then system (2.1) and (2.2) has a unique solution.

Theorem 3.2 Let (A1)–(A3) hold. Then, system (2.1) and (2.2) has a unique solution,
which is nonnegative and bounded.

Proof For any qi = (qi
1, qi

2) ∈X (i = 1, 2), it follows from Lemma 3.1 that

∫ A

0

∣
∣A1

(
q1

1, q1
2
)

– A1
(
q2

1, q2
2
)∣
∣(a, t) da

≤
∫ t

0

∣
∣b1

(
s; q1) – b1

(
s; q2)∣∣ds + B1

∫ t

0

∣
∣�1

(
a, t, a; q1) – �1

(
a, t, a; q2)∣∣da

+ p∗
1

∫ A

t

∣
∣�1

(
a, t, t; q1) – �1

(
a, t, t; q2)∣∣da

≤ M2

∫ t

0

[
∥
∥q1(·, s) – q2(·, s)

∥
∥

[L1(0,A)]2 +
∫ s

0

∥
∥q1(·, τ ) – q2(·, τ )

∥
∥

[L1(0,A)]2 dτ

]

ds

+ B1L2
(
M∗)

∫ t

0

∫ a

0

2∑

j=1

∣
∣E

(
q1

j
)
(a – τ , t – τ ) – E

(
q2

j
)
(a – τ , t – τ )

∣
∣dτ da

+ p∗
1L2

(
M∗)

∫ A

t

∫ t

0

2∑

j=1

∣
∣E

(
q1

j
)
(a – τ , t – τ ) – E

(
q2

j
)
(a – τ , t – τ )

∣
∣dτ da

≤ H1

∫ t

0

∥
∥q1(·, s) – q2(·, s)

∥
∥

[L1(0,A)]2 ds,

where H1 = M2(1+T)+B1L2(M∗)T +p∗
1L2(M∗)A. Similarly, there is a constant H2 = M2(1+

T) + B2L2(M∗)T + p∗
2L2(M∗)A such that

∫ A

0

∣
∣A2

(
q1

1, q1
2
)

– A2
(
q2

1, q2
2
)∣
∣(a, t) da ≤ H2

∫ t

0

∥
∥q1(·, s) – q2(·, s)

∥
∥

[L1(0,A)]2 ds.



Liu et al. Journal of Inequalities and Applications         (2022) 2022:76 Page 9 of 24

Thus,

∥
∥
(
Aq1)(·, t) –

(
Aq2)(·, t)

∥
∥

[L1(0,A)]2 ≤ M4

∫ t

0

∥
∥q1(·, s) – q2(·, s)

∥
∥

[L1(0,A)]2 ds, (3.14)

where M4 = 2M2(1 + T) + L2(M)T(B1 + B2) + L2(M)A(p∗
1 + p∗

2). Hence, for any qi = (qi
1, qi

2) ∈
X (i = 1, 2), it follows from (3.14) that

∥
∥Aq1 – Aq2∥∥∗ = Ess sup

t∈(0,T)

{
e–λt∥∥

(
Aq1)(·, t) –

(
Aq2)(·, t)

∥
∥

[L1(0,A)]2
}

≤ M4 Ess sup
t∈(0,T)

{

e–λt
∫ t

0

∥
∥q1(·, s) – q2(·, s)

∥
∥

[L1(0,A)]2 ds
}

≤ M4

λ

∥
∥q1 – q2∥∥∗.

Choose λ such that λ > M4. Then, A is a contraction on Banach space (X ,‖·‖∗). By the Ba-
nach fixed-point theorem, A has a unique fixed point, which is the solution of system (2.1)
and (2.2). Moreover, from the definition of solution space X , it follows that the solution is
nonnegative and bounded. �

Theorem 3.3 Let (A1)–(A3) hold. Then, the solution pu = (pu
1 , pu

2) of system (2.1) and
(2.2) is continuous with respect to the control variable u = (u1, u2) ∈ U , that is, for any
ui = (ui

1, ui
2) ∈ U (i = 1, 2), there is a constant M̄ > 0 such that

2∑

j=1

∥
∥p1

j (·, t) – p2
j (·, t)

∥
∥

L1(0,A) ≤ M̄
∫ t

0

2∑

j=1

∣
∣u1

j (s) – u2
j (s)

∣
∣ds,

where pi = (pi
1, pi

2) is the solution of system (2.1) and (2.2) corresponding to ui.

Proof For any u = (u1, u2) ∈ U , the solution of system (2.1) and (2.2) has the form

pi(a, t) =

⎧
⎨

⎩

p0
i (a – t)�i(a, t, t), a ≥ t;

bi(t – a)�i(a, t, a), a < t,
(3.15)

where bi(t – a) .= pi(0, t – a) and

�i(a, t, s) = e–
∫ s

0 μi(a–τ ,E(p1)(a–τ ,t–τ ),E(p2)(a–τ ,t–τ )) dτ . (3.16)

Similarly, bi(t) (i = 1, 2) satisfies

bi(t) = Fi(t) +
∫ t

0
Ki(t, a)bi(t – a) da, t ∈ (0, T). (3.17)

Here,

Ki(t, a) =

⎧
⎨

⎩

βi(a, E(pi)(a, t))�i(a, t, a), (a, t) ∈ Q;

0, otherwise,
(3.18)
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Fi(t) =

⎧
⎨

⎩

∫ A
t βi(a, E(pi)(a, t))p0

i (a – t)�i(a, t, t) da + ui(t), t ∈ (0, A);

0, otherwise.
(3.19)

Note that pi = (pi
1, pi

2) is a solution of system (2.1) and (2.2) corresponding to ui ∈ U (i =
1, 2). It follows from (3.17) that

∣
∣b1

1(t) – b2
1(t)

∣
∣

≤ p∗
1L1

(
M∗)

∫ A

t

∣
∣E

(
p1

1
)
(a, t) – E

(
p2

1
)
(a, t)

∣
∣da +

∣
∣u1

1(t) – u2
1(t)

∣
∣

+ p∗
1β

∗
1

∫ A

t

∣
∣�1

1(a, t, t) – �2
1(a, t, t)

∣
∣da + β∗

1

∫ t

0

∣
∣b1

1(s) – b2
1(s)

∣
∣ds

+ B1

∫ t

0

∣
∣β1

(
a, E

(
p1

1
)
(a, s)

)
�1

1(a, s, a) – β1
(
a, E

(
p2

1
)
(a, s)

)
�2

1(a, s, a)
∣
∣ds

≤ (
p∗

1A + B1T
)
L1

(
M∗)∥∥p1

1(·, t) – p2
1(·, t)

