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Abstract
The generalized derivative Hardy space S2α,β (D) consists of all functions whose
derivatives are in the Hardy and Bergman spaces as follows:
for positive integers α, β ,

S2α,β (D) =
{
f ∈ H(D) : ‖f‖2

S2
α,β

= ‖f‖2H2 +
α + β

αβ

∥∥f ′∥∥2A2 +
1

αβ

∥∥f ′∥∥2H2 < ∞
}
,

where H(D) denotes the space of all functions analytic on the open unit disk D. In this
paper, we study characterizations for Toeplitz operators to be complex symmetric on
the generalized derivative Hardy space S2α,β (D) with respect to some conjugations Cξ ,
Cμ,λ. Moreover, for any conjugation C, we consider the necessary and sufficient
conditions for complex symmetric Toeplitz operators with the symbol ϕ of the form
ϕ(z) =

∑∞
n=1 ϕ̂(–n)z

n +
∑∞

n=0 ϕ̂(n)z
n. Next, we also study complex symmetric Toeplitz

operators with non-harmonic symbols on the generalized derivative Hardy space
S2α,β (D).

1 Introduction
Let H be a separable complex Hilbert space and let L(H) be the algebra of bounded linear
operators on H. We say that an anti-linear operator C on H is a conjugation if C2 = I and
〈Cx, Cy〉 = 〈y, x〉 for all x, y ∈ H. If C is a conjugation on H, there exists an orthonormal
basis {en}∞n=0 for H such that Cen = en for all n (see [5]). We say that an operator T ∈L(H)
is complex symmetric if T = CT∗C for a conjugation operator C onH. The topic of complex
symmetric operators, which includes all truncated Toeplitz operators, Hankel operators,
normal operators, and some Volterra integration operators, has been studied by many
authors (see [4, 5], and [8] for more details).

For the open unit disk D in C, let H(D) be the space of all analytic functions on D. Let
L2(D, dA) be a Hilbert space with the inner product

〈f , g〉 =
∫

D

f (z)g(z) dA(z),
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where f , g ∈ L2(D, dA) and dA is the area measure of D. The Hilbert Hardy space H2(D)
contains all functions f analytic on D with

f (z) =
∞∑

n=0

anzn, where
∞∑

n=0

|an|2 < ∞.

The Bergman space A2(D) consists of the space of analytic functions f in L2(D, dA) with

f (z) =
∞∑

n=0

anzn, where
∞∑

n=0

1
n + 1

|an|2 < ∞.

The Dirichlet space D2(D) is given by

D2(D) =

{
f ∈ H(D) : ‖f ‖2

D2 = ‖f ‖2
H2 +

∥∥f ′∥∥2
A2 =

∞∑
n=0

(n + 1)|fn|2 < ∞
}

.

The reproducing kernels of the spaces H2(D), A2(D), and D2(D) have the following forms:

K1
w(z) =

1
1 – wz

, K2
w(z) =

1
(1 – wz)2 , and K3

w(z) =
1

wz
ln

1
1 – wz

,

respectively. Many authors in [1–3] and [11] studied intensively multiplication and
Toeplitz operators on the Hardy space, Bergman space, and Dirichlet space.

In 2019, Gu and Luo [6] introduced the derivative Hardy space S2
1(D) as follows:

S2
1(D) =

{
f ∈ H(D) : ‖f ‖2

S2
1

= ‖f ‖2
H2 +

3
2
∥∥f ′∥∥2

A2 +
1
2
∥∥f ′∥∥2

H2 < ∞
}

=

{
f ∈ H(D) : ‖f ‖2

S2
1

=
∞∑

n=0

(n + 1)(n + 2)
2

|an|2 < ∞
}

,

where f (z) =
∑∞

n=0 anzn. The reproducing kernel of the derivative Hardy space S2
1(D) is

given by

Kw(z) =
2

(wz)2

[
wz + (wz – 1) ln

1
1 – wz

]
.