∥
∥

L1(0,A) +
∣
∣u1

1(t) – u2
1(t)

∣
∣

+ β∗
1

∫ t

0

∣
∣b1

1(s) – b2
1(s)

∣
∣ds

+ p∗
1β

∗
1 L2

(
M∗)

∫ A

t

∫ t

0

2∑

j=1

∥
∥p1

j (·, t – τ ) – p2
j (·, t – τ )

∥
∥

L1(0,A) dτ da

+ B1β
∗
1 L2

(
M∗)

∫ t

0

∫ a

0

2∑

j=1

∥
∥p1

j (·, s – τ ) – p2
j (·, s – τ )

∥
∥

L1(0,A) dτ ds

≤ M5
∥
∥p1(·, t) – p2(·, t)

∥
∥

[L1(0,A)]2 +
∣
∣u1

1(t) – u2
1(t)

∣
∣ + β∗

1

∫ t

0

∣
∣b1

1(s) – b2
1(s)

∣
∣ds, (3.20)

where M5 = (p∗
1A + B1T)L1(M∗) + (p∗

1 + B1)ATβ∗
1 L2(M∗). Using Gronwall’s inequality, we

can derive that

∣
∣b1

1(t) – b2
1(t)

∣
∣ ≤ ∣

∣u1
1(t) – u2

1(t)
∣
∣ + M5

∥
∥p1(·, t) – p2(·, t)

∥
∥

[L1(0,A)]2

+ exp
{
β∗

1 T
}
∫ t

0

[∣
∣u1

1(s) – u2
1(s)

∣
∣

+ M5
∥
∥p1(·, s) – p2(·, s)

∥
∥

[L1(0,A)]2
]

ds. (3.21)

Further, for a ≥ t, from (3.12), (3.15), and (3.16), it follows that

∣
∣p1

1(a, t) – p2
1(a, t)

∣
∣ ≤ p∗

1L2
(
M∗)

∫ t

0

∥
∥p1(·, s) – p2(·, s)

∥
∥

[L1(0,A)]2 ds. (3.22)

For a < t, from (3.12), (3.15), and (3.16), it follows that

∣
∣p1

1(a, t) – p2
1(a, t)

∣
∣ ≤ B1L2

(
M∗)

∫ t

0

∥
∥p1(·, s) – p2(·, s)

∥
∥

[L1(0,A)]2 ds

+
∣
∣b1

1(t – a) – b2
1(t – a)

∣
∣. (3.23)
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Thus, from (3.21)–(3.23), it follows that

∥
∥p1

1(·, t) – p2
1(·, t)

∥
∥

L1(0,A)

=
∫ t

0

∣
∣p1(a, t) – p2(a, t)

∣
∣da +

∫ A

t

∣
∣p1(a, t) – p2(a, t)

∣
∣da

≤
∫ t

0

∣
∣b1

1(s) – b2
1(s)

∣
∣ds + H3AL2

(
M∗)

∫ t

0

∥
∥p1(·, s) – p2(·, s)

∥
∥

[L1(0,A)]2 ds

≤ (
1 + exp

{
β∗

1 T
}

T
)
∫ t

0

∣
∣u1

1(s) – u2
1(s)

∣
∣ds

+ M6

∫ t

0

∥
∥p1(·, s) – p2(·, s)

∥
∥

[L1(0,A)]2 ds,

where H3 = max{B1, p∗
1} and M6 = M5(1 + exp{β∗

1 T}) + H3AL2(M∗). Similarly, there exists
a positive constant M7 such that

∥
∥p1

2(·, t) – p2
2(·, t)

∥
∥

L1(0,A) ≤ (
1 + exp

{
β∗

2 T
}

T
)
∫ t

0

∣
∣u1

2(s) – u2
2(s)

∣
∣ds

+ M7

∫ t

0

∥
∥p1(·, s) – p2(·, s)

∥
∥

[L1(0,A)]2 ds.

Thus, we have

2∑

j=1

∥
∥p1

j (·, t) – p2
j (·, t)

∥
∥

L1(0,A) ≤ (
1 + exp

{
β∗T

}
T

)
∫ t

0

2∑

j=1

∣
∣u1

j (s) – u2
j (s)

∣
∣ds

+ M8

∫ t

0

∥
∥p1(·, s) – p2(·, s)

∥
∥

[L1(0,A)]2 ds,

where β∗ = max{β∗
1 ,β∗

2 } and M8 = max{M6, M7}. Then, Gronwall’s inequality implies that

2∑

j=1

∥
∥p1

j (·, t) – p2
j (·, t)

∥
∥

L1(0,A) ≤ H4

∫ t

0

2∑

j=1

∣
∣u1

j (s) – u2
j (s)

∣
∣ds,

where H4 = (1 + exp{β∗T}T)(1 + exp{M8T}T). The proof is complete. �

Remark 3.4 In this section, we first prove that the model has a unique nonnegative
bounded solution by constructing a suitable solution space and equivalent norm, and us-
ing the freezing-coefficient method and fixed-point theory. The boundedness of the so-
lution ensures that the species described in the system will not grow indefinitely. Then,
using the basic inequality theory, we obtain the continuous dependence of solutions on
the control variable, which will play a key role in the following discussions.

4 Least deviation-cost problem
In this section, we will discuss the optimization problem (2.3). Here and after, we denote by
TUi (ui) and NUi (ui) the tangent cone and the normal cone of Ui at ui, respectively. More-
over, from [41], we have the following result.
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Lemma 4.1 For any vi ∈ TUi (ui), suppose that ϑi(t) ∈ L1(0, T) satisfies

2∑

i=1

∫ T

0

[
ϑi(t)vi(t) + ρi

∣
∣vi(t)

∣
∣
]

dt ≥ 0.

Then, there exists θi ∈ L∞(0, T) such that ‖θi‖L∞(0,T) ≤ 1 and ρiθi – ϑi ∈NUi (ui).

4.1 Minimum principle
In this subsection, we will establish first-order necessary conditions of optimality in the
form of an Euler–Lagrange system.