Recently, the authors in [9] defined the generalized derivative Hardy space S2
α,β(D) for

α,β ∈ N as

S2
α,β (D) =

{
f ∈ H(D) : ‖f ‖2

S2
α,β

= ‖f ‖2
H2 +

α + β

αβ

∥∥f ′∥∥2
A2 +

1
αβ

∥∥f ′∥∥2
H2 < ∞

}

=

{
f ∈ H(D) : ‖f ‖2

S2
α,β

=
∞∑

n=0

(n + α)(n + β)
αβ

|fn|2 < ∞
}

,

where f (z) =
∑∞

n=0 anzn. Since S2
α,β (D) = S2

β ,α(D) clearly holds, we focus on the space S2
α,β(D)

for α < β . Especially, if α = 1 and β = 2, then S2
α,β (D) becomes S2

1(D).
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Let L∞(D) be the set of all essentially bounded measurable functions in D, and let P
be the orthogonal projection from L2(D, dA) onto S2

α,β(D). For ϕ ∈ L∞(D), the Toeplitz
operator Tϕ on S2

α,β (D) is defined by

Tϕ f := P(ϕ · f ) for f ∈ S2
α,β (D).

Note that, for ϕ,ψ ∈ L∞(D), from the definition of the Toeplitz operator, Tϕ+ψ = Tϕ +
Tψ and T∗

ϕ = Tϕ where ϕ is a complex conjugation of ϕ. The reproducing kernel Kw(z)
of the space S2

α,β (D) is

Kw(z) =
αβ

β – α
ln

1
1 – wz

(
1

(wz)α
–

1
(wz)β

)

+
αβ

β – α

{
1

(wz)α
δα–1(wz) –

1
(wz)β

δβ–1(wz)
}

,

where δm(z) =
∑m

r=1
mCr (–1)r

r [(1 – z)r – 1] (see [9, Lemma 2.1]). Thus we have

(Tϕ f )(z) =
∫

D

ϕ(ω)f (ω)Kz(w) dA(ω)

for f ∈ S2
α,β (D) and ω ∈ D.

This paper is organized as follows. First, we study characterizations for Toeplitz oper-
ators to be complex symmetric on the generalized derivative Hardy space S2

α,β(D) with
respect to some conjugations. Moreover, we also focus on complex symmetric Toeplitz
operators with non-harmonic symbols on the generalized derivative Hardy space S2

α,β (D).

2 Complex symmetric Toeplitz operators
In this section, we study complex symmetry of Toeplitz operators on the space S2

α,β (D).
For the convenience of readers, we begin with the following lemma which comes from [9].
Let N be the natural numbers and let N0 = N∪ {0}.

Lemma 2.1 ([9]) For s, t ∈N0, the following statements hold:

(i)
〈
zt , zs〉 =

⎧⎨
⎩

(s+α)(s+β)
αβ

if s = t,

0 if s 
= t.

(ii) P
(
ztzs) =

⎧⎨
⎩

(s+α)(s+β)
(s–t+α)(s–t+β) zs–t if s ≥ t,

0 if s < t.

Remark 2.2 We mentioned in [9] that there is the difference between the Hardy space
H2(D) (or Bergman space A2(D)) and the generalized derivative Hardy space S2

α,β (D). In-
deed, for s, t ∈ N0, the inequality ‖ztzs‖ ≥ ‖P(ztzs)‖ holds on H2(D) and A2(D). However,
it holds that

∥∥ztzs∥∥≤ ∥∥P
(
ztzs)∥∥ on S2

α,β(D)

because of (s+α)(s+β)
(s–t+α)(s–t+β) > 1.
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Theorem 2.3 For n ∈ N0, let {en} on S2
α,β (D) be given by

en(z) =

√
αβ

(n + α)(n + β)
zn for z ∈ D.

If C is anti-linear on S2
α,β (D) such that Cen = δnen with |δn| = 1, then the following statements

hold:
(i) Parseval’s identity

∑∞
n=0 |〈f , Cen〉|2 =

∑∞
n=0 |〈f , en〉|2 = ‖f ‖2

2 holds for every
f ∈ S2

α,β (D).

(ii) The set of functions {Cen(z) :=
√

αβ

(n+α)(n+β) Czn} forms an orthonormal basis for
S2

α,β (D).