Theorem 4.2 Let u∗ = (u∗
1, u∗

2) and p∗ = (p∗
1, p∗

2). If (u∗, p∗) is an optimal pair for the opti-
mization problem (2.3), then optimal strategies u∗

i must be structured as

u∗
i (t) = Fi

(
qi(0, ·)

σi

)

(t) .=

⎧
⎪⎪⎨

⎪⎪⎩

0, if qi(0, t) < 0,
qi(0,t)

σi
, if 0 ≤ qi(0,t)

σi
< Ui,

Ui, if qi(0,t)
σi

≥ Ui,

(4.1)

where q = (q1, q2) is the solution of the adjoint system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂qi
∂t + ∂qi

∂a = αi
∫ A

a [
∑3

j=2 μij(r, E(p∗
1)(r, t), E(p∗

2)(r, t))qi(r, t)p∗
i (r, t)

– βi2(r, E(p∗
i )(r, t))qi(0, t)p∗

i (r, t)] dr

+
∫ a

0 [
∑3

j=2 μij(r, E(p∗
1)(r, t), E(p∗

2)(r, t))qi(r, t)p∗
i (r, t)

– βi2(r, E(p∗
i )(r, t))qi(0, t)p∗

i (r, t)] dr

+ [μi(a, E(p∗
1)(a, t), E(p∗

2)(a, t))qi(a, t) – βi(a, E(p∗
i )(a, t))qi(0, t)],

qi(a, T) = p̄i(a) – p∗
i (a, T), qi(A, t) = 0,

E(p∗
i )(a, t) = αi

∫ a
0 p∗

i (r, t) dr +
∫ A

a p∗
i (r, t) dr, (a, t) ∈ Q, i = 1, 2,

(4.2)

in which μi2 and βi2 are partial derivatives of μi and βi with respect to the second variable,
respectively; μi3 is a partial derivative of μi with respect to the third variable.

Proof The existence of a unique bounded solution to (4.2) can be treated in the same
manner as that for (2.1) and (2.2). For any vi ∈ TUi (u∗

i ) (see [41]), we have uε
i

.= u∗
i + εvi ∈

Ui (i = 1, 2) for sufficiently small ε > 0. Let pε = (pε
1, pε

2) be a solution of (2.1) and (2.2)
corresponding to u = uε . Then, the optimality of u∗ implies J(u∗) ≤ J(uε). Hence,

∫ A

0

[pε
i (a, T) – p∗

i (a, T)][pε
i (a, T) + p∗

i (a, T) – 2p̄i(a)]
ε

da

+
∫ T

0

[2u∗
i (t) + εvi(t)]εvi

ε
dt ≥ 0. (4.3)

Using the Theorem 3.3 and passing to the limit ε → 0+, we can derive that

2∑

i=1

{∫ A

0
zi(a, T)

[
p∗

i (a, T) – p̄i(a)
]

da + σi

∫ T

0
u∗

i (t)vi(t) dt
}

≥ 0, (4.4)
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in which zi(a, t) = limε→0+
pε

i (a,t)–p∗
i (a,t)

ε
(i = 1, 2). Via a similar discussion to that in [2],

z1(a, t) and z2(a, t) do make sense. Further, it follows from (2.1) and (2.2) that (z1, z2) sat-
isfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂zi
∂t + ∂zi

∂a = –
∑3

j=2 μij(a, E(p∗
1)(a, t), E(p∗

2)(a, t))E(zj)(a, t)p∗
i (a, t)

– μi(a, E(p∗
1)(a, t), E(p∗

2)(a, t))zi(a, t),

zi(0, t) = vi(t) +
∫ A

0 [βi2(a, E(p∗
i )(a, t))p∗

i (a, t)E(zi)(a, t)

+ βi(a, E(p∗
i )(a, t))zi(a, t)] da,

zi(a, 0) = 0,

E(zi)(a, t) = αi
∫ a

0 zi(r, t) dr +
∫ A

a zi(r, t) dr, (a, t) ∈ Q, i = 1, 2.

(4.5)

Multiplying the first equation in (4.5) by qi(a, t) and integrating on Q, we have

∫ A

0
zi(a, T)

[
p∗

i (a, T) – p̄i(a)
]

da

= –
∫

Q

[
βi2

(
a, E

(
p∗

i
)
(a, t)

)
E(zi)(a, t)p∗

i + βi
(
a, E

(
p∗

i
)
(a, t)

)
zi

]
qi(0, t) da dt

+
∫

Q

{ 3∑

j=2

μij
(
a, E

(
p∗

1
)
(a, t), E

(
p∗

2
)
(a, t)

)
E(zj)(a, t)p∗

i (a, t)

+ μi
(
a, E

(
p∗

1
)
(a, t), E

(
p∗

2
)
(a, t)

)
zi

}

qi(a, t) da dt –
∫ T

0
vi(t)qi(0, t) dt

–
∫

Q
zi

(
∂qi

∂t
+

∂qi

∂a

)

da dt.

Hence, we can obtain

2∑

i=1

∫ A

0
zi(a, T)

[
p∗

i (a, T) – p̄i(a)
]

da

=
2∑

i=1

∫

Q
zi(a, t)αi

∫ A

a

[ 3∑

j=2

μij
(
r, E

(
p∗

1
)
(r, t), E

(
p∗

2
)
(r, t)

)
qi(r, t)p∗

i (r, t)

– βi2
(
r, E

(
p∗

i
)
(r, t)

)
qi(0, t)p∗

i (r, t)

]

dr da dt

+
2∑

i=1

∫

Q
zi(a, t)

∫ a

0

[ 3∑

j=2

μij
(
r, E

(
p∗

1
)
(r, t), E

(
p∗

2
)
(r, t)

)
qi(r, t)p∗

i (r, t)

– βi2
(
r, E

(
p∗

i
)
(r, t)

)
qi(0, t)p∗

i (r, t)

]

dr da dt

+
2∑

i=1

∫

Q
zi

[
μi

(
a, E

(
p∗

1
)
, E

(
p∗

2
)
(a, t)

)
qi – βi

(
a, E

(
p∗

i
)
(a, t)

)
qi(0, t)

]
da dt

–
2∑

i=1

∫

Q
zi

(
∂qi

∂t
+

∂qi

∂a

)

da dt –
2∑

i=1

∫ T

0
vi(t)qi(0, t) dt.
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This, together with (4.2), yields

2∑

i=1

∫ A

0
zi(a, T)

[
p∗

i (a, T) – p̄i(a)
]

da = –
2∑

i=1

∫ T

0
vi(t)qi(0, t) dt. (4.6)

It follows from (4.4) and (4.6) that
∑2

i=1
∫ T

0 [qi(0, t) – σiu∗
i (t)]vi(t) dt ≤ 0 holds for all

v ∈ TU (u∗). Thus, qi(0, ·) – σiu∗
i ∈ NUi (u∗

i ) (i = 1, 2), which implies the conclusion of this
theorem. The proof is complete. �

4.2 Existence of a unique optimal policy
In this subsection, we study the existence and uniqueness of the optimal control. Define
the embedding mapping ϕ : [L1(0, T)]2 → (–∞, +∞] by

J̃(u1, u2)

=

⎧
⎨

⎩

∑2
i=1{

∫ A
0 [pu

i (a, T) – p̄i(a)]2 da + σi
∫ T

0 u2
i (t) dt}, (u1, u2) ∈ U ,

+∞, (u1, u2) /∈ U .

Lemma 4.3 The mapping J̃ is lower semicontinuous.

Proof Let {(un
1, un

2)} be a sequence in [L1(0, T)]2 such that (un
1, un

2) → (u1, u2) as n → ∞.
Without loss of generality, we assume that (un

1, un
2) ∈ U .= U1 ×U2 for any n ≥ 1. Moreover,

let (pn
1, pn

2) and (p1, p2) be solutions of (2.1) and (2.2) corresponding to (un
1, un

2) and (u1, u2),
respectively. From Theorem 3.3, it follows that

pn
1(·, t) → p1(·, t) and pn

2(·, t) → p2(·, t) for any t ∈ (0, T)

as n → ∞. Riesz’s theorem implies that there is a subsequence, denoted still by {(un
1, un

2)},
such that, for any (a, t) ∈ Q and t ∈ (0, T),

(
un

1(t)
)2 → (

u1(t)
)2 and

(
un

2(t)
)2 → (

u2(t)
)2, (4.7)

pn
1(a, t) → p1(a, t) and pn

2(a, t) → p2(a, t), (4.8)

as n → ∞. From (4.7), using Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

∫ T

0

(
un

i (t)
)2 dt =

∫ T

0

(
ui(t)

)2 dt (i = 1, 2).

On the other hand, it follows from (4.8) and Theorem 3.3 that

∣
∣
∣
∣

∫ A

0

[
pn

i (a, T) – p̄i(a)
]2 da –

∫ A

0

[
pi(a, T) – p̄i(a)

]2 da
∣
∣
∣
∣

≤
∫ A

0

∣
∣pn

i (a, T) – pi(a, T)
∣
∣ · ∣∣pn

i (a, T) + pi(a, T) – 2p̄i(a)
∣
∣da

→ 0 as n → +∞.
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Thus, limn→∞
∫ A

0 [pn
i (a, T) – p̄i(a)]2 da =

∫ A
0 [pi(a, T) – p̄i(a)]2 da (i = 1, 2). It follows from

Fatou’s lemma that

lim
n→+∞ inf

(un
1 ,un

2 )∈U
J̃
(
un

1, un
2
) ≥ J̃(u1, u2),

which shows that J̃(u1, u2) is lower semicontinuous. �

In a similar manner to that in Theorem 3.3, we can obtain the following result.

Lemma 4.4 For any u = (u1, u2), v = (v1, v2) ∈ U , let (pu
1 , pu

2) and (pv
1, pv

2) be solutions of
(2.1) and (2.2) corresponding to u and v, respectively. For (4.2), there is a constant C .=
C(U , T) > 0, which depends on U = max{U1, U2} and T , such that

2∑

i=1

[∥
∥qu

i (·, t) – qv
i (·, t)

∥
∥

L∞(0,A) +
∣
∣qu

i (0, t) – qv
i (0, t)

∣
∣
] ≤ C‖u – v‖[L∞(0,T)]2 ,

holds for all t ∈ (0, T). Here, (qu
1 , qu

2) and (qv
1, qv

2) are solutions to (4.2) with (p∗
1, p∗

2) replaced
by (pu

1 , pu
2) and (pv

1, pv
2), respectively.

Theorem 4.5 If max{σ –1
1 ,σ –1

2 }C(U , T) < 1, then optimization problem (2.3) has a unique
solution.

Proof From Lemma 4.3 and Ekeland’s variational principle, for each ε > 0, there exists
(uε

1, uε
2) ∈ U such that

J̃
(
uε

1, uε
2
) ≤ inf

(u1,u2)∈U
J̃(u1, u2) + ε, (4.9)

J̃
(
uε

1, uε
2
) ≤ inf

(u1,u2)∈U
{

J̃(u1, u2) +
√

ε
∥
∥u1 – uε

1
∥
∥

L1(0,T) +
√

ε
∥
∥u2 – uε

2
∥
∥

L1(0,T)

}
. (4.10)

Thus, functional J̃ε(u1, u2) = J̃(u1, u2) +
√

ε‖u1 – uε
1‖L1(0,T) +

√
ε‖u2 – uε

2‖L1(0,T) reaches its
infimum at (uε

1, uε
2). Then, in the same manner as that in Theorem 4.2, for any vi ∈ TUi (u

ε
i )

(i = 1, 2), we have

2∑

i=1

{∫ T

0

[
σiuε

i (t) – quε

i (0, t)
]
vi(t) dt +

√
ε

∫ T

0

∣
∣vi(t)

∣
∣dt

}

≥ 0.

By Lemma 4.1, there is θi ∈ L∞(0, T), ‖θi‖L∞(0,T) ≤ 1, such that
√

εθi + quε

i (0, ·) – σiuε
i ∈

NUi (u
ε
i ). Hence,

uε
i (t) = Fi

[
quε

i (0, t)
σi

+
√

εθi(t)
σi

]

. (4.11)

First, we show the uniqueness via the fixed-point principle. For any u = (u1, u2) ∈ U ,
let (pu

1 , pu
2) be a solution of (2.1) and (2.2) corresponding to u. Define the mapping C :

U1 × U2 → L∞(0, T) × L∞(0, T) by

C(u1, u2) =
(

F1

[
qu

1(0, t)
σ1

]

,F2

[
qu

2(0, t)
σ2

])

, (4.12)
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where (qu
1 , qu

2) is the solution to system (4.2) with (p∗
1, p∗

2) replaced by (pu
1 , pu

2). It is easy to
show that (U ,‖ · ‖[L∞(0,T)]2 ) is a Banach space. It is easy to show that C maps U to itself. In
addition, for any u = (u1, u2), v = (v1, v2) ∈ U , it follows from Lemma 4.1 that

∥
∥C(u1, u2) – C(v1, v2)

∥
∥

[L∞(0,T)]2 =
2∑

i=1

∥
∥
∥
∥Fi

[
qu

i (0, t)
σi

]

– Fi

[
qv

i (0, t)
σi

]∥
∥
∥
∥

L∞(0,T)

≤
2∑

i=1

∥
∥
∥
∥

qu
i (0, t)
σi

–
qv

i (0, t)
σi

∥
∥
∥
∥

L∞(0,T)

≤ max
{
σ –1

1 ,σ –1
2

}
C(U , T)‖u – v‖[L∞(0,T)]2 .