Proof (i) From Lemma 2.1, we have

〈en, em〉 =

√
αβ

(n + α)(n + β)

√
αβ

(m + α)(m + β)
〈
zn, zm〉 = δnm, (1)

where δnm = 1 if n = m, and δnm = 0 if n 
= m. Thus {en} is an orthonormal sequence for
S2

α,β (D). Since C is anti-linear on S2
α,β (D) such that Cen = δnen with |δn| = 1, it follows that

C is a conjugation on S2
α,β (D). Hence

〈Cen, Cem〉 = 〈em, en〉

=

√
αβ

(m + α)(m + β)

√
αβ

(n + α)(n + β)
〈
zm, zn〉 = δmn.

First, we will show that Parseval’s identity
∑∞

n=0 |〈f , Cen〉|2 = ‖f ‖2 holds for every f ∈
S2

α,β (D). Let Cf (z) =
∑∞

k=0 ãkzk . Then

‖f ‖2 = ‖Cf ‖2 =
∞∑

k=0

(k + α)(k + β)
αβ

|ãk|2

and

〈
f (z), Cen(z)

〉
=
〈
en(z), Cf (z)

〉

=

〈√
αβ

(n + α)(n + β)
zn,

∞∑
k=0

ãkzk

〉

=

√
αβ

(n + α)(n + β)

∞∑
k=0

ãk
〈
zn, zk 〉

=

√
αβ

(n + α)(n + β)
ãn
〈
zn, zn〉

=

√
(n + α)(n + β)

αβ
ãn.
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Therefore

∞∑
n=0

∣∣〈f , Cen〉
∣∣2 =

∞∑
n=0

(n + α)(n + β)
αβ

|ãn|2 = ‖f ‖2,

and by a similar calculation, we get ‖f ‖2 =
∑∞

n=0 |〈f , en〉|2. Hence Parseval’s identity holds.
(ii) Since Parseval’s identity holds by (i), f =

∑∞
n=0〈f , Cen〉Cen for every f ∈ S2

α,β (D). Hence
{Cen} forms an orthonormal basis for S2

α,β(D). �

Especially, if α = 1 and β = 2 in Theorem 2.3, then we get the following result.

Corollary 2.4 For n ∈N0, let {en} on S2
1(D) be given by

en(z) =

√
2

(n + 1)(n + 2)
zn for z ∈D.

Let C be anti-linear on S2
1(D) such that Cen = δnen with |δn| = 1. Then Parseval’s identity∑∞

n=0 |〈f , Cen〉|2 =
∑∞

n=0 |〈f , en〉|2 = ‖f ‖2
2 holds for every f ∈ S2

1(D). Moreover, the set of func-
tions {Cen(z) :=

√
2

(n+1)(n+2) Czn} forms an orthonormal basis for S2
1(D).

In 2016, the authors in [8] introduced the conjugation Cμ,λ on the Hardy space H2 as
in (3). Remark that the space H2(D) has the reproducing kernel K1

w(z) and the normalized
reproducing kernel kw(z) given by

K1
w(z) =

1
1 – wz

and kw(z) =
√

1 – |w|2
1 – wz

for w ∈D,

respectively. Recently, the authors in [10] gave the conjugation Cξ which has the form as
in (2) on the Hardy space H2(D). We can easily show that the following operator as in (2)
is the conjugation on S2

α,β(D).

Lemma 2.5 (i) Let ξ ∈R be with |ξ | < 1. Assume that the operator Cξ is defined by

Cξ f (z) = –kξ (z)f
(
ψξ (z)

)
(2)

for some f ∈ S2
α,β (D) where ψξ (z) = ξ–z

1–ξz . Then Cξ is a conjugation on S2
α,β (D).

(ii) For every μ and λ in C with |μ| = |λ| = 1, let Cμ,λ : S2
α,β(D) → S2

α,β(D) be given by

Cμ,λf (z) = μf (λz). (3)

Then Cμ,λ is a conjugation on S2
α,β (D).

Now, we establish a necessary and sufficient condition for a Toeplitz operator Tϕ on
S2

α,β (D) to be complex symmetric with respect to the above conjugations.

Theorem 2.6 Let ϕ ∈ L∞(D). Then the following statements hold:
(i) If ξ ∈ R with |ξ | < 1, then Tϕ on S2

α,β (D) is complex symmetric with the conjugation Cξ

if and only if ϕ(z) = ϕ(ψξ (z)), where ψξ (z) = ξ–z
1–ξz .



Ko et al. Journal of Inequalities and Applications         (2022) 2022:74 Page 6 of 12

(ii) Tϕ on S2
α,β (D) is complex symmetric with the conjugation Cμ,λ if and only if ϕ(z) =

ϕ(λz).

Proof (i) Let Tϕ on S2
α,β(D) be complex symmetric with the conjugation Cξ . Since ξ is real,

it follows that |1 – ξz| = |1 – ξz|, and so |kξ (ψξ (z))|2|kξ (z)|2 = 1. Thus, by Lemma 2.5, we
have

〈
T∗

ϕ f , g
〉

= 〈Cξ TϕCξ f , g〉
= 〈Cξ g, TϕCξ f 〉 =

〈
Cξ g, P(ϕCξ f )

〉
= 〈Cξ g,ϕCξ f 〉

=
∫

D

kξ (z)g
(
ψξ (z)

) · ϕ(z)kξ (z)f
(
ψξ (z)

)
dA(z)

=
∫

D

∣∣kξ (z)
∣∣2g
(
ψξ (z)

)
ϕ(z)f

(
ψξ (z)

)
dA(z)

=
∫

D

∣∣kξ

(
ψξ (z)

)∣∣2ϕ(ψξ (z)
)
f (z)g(z)

∣∣kξ (z)
∣∣2 dA(z)

=
∫

D

ϕ
(
ψξ (z)

)
f (z)g(z) dA(z)

=
〈
ϕ
(
ψξ (z)

)
f , g
〉

=
〈
f , P

(
ϕ
(
ψξ (z)

))
g
〉

for f , g ∈ S2
α,β(D). Hence we get that Tϕg = Tϕ(ψξ (z))g for all g ∈ S2

α,β(D) and then ϕ(z) =
ϕ(ψξ (z)). The converse implications clearly hold by a similar method.

(ii) We claim that if P denotes the orthogonal projection of L2 onto S2
α,β(D), then the

operators Cμ,λ and P commute.
Since en(z) =

√
αβ

(n+α)(n+β) zn, it follows that, for n ≥ 0,

PCμ,λen = Pμλ
nen

=

√
αβ

(n + α)(n + β)
μλ

nzn

=

√
αβ

(n + α)(n + β)
Cμ,λzn = Cμ,λPen,

and for n < 0, we have that PCμ,λen = Pμλ
nen = 0 = Cμ,λPen. Hence

Cμ,λP = PCμ,λ. (4)

Thus we complete the proof for the claim. By a similar way of the proof of [7, Theorem
2.2], we know from (4) that Tϕ on S2

α,β (D) is complex symmetric with the conjugation Cμ,λ

if and only if Tϕ on S2
α,β (D) is complex symmetric with the conjugation C1,λ if and only if

ϕ(z) = ϕ(λz). �

As some applications of Theorem 2.6, we get the following corollaries.
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Corollary 2.7 Let ϕ ∈ L∞(D) and let the operator C 1
2

be defined by

C 1
2

f (z) = –
( √

3
2 – z

)
· f
(

1 – 2z
2 – z

)

for some f ∈ S2
α,β(D). Then Tϕ on S2

α,β(D) is complex symmetric with the conjugation C 1
2

if
and only if ϕ(z) = ϕ( 1–2z

2–z ).

Corollary 2.8 Let ϕ(z) =
∑∞

n=–∞ bnzn ∈ L∞(D). If Tϕ is a Toeplitz operator on S2
α,β (D), then

Tϕ is complex symmetric with the conjugation Cμ,λ if and only if ϕ(z) = b0 +
∑∞

n=1 bn(zn +
λnzn) with |λ| = 1. Moreover, if Tϕ is complex symmetric with the conjugation Cμ,λ, then Tϕ

is normal if and only if λnbn = bn = λnb–n for all n ∈N0 with |λ| = 1.