This, together with max{σ –1
1 ,σ –1

2 }C(U , T) < 1, yields that C is a contraction on Banach
space (U ,‖ · ‖[L∞(0,T)]2 ). Then, C has a unique fixed point ũ = (ũ1, ũ2) ∈ U . Moreover, from
Theorem 4.2, we know that any optimal controller, if it exists, must be the fixed point of C .
Thus, the uniqueness is proved.

Next, we prove that ũ = (ũ1, ũ2) is the optimal control for optimization problem (2.3).
That is to show J̃(ũ1, ũ2) = inf{J̃(u1, u2) : ũ1, ũ2 ∈ U}. Note that ‖θi‖L∞(0,T) ≤ 1. Thus, from
(4.11) and (4.12), it follows that

∥
∥C

(
uε

1, uε
2
)

–
(
uε

1, uε
2
)∥
∥

[L∞(0,T)]2

≤
2∑

i=1

∥
∥
∥
∥

quε

i (0, t)
σi

+
√

εθi(t)
σi

–
quε

i (0, t)
σi

∥
∥
∥
∥

L∞(0,T)

≤
2∑

i=1

σ –1
i

√
ε.

Note that ũ = (ũ1, ũ2) ∈ U is the unique fixed point for the mapping P . Thus,

∥
∥uε – ũ

∥
∥

[L∞(0,T)]2

≤ max
{
σ –1

1 ,σ –1
2

}
C(U , T)

∥
∥uε – ũ

∥
∥

[L∞(0,T)]2 +
√

ε
(
σ –1

1 + σ –2
2

)
,

which implies ‖uε – ũ‖[L∞(0,T)]2 ≤ [1 – max{σ –1
1 ,σ –1

2 }C(U , T)]
√

ε(σ –1
1 + σ –2

2 ). Hence, we
have uε → ũ as ε → 0+. From Lemma 4.3 and (4.9), one has J̃(ũ) = inf{J̃(u) : u ∈ U}. Thus,
ũ ∈ U is the optimal policy. �

Remark 4.6 In this section, using Ekeland’s variational principle and fixed-point reason-
ing, we show the existence and uniqueness of optimal policies for the least deviation-cost
problem, which gives us a solid theoretical ground for a practical application. As for the
structure of the optimal policy, we have presented a feedback strategy, in Theorem 4.2,
via the normal cone technique and adjoint system. Due to the high nonlinearities in our
problem, one cannot expect an explicit optimal controller. However, the feedback strategy
would be helpful for a numerical computation of the optimal policy (see Sect. 6).
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5 Most benefit-cost problem
Here, we give the corresponding results for optimization problem (2.4). A similar discus-
sion as that in Theorem 4.5, we can show that the most benefit-cost problem (2.4) has a
unique solution. Further, similar to the proof of Theorem 4.2, we have the following result.

Theorem 5.1 (Maximum principle) Let u∗ = (u∗
1, u∗

2) and p∗ = (p∗
1, p∗

2). If (u∗, p∗) is an op-
timal pair for the optimization problem (2.4), then

u∗
i (t) = Fi

(
qi(0, ·)

2σi

)

(t) .=

⎧
⎪⎪⎨

⎪⎪⎩

0, if qi(0, t) < 0,
qi(0,t)

2σi
, if 0 ≤ qi(0,t)

2σi
< Ui,

Ui, if qi(0,t)
2σi

≥ Ui,

(5.1)

where q = (q1, q2) is the solution of the following adjoint system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂qi
∂t + ∂qi

∂a = αi
∫ A

a [
∑3

j=2 μij(r, E(p∗
1)(r, t), E(p∗

2)(r, t))qi(r, t)p∗
i (r, t)

– βi2(r, E(p∗
i )(r, t))qi(0, t)p∗

i (r, t)] dr

+
∫ a

0 [
∑3

j=2 μij(r, E(p∗
1)(r, t), E(p∗

2)(r, t))qi(r, t)p∗
i (r, t)

– βi2(r, E(p∗
i )(r, t))qi(0, t)p∗

i (r, t)] dr

+ [μi(a, E(p∗
1)(a, t), E(p∗

2)(a, t))qi(a, t) – βi(a, E(p∗
i )(a, t))qi(0, t)],

qi(a, T) = gi(a), qi(A, t) = 0,

E(p∗
i )(a, t) = αi

∫ a
0 p∗

i (r, t) dr +
∫ A

a p∗
i (r, t) dr, (a, t) ∈ Q, i = 1, 2,

(5.2)

in which μi2 and βi2 are partial derivatives of μi and βi with respect to the second variable,
respectively; μi3 is a partial derivative of μi with respect to the third variable.

6 Numerical simulations
In this section, we provide some examples to verify the effectiveness of the obtained results
and find other dynamic properties of the system. From Theorem 4.2, optimal strategy u∗

i

(i = 1, 2) is a fixed point of mapping Fi. Clearly, the fixed point can be approximated by an
iteration scheme.

First, we discuss the effects of ideal distribution p̄(a) = (p̄1(a), p̄2(a)) on optimal policy
u∗(t) = (u∗

1(t), u∗
2(t)) and then on optimal functional J(u∗) for optimization problem (2.3).

Example 1 (The effects of p̄ on J(u∗)). Let α1 = 0.4, α2 = 0.5, A = 10, T = 20, σ1 = 3, σ2 = 4,
and the error bound ε = 0.005. The mortality and fertility are, respectively,

μ1(a, x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

0.01 cos2(4a) + 0.008x1 + 0.007x2 + 2–a
50 , 0 ≤ a < 2;

0.01 cos2(4a) + 0.008x1 + 0.007x2, 2 ≤ a < 8;

0.01 cos2(4a) + 0.008x1 + 0.007x2 + a–8
10–a , 8 ≤ a < 10;

μ2(a, x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

0.02 cos2(4a) + 0.005x1 + 0.006x2 + 2–a
50 , 0 ≤ a < 2;

0.02 cos2(4a) + 0.005x1 + 0.006x2, 2 ≤ a < 8;

0.02 cos2(4a) + 0.005x1 + 0.006x2 + a–8
10–a , 8 ≤ a < 10;
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and

β1(a, x1) =

⎧
⎪⎪⎨

⎪⎪⎩

0.4 cos2(a – 2), 1 ≤ a < 2;

0.4, 2 ≤ a < 9;

0, otherwise;

β2(a, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

0.8(a – 1) cos2(a), 1 ≤ a < 2;

0.8 cos2(a), 2 ≤ a < 9;

0, otherwise.