Proof The proof follows from Theorem 2.6 and [8]. �

Theorem 2.9 Let ϕ be in L∞(D) such that ϕ(z) =
∑∞

n=1 ϕ̂(–n)zn +
∑∞

n=0 ϕ̂(n)zn, and let C
be a conjugation on S2

α,β(D). Then Tϕ on S2
α,β (D) is a complex symmetric operator with the

conjugation C if and only if ϕ̂(–k) = Cϕ̂(k) for all k ∈N0.

Proof Let f (z) =
∑∞

j=0 ajzj and Cf (z) =
∑∞

j=0 ãjzj. Denote

ϕ+(z) =
∞∑

n=0

ϕ̂(n)zn and ϕ–(z) =
∞∑

n=1

ϕ̂(–n)zn.

By the proof of Theorem 2.3, we obtain that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ+f =
∑∞

k=0
∑∞

n=0 ϕ̂(k)anzk+n,

P(ϕ–f ) =
∑∞

k=1
∑∞

n=k
(n+α)(n+β)

(n–k+α)(n–k+β) ϕ̂(–k)anzn–k ,

P(ϕ+Cf ) =
∑∞

k=0
∑∞

n=k
(n+α)(n+β)

(n–k+α)(n–k+β) ϕ̂(k)ãnzn–k ,

ϕ–Cf =
∑∞

k=1
∑∞

n=0 ϕ̂(–k)ãnzk+n.

(5)

Since Tϕ is complex symmetric with the conjugation C if and only if

ϕ+f + P(ϕ–f ) = CP(ϕ+Cf ) + C(ϕ–Cf ), (6)

thus equation (6) gives that

∞∑
k=0

∞∑
n=0

ϕ̂(k)anzk+n +
∞∑

k=1

∞∑
n=k

(n + α)(n + β)
(n – k + α)(n – k + β)

ϕ̂(–k)anzn–k ,

=
∞∑

k=0

∞∑
n=k

(n + α)(n + β)
(n – k + α)(n – k + β)

˜̂
ϕ(k)anzn–k +

∞∑
k=1

∞∑
n=0

˜̂ϕ(–k)anzk+n. (7)

From the constant term in (7), we have

∞∑
k=0

(n + α)(n + β)
(n – k + α)(n – k + β)

ϕ̂(–k)ak =
∞∑

k=0

(n + α)(n + β)
(n – k + α)(n – k + β)

˜̂
ϕ(k)ak .
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Since ak is arbitrary, we have ϕ̂(–k) = Cϕ̂(k) for all k ∈N0. Conversely, if ϕ̂(–k) = Cϕ̂(k) for
all k ∈N0, then Tϕ is complex symmetric with the conjugation C. �

Corollary 2.10 Let ϕ be in L∞(D) such that ϕ(z) =
∑∞

n=1 ϕ̂(–n)zn +
∑∞

n=0 ϕ̂(n)zn. If C is
anti-linear on S2

α,β (D) such that Cen = δnen with |δn| = 1, then Tϕ on S2
α,β (D) is a complex

symmetric operator with the conjugation C if and only if ϕ̂(–k) = δkϕ̂(k) for all k ∈N0.

3 Complex symmetry with non-harmonic symbols
In this section, we study the complex symmetry with non-harmonic symbols. In the
Hardy space H2(T), znzm is equal to zm–n, but in the generalized derivative Hardy S2

α,β (D),
znzm 
= zm–n since z ∈D. The following result gives a necessary and sufficient condition for
complex symmetric Toeplitz operators with non-harmonic symbols.

Theorem 3.1 Let ϕ(z) =
∑∞

i=0(aizni zmi + bizsi zti ) for ai, bi ∈C, and let ni – mi = ti – si hold.
Then Tϕ on S2

α,β(D) is complex symmetric with the conjugation Cμ,λ if and only if ϕ is either

ϕ(z) =
∞∑
i=0

(
ai|z|2mi + bi|z|2ti

)

or

ϕ(z) =
∞∑
i=0

ai
(
zni zmi + λmi–ni zmi zni

)

for ai, bi ∈C.

Proof Assume that ni > mi for i ∈ N and Tϕ is complex symmetric with the conjugation
Cμ,λ. If k ≥ maxi∈N{ni – mi}, then

Cμ,λTϕzk = Cμ,λP

( ∞∑
i=0

(
aizni zmi+k + bizsi zti+k)

)

= Cμ,λ

( ∞∑
i=0

[
(mi + k + α)(mi + k + β)

(mi + k – ni + α)(mi + k – ni + β)
aizmi+k–ni

+
(ti + k + α)(ti + k + β)

(ti + k – si + α)(ti + k – si + β)
bizti+k–si

])

=
∞∑
i=0

[
μ

(mi + k + α)(mi + k + β)
(mi + k – ni + α)(mi + k – ni + β)

aiλ
mi+k–ni zmi+k–ni

+ μ
(ti + k + α)(ti + k + β)

(ti + k – si + α)(ti + k – si + β)
biλ

ti+k–si zti+k–si

]

and

T∗
ϕCμ,λzk = Tϕμλ

kzk

= μλ
kP

( ∞∑
i=0

[
aizmi zni+k + bizti zsi+k]

)
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=
∞∑
i=0

[
μλ

k (ni + k + α)(ni + k + β)
(ni + k – mi + α)(ni + k – mi + β)

aizni+k–mi

+ μλ
k (si + k + α)(si + k + β)

(si + k – ti + α)(si + k – ti + β)
bizsi+k–ti

]
.

Since Tϕ is a complex symmetric operator with the conjugation Cμ,λ, we have that

ni = mi and si = ti

for any i ≥ 0, i.e., ϕ is of the form ϕ(z) =
∑∞

i=0(ai|z|2mi + bi|z|2ti ) or

(mi + k + α)(mi + k + β)
(mi + k – ni + α)(mi + k – ni + β)

aiλ
mi–ni =

(si + k + α)(si + k + β)
(si + k – ti + α)(si + k – ti + β)

bi (8)

and

(ti + k + α)(ti + k + β)
(ti + k – si + α)(ti + k – si + β)

biλ
ti–si =

(ni + k + α)(ni + k + β)
(ni + k – mi + α)(ni + k – mi + β)

ai (9)

for all i ∈ N. By equations (8) and (9), we obtain si = mi, ti = ni, and ai = biλ
ni–mi for all

i ≥ 0, and so ϕ is of the form

ϕ(z) =
∞∑
i=0

ai
(
zni zmi + λmi–ni zmi zni

)
.

On the one hand, suppose that ϕ is of the form

ϕ(z) =
∞∑
i=0

ai
(
zni zmi + λmi–ni zmi zni

)
.

Then, by similar calculations, we have that

Cμ,λTϕ

∞∑
k=0

ckzk

= Cμ,λP

( ∞∑
i=0

∞∑
k=0

(
aickzni zmi+k + aickλ

mi–ni zmi zni+k)
)

= Cμ,λ

( ∞∑
i=0

[ ∞∑
k=ni–mi

(mi + k + α)(mi + k + β)
(mi + k – ni + α)(mi + k – ni + β)

aickzmi+k–ni

+
∞∑

k=0

(ni + k + α)(ni + k + β)
(ni + k – mi + α)(ni + k – mi + β)

aiλ
mi–ni ckzni+k–mi

])

=
∞∑
i=0

[ ∞∑
k=ni–mi

μ
(mi + k + α)(mi + k + β)

(mi + k – ni + α)(mi + k – ni + β)
aickλ

mi+k–ni zmi+k–ni

+
∞∑

k=0

μ
(ni + k + α)(ni + k + β)

(ni + k – mi + α)(ni + k – mi + β)
aickλ

kzni+k–mi

]
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and

T∗
ϕCμ,λ

∞∑
k=0

ckzk

= Tϕ

∞∑
k=0

ckμλ
kzk

= P

( ∞∑
i=0

∞∑
k=0

ckμλ
k[aizmi zni+k + aiλ

mi–ni zni zmi+k]
)

=
∞∑
i=0

[ ∞∑
k=0

ckμλ
k (ni + k + α)(ni + k + β)

(ni + k – mi + α)(ni + k – mi + β)
aizni+k–mi

+
∞∑

k=ni–mi

ckμλ
k (mi + k + α)(mi + k + β)

(mi + k – ni + α)(mi + k – ni + β)
aiλ

mi–ni zmi+k–ni

]
.