The initial age distributions of species p1(a, t) and p2(a, t) are, respectively, p0
1(a) = 8(10 –

a)(3 + cos(2a)) and p0
2(a) = 10(10 – a) cos2(a). Also, the initial controls are

u0
1(t) = u0

2(t) =

⎧
⎨

⎩

0, t < 4;

1, t ≥ 4.

Figure 1 Optimal controls u∗
1 , u

∗
2 and optimal densities p∗

1 , p
∗
2 with s = 2
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Table 1 The effects of s on J(u∗)

s 2 3 4 5 6 7 8 9 10
J 7.7 18.0 32.7 51.7 75.1 102.8 134.9 171.3 212.1

s 11 12 13 14 15 16 17 18 19
J 257.2 306.6 360.4 418.6 481.1 547.9 619.1 694.7 774.6

s 20 21 22 23 24 25 26 27 28
J 858.8 947.4 1040.3 1137.6 1239.2 1345.2 1455.5 1570.2 1689.2

s 29 30 31 32 33 34 35 36 37
J 1812.5 1940.2 2072.3 2208.7 2349.4 2494.5 2644.0 2797.8 2955.9

s 38 39 40 41 42 43 44 45 46
J 3118.4 3285.2 3456.4 3631.9 3811.8 3996.0 4184.6 4377.5 4574.8

s 47 48 49 50 51 52 53 54 55
J 4776.4 4982.3 5192.7 5407.3 5626.3 5849.7 6077.3 6309.4 6545.8

s 56 57 58 59 60 61 62 63 64
J 6786.5 7031.6 7281.0 7534.8 7792.9 8055.4 8322.2 8593.4 8868.9

s 65 66 67 68 69 70 71 72 73
J 9148.8 9433.0 9721.5 10,014.0 10,312.0 10,613.0 10,919.0 11,230.0 11,544.0

s 74 75 76 77 78 79 80 81 82
J 11,863.0 12,186.0 12,514.0 12,846.0 13,183.0 13,523.0 13,868.0 14,218.0 14,572.0

s 83 84 85 86 87 88 89 90 91
J 14,930.0 15,292.0 15,659.0 16,030.0 16,406.0 16,785.0 17,170.0 17,558.0 17,951.0

s 92 93 94 95 96 97 98 99 100
J 18,348.0 18,750.0 19,156.0 19,566.0 19,981.0 20,400.0 20,823.0 21,251.0 21,683.0

s 101 102 103 104 105 106
J 22,119.0 22,560.0 23,005.0 23,454.0 23,908.0 24,366.0

Moreover, the ideal distributions we hope to reach are (with the coefficient s)

p̄1(a) = 8s(10 – a)
(
3 + cos(2a)

)
and p̄2(a) = 10s(10 – a) cos2(a).

Calculating in MATLAB with the above parameters, we obtain the numerical results for
the optimal policy u∗ and optimal state p∗ corresponding to s = 2 (see Fig. 1). More-
over, the indexes J(u∗) = j × 105 corresponding to s = 2, 3, 4, . . . , 106 are listed in Ta-
ble 1.

Figure 1 shows the optimal strategy u∗(t) and the optimal population density p∗(a, t) with
s = 2 within the ideal distribution p̄(a). Moreover, as can be seen from Table 1, optimal
objective functional J(u∗) is increasing with respect to the coefficient s. This means that
as the ideal distribution increases, the more baby individuals (i.e., the greater the control
cost) should be input to make the final distribution of the species sufficiently close to the
ideal distribution.

Now, we investigate the effects of price function g(a) = (g1(a), g2(a)) on optimal policy
u∗(t) = (u∗

1(t), u∗
2(t)) and then on optimal functional J(u∗) for optimization problem (2.4)

in the numerical approach.

Example 2 (The effects of gi on J(u∗)) Take α1 = 0.3, α2 = 0.4, A = 10, T = 20, σ1 = 3,
σ2 = 2, and the error bound ε = 0.005. The mortality and fertility of species p1(a, t) and
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p2(a, t) are

μ1(a, x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

0.02(1 – sin2(4a)) + 0.02x1 + 0.01x2 + 2–a
50 , 0 ≤ a < 2;

0.02(1 – sin2(4a)) + 0.02x1 + 0.01x2, 2 ≤ a < 8;

0.02(1 – sin2(4a)) + 0.02x1 + 0.01x2 + a–8
10–a , 8 ≤ a < 10;

μ2(a, x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

0.05(1 – sin2(4a)) + 0.01x1 + 0.02x2 + 2–a
50 , 0 ≤ a < 2;

0.05(1 – sin2(4a)) + 0.01x1 + 0.02x2, 2 ≤ a < 8;

0.05(1 – sin2(4a)) + 0.01x1 + 0.02x2 + a–8
10–a , 8 ≤ a < 10;

β1(a, x1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.473(cos(0.4a) + 1)(a – 1), 1 ≤ a < 2;

0.473(cos(0.4a) + 1), 2 ≤ a < 7;

0.473(cos(0.4a) + 1)(8 – a), 7 ≤ a < 8;

0, otherwise;

Figure 2 Optimal controls u∗
1 , u

∗
2 and optimal densities p∗

1 , p
∗
2 with s = 2



Liu et al. Journal of Inequalities and Applications         (2022) 2022:76 Page 21 of 24

β2(a, x2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.998 sin2(2a)(a – 1), 1 ≤ a < 2;

0.998 sin2(2a), 2 ≤ a < 7;

0.998 sin2(2a)(8 – a), 7 ≤ a < 8;

0, otherwise.

The initial age distributions are p0
1(a) = 5(10 – a)(cos(2a) + 2) and p0

2(a) = 4(10 – a) cos2(a +
π
6 ). Also, the initial controls are

u0
1(t) = u0

2(t) =

⎧
⎨

⎩

0, t < 5;

1, t ≥ 5.

Moreover, the price functions are (with the coefficient s)

g1(a) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5s, 0 ≤ a < 2;

a(sin(a) + 4) + 0.5s, 2 ≤ a < 8;

2 + 0.5s, 8 ≤ a < 10;

g2(a) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5s, 0 ≤ a < 2;

a(cos(a) + 4) + 0.5s, 2 ≤ a < 8;

2 + 0.5s, 8 ≤ a < 10.

The optimal strategies u∗(t) and optimal densities p∗(a, t) corresponding to s = 0 are illus-
trated in Fig. 2. Table 2 shows the benefits corresponding to s = 0, 1, 2, . . . , 103.

Table 2 Effects of gi on J(u∗)

s 0 1 2 3 4 5 6 7 8 9
J 1059.2 1062.1 1065.0 1068.8 1071.6 1074.5 1077.4 1080.2 1083.1 1086.0

s 10 11 12 13 14 15 16 17 18 19
J 1088.9 1091.7 1094.6 1097.5 1100.3 1103.8 1106.6 1109.5 1112.4 1115.3

s 20 21 22 23 24 25 26 27 28 29
J 1118.1 1121.0 1123.9 1126.8 1129.8 1132.7 1135.6 1138.4 1141.3 1144.2

s 30 31 32 33 34 35 36 37 38 39
J 1147.1 1150.3 1153.2 1156.1 1159.0 1161.9 1164.7 1167.6 1170.5 1173.4

s 40 41 42 43 44 45 46 47 48 49
J 1176.2 1179.1 1182.0 1184.9 1187.8 1190.6 1193.5 1196.4 1199.3 1202.1

s 50 51 52 53 54 55 56 57 58 59
J 1205.0 1207.9 1210.8 1213.7 1216.5 1219.4 1222.3 1225.2 1228.1 1230.9

s 60 61 62 63 64 65 66 67 68 69
J 1233.8 1236.7 1239.6 1242.4 1245.3 1248.2 1252.2 1254.0 1256.8 1259.7

s 70 71 72 73 74 75 76 77 78 79
J 1262.6 1265.5 1268.4 1271.2 1274.1 1277.0 1279.9 1283.0 1285.9 1288.8

s 80 81 82 83 84 85 86 87 88 89
J 1291.7 1294.5 1297.4 1300.3 1303.2 1306.1 1308.9 1311.8 1314.7 1317.6

s 90 91 92 93 94 95 96 97 98 99
J 1320.5 1323.4 1326.2 1329.1 1332.0 1334.5 1337.4 1340.3 1343.2 1346.1

s 100 101 102 103
J 1349.0 1351.8 1354.7 1357.6
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Figure 2 presents the optimal policy u∗(t) and the optimal population density p∗(a, t)
with s = 2 in the price function g(a) = (g1(a), g2(a)) for the most benefit-cost problem (2.4).
Further, from Table 2, we can see that optimal objective functional J(u∗) is increasing with
respect to s. Thus, one can say that the total net economic benefit yielded from harvesting
the species in the final state will increase as the price of the individual rises.

Finally, we will discuss the effects of the costs factor σi on the optimal functional J(u∗)
for optimization problem (2.4).

Example 3 (The effects of σi on J(u∗)). Take σ1 = σ2 = k, k = 1, 2, 3, . . . , 104, and the price
functions are

g1(a) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ a < 2;

a(sin(a) + 4), 2 ≤ a < 8;

2, 8 ≤ a < 10;

g2(a) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ a < 2;

a(cos(a) + 4), 2 ≤ a < 8;

2, 8 ≤ a < 10.

The other parameters are the same as those in Example 2. Table 3 demonstrates the
changes of optimal benefits J(u∗) with respect to the control cost factor σi. From the data in
Table 3 alone, the objective optimal benefit J(u∗) decreases as the cost factor σi increases.
This means that as the cost factor increases, the total net economic benefit yielded from
harvesting the species in the final state will decrease.

Table 3 J(u∗) corresponding to σi

k 1 2 3 4 5 6 7 8 9 10
J 1079.4 1066.3 1055.0 1044.4 1035.8 1025.3 1018.6 1014.3 1010.5 1001.3

k 11 12 13 14 15 16 17 18 19 20
J 993.5 990.2 983.9 977.9 972.4 964.6 956.8 949.0 944.8 937.2

k 21 22 23 24 25 26 27 28 29 30
J 929.6 922.0 914.4 906.8 899.2 891.6 884.0 876.4 868.8 861.2

k 31 32 33 34 35 36 37 38 39 40
J 853.6 846.0 844.4 843.6 836.4 829.2 822.0 814.8 807.6 800.4

k 41 42 43 44 45 46 47 48 49 50
J 793.2 786.0 779.4 772.2 765.0 757.8 750.6 743.4 736.2 729.0

k 51 52 53 54 55 56 57 58 59 60
J 731.6 724.6 717.6 710.6 703.6 696.6 689.6 682.6 675.6 668.6

k 61 62 63 64 65 66 67 68 69 70
J 661.6 654.6 647.6 640.6 646.3 639.5 632.7 625.9 619.1 612.3

k 71 72 73 74 75 76 77 78 79 80
J 605.5 598.7 591.9 585.1 578.3 571.5 564.7 557.9 551.1 544.3

k 81 82 83 84 85 86 87 88 89 90
J 537.5 530.7 524.3 517.5 510.7 503.9 497.1 490.3 483.5 476.7

k 91 92 93 94 95 96 97 98 99 100
J 469.9 463.1 456.3 449.5 442.7 435.9 429.1 422.3 415.5 408.7

k 101 102 103 104
J 401.9 415.2 408.6 402.0
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7 Conclusion and discussion
This paper is concerned with the optimal boundary control problems for a hierarchical
age-structured two-species model. In the previous sections, we have established the well-
posedness of the state system provided the control variable (the influx rate of baby for
each species) is put in. Meanwhile, the continuous dependence of density of each species
on the control parameters is established. More importantly, the least deviation-cost prob-
lem and the most benefit-cost problem are discussed. Here, the least deviation-cost prob-
lem means that the system with any initial distribution is manipulated to be as close to
an ideal distribution as possible at the least cost. The most benefit-cost problem refers to
maximizing the benefit achieved by developing the final population distribution with the
least cost of control (i.e., the cost of inputting baby individuals). For the least deviation-cost
problem, Theorem 4.2 establishes the minimum principle by using an adjoint system, and
Theorem 4.5 shows the existence of a unique optimal strategy by means of Ekeland’s vari-
ational principle. Meanwhile, the corresponding results, the existence of a unique optimal
control policy and the maximum principle (see Theorem 5.1), for the most benefit-cost
problem are also given.

From Theorems 4.2 and 5.1, the optimal strategies can be regarded as fixed points of
contraction mappings about the adjoint variables. Thus, we can approximate the opti-
mal policies by the standard iterative paradigm. Moreover, some examples and numerical
results are presented to verify the effectiveness of the obtained results and find other dy-
namic properties of the system. Although the phenomena observed in Tables 1, 2, and
3 have certain biological significance, they are intuitive in the general sense and do not
have universal significance. However, the theoretical analysis of these phenomena is very
difficult or even impossible to deal with.
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4. Aniţa, L., Aniţa, S.: Note on some periodic optimal harvesting problems for age-structured population dynamics.

Appl. Math. Comput. 276, 21–30 (2016)
5. Li, L., Ferreira, C., Ainseba, B.: Optimal control of an age-structured problem modelling mosquito plasticity. Nonlinear

Anal., Real World Appl. 45, 157–169 (2019)
6. Golubtsov, P., Steinshamn, S.: Analytical and numerical investigation of optimal harvest with a continuously

age-structured model. Ecol. Model. 392, 67–81 (2019)
7. Skritek, B., Veliov, V.: On the infinite-horizon optimal control of age-structured systems. J. Optim. Theory Appl. 167,

243–271 (2015)
8. Fister, K., Lenhart, S.: Optimal harvesting in an age-structured predator–prey model. Appl. Math. Optim. 54, 1–15

(2006)
9. He, Z.: Optimal birth control of age-dependent competitive species. J. Math. Anal. Appl. 296, 286–301 (2004)
10. Luo, Z., He, Z.: Optimal control for age-dependent population hybrid system in a polluted environment. Appl. Math.

Comput. 228, 68–76 (2014)
11. Osmolovskii, N., Veliov, V.: Optimal control of age-structured systems with mixed state-control constraints. J. Math.

Anal. Appl. 455, 396–421 (2017)
12. Li, J., Roeger, L.: Persistence and extinction in continuous age-structured population models. Comput. Math. Appl. 15,

511–523 (1988)
13. Ebenman, B., Persson, L.: Size-Structured Populations: Ecology and Evolution. Springer, Berlin (1988)
14. Araneda, M., Hernández, J.M., Gasca-Leyva, E.: Optimal harvesting time of farmed aquatic populations with nonlinear

size-heterogeneous growth. Nat. Resour. Model. 24, 477–513 (2011)
15. Eucario, G.: Optimal harvesting time in a size-heterogeneous population. Ecol. Model. 210, 161–168 (2008)
16. He, Z., Liu, Y.: An optimal birth control problem for a dynamical population model with size-structure. Nonlinear Anal.,

Real World Appl. 13, 1369–1378 (2012)
17. Liu, Y., He, Z.: Behavioral analysis of a nonlinear three-staged population model with age-size-structure. Appl. Math.

Comput. 227, 437–448 (2014)
18. Zhang, F., Liu, R., Chen, Y.: Optimal harvesting in a periodic food chain model with size structures in predators. Appl.

Math. Optim. 75, 229–251 (2017)
19. Chu, J., Ducrot, A., Magal, P., Ruan, S.: Hopf bifurcation in a size-structured population dynamic model with random

growth. J. Differ. Equ. 247(3), 956–1000 (2009)
20. Yan, D., Fu, X.: Asymptotic analysis of a spatially and size-structured population model with delayed birth process.

Commun. Pure Appl. Anal. 15, 637–655 (2016)
21. Yan, D., Fu, X.: Asymptotic analysis of a size-structured population model with infinite states-at-birth. Appl. Anal. 98(5),

913–933 (2019)
22. Li, Y., Zhang, Z., Lv, Y., Liu, Z.: Optimal harvesting for a size-stage-structured population model. Nonlinear Anal., Real

World Appl. 44, 616–630 (2018)
23. Dewsbury, D.: Dominance rank, copulatory behavior, and differential reproduction. Q. Rev. Biol. 57(2), 135–159 (1982)
24. Farkas, J., Hinow, P.: Steady states in hierarchical structured populations with distributed states at birth. Discrete

Contin. Dyn. Syst., Ser. B 17(8), 2671–2689 (2013)
25. Farkas, J., Hinow, P.: Hierarchical size-structured populations: the linearized semigroup approach. Dyn. Contin.

Discrete Impuls. Syst., Ser. A Math. Anal. 17(5), 639–657 (2010)
26. Gurney, W., Nisbet, R.: Ecological stability and social hierarchy. Theor. Popul. Biol. 16, 48–80 (1979)
27. Lomnicki, A.: Population Ecology of Individuals, Monographs in Population Biology. Princeton University Press,

Princeton (1988)
28. Ackleh, A., Hu, S.: A quasilinear hierarchical size-structured model: well-posedness and approximation. Appl. Math.

Optim. 51, 35–59 (2005)
29. Ackleh, A., Deng, K.: Monotone approximation for a hierarchical age-structured population model. Dyn. Contin.

Discrete Impuls. Syst., Ser. B, Appl. Algorithms 12, 203–214 (2005)
30. Kraev, E.: Existence and uniqueness for height structured hierarchical population models. Nat. Resour. Model. 14(1),

45–70 (2001)
31. Calsina, A., Saldaña, J.: Basic theory for a class of models of hierarchically structured population dynamics with

distributed states in therecruitment. Math. Models Methods Appl. Sci. 16(10), 1695–1722 (2006)
32. Ackleh, A., Deng, K., Thibodeaux, J.: A monotone approximation for a size-structured population model with a

generalized environment. J. Biol. Syst. 1(4), 305–319 (2007)
33. Shen, J., Shu, C., Zhang, M.: A high order weno scheme for a hierarchical size-structured population model. J. Sci.

Comput. 33, 279–291 (2007)
34. Farkas, J., Hagen, T.: Asymptotic analysis of a size-structured cannibalism model with infinite dimensional

environmental feedback. Commun. Pure Appl. Anal. 8(6), 1825–1839 (2009)
35. Jang, S.-J., Cushing, J.: A discrete hierarchical model of intra-specific competition. J. Math. Anal. Appl. 280, 102–122

(2003)
36. Liu, Y., He, Z.: On the well-posedness of a nonlinear hierarchical size-structured population model. ANZIAM J. 58,

482–490 (2017)
37. He, Z., Ni, D., Liu, Y.: Theory and approximation of solutions to a harvested hierarchical age-structured population

model. J. Appl. Anal. Comput. 8(5), 1326–1341 (2018)
38. Yan, D., Fu, X.: Asymptotic behavior of a hierarchical size-structured population model. Evol. Equ. Control Theory 7(2),

293–316 (2018)
39. He, Z., Ni, D., Wang, S.: Optimal harvesting of a hierarchical age-structured population system. Int. J. Biomath. 12(8),

1950091 (2019)
40. He, Z., Han, M.: Theoretical results of optimal harvesting in a hierarchical size-structured population system with

delay. Int. J. Biomath. 14(7), 2150054 (2021)
41. Barbu, V.: Mathematical Methods in Optimization of Differential Systems. Kluwer Academic, Dordrecht (1994)


	Optimal boundary control problems for a hierarchical age-structured two-species model
	Abstract
	MSC
	Keywords

	Introduction
	Description of the problem
	Well-posedness of the state system
	Least deviation-cost problem
	Minimum principle
	Existence of a unique optimal policy

	Most beneﬁt-cost problem
	Numerical simulations
	Conclusion and discussion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