Therefore, we know that

Cμ,λTϕ

∞∑
k=0

ckzk = T∗
ϕCμ,λ

∞∑
k=0

ckzk ,

and hence Tϕ is complex symmetric with the conjugation Cμ,λ.
Similarly, if ϕ is of the form ϕ(z) =

∑∞
i=0(ai|z|2mi + bi|z|2ti ), then we can show that Tϕ is

complex symmetric with the conjugation Cμ,λ. This completes the proof. �

Remark 3.2 Let

ϕ(z) =
∞∑
i=0

(
aizni zmi + bizsi zti

)

for ai, bi ∈C and let ni – mi = ti – si hold. By Theorem 2.6, Tϕ on S2
α,β(D) is complex sym-

metric with the conjugation Cμ,λ if and only if ϕ(λz) = ϕ(z). Indeed, since

ϕ(λz) – ϕ(z) =
∞∑
i=0

(
ai(λz)

ni (λz)mi + bi(λz)
si (λz)ti

)
–

∞∑
i=0

(
aizni zmi + bizsi zti

)

=
∞∑
i=0

(
aiλ

ni zni (λz)mi + biλ
si zsi

(
λti zti

))
–

∞∑
i=0

(
aizni zmi + bizsi zti

)

=
∞∑
i=0

[
aiλ

mi–ni zni zmi + biλ
ti–si zsi zti – aizni zmi – bizsi zti

]
= 0

if and only if si = mi, ti = ni, and ai = biλ
ni–mi .

Corollary 3.3 (i) Let ϕ(z) =
∑∞

i=0(aizni zmi +bizmi zni ) for some ai, bi ∈ C. Then Tϕ on S2
α,β(D)

is complex symmetric with the conjugation Cμ,λ if and only if ai = biλ
ni–mi .

(ii) If ϕ(z) =
∑∞

i=0(aizmi+1zmi + bizmi zmi+1) for some ai, bi ∈ C, then Tϕ on S2
α,β (D) is com-

plex symmetric with the conjugation Cμ,λ if and only if ai = biλ for all i.
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(iii) If ϕ(z) =
∑∞

i=0 2ai|z|2i for ai ∈ C, then Tϕ on S2
α,β (D) is complex symmetric with the

conjugation Cμ,λ.

Proof (i) If si = mi and ti = ni in Theorem 3.1, then we obtain statement (i).
(ii) If we put ni = mi + 1 in (i), then we get statement (ii).
(iii) If si = mi, ti = ni, and ai = bi, then we have this result. �

Example 3.4 Let ϕ(z) =
∑∞

j=0(ajznj zmj + ajeiθ zmj znj ) for some ai ∈ C and for some real θ .
Then Tϕ on S2

α,β (D) is complex symmetric with the conjugation Cμ,λ.

Corollary 3.5 Let ϕ(z) =
∑∞

i=0(aizni zmi + bizsi zti ) for ai, bi ∈C and let ni – mi = ti – si hold.
If one of si = mi, ti = ni, and ai = biλ

ni–mi does not hold, then Tϕ on S2
α,β(D) is not complex

symmetric with the conjugation Cμ,λ.

Proof The proof follows from Theorem 3.1. �

Remark 3.6 In Theorem 3.1, the condition “ni – mi = ti – si” is a necessary condition. If
not, we may not consider complex symmetric Toeplitz operators with such non-harmonic
symbols. For example, let ϕ(z) = azz3 + bz2z for a, b ∈C. Then, for k ≥ 2, we have

Cμ,λTϕzk = μ
(k + α + 3)(k + β + 3)
(k + α + 2)(k + β + 2)

aλ
k+2zk+2 + μ

(k + α + 1)(k + β + 1)
(k + α – 1)(k + β – 1)

bλ
k–1zk–1

and

T∗
ϕCμ,λzk = μλ

k (k + α + 1)(k + β + 1)
(k + α – 2)(k + β – 2)

azk–2 + μλ
k (k + α + 2)(k + β + 2)

(k + α + 1)(k + β + 1)
bzk+1.

Thus Cμ,λTϕzk 
= T∗
ϕCμ,λzk for any k ≥ 2, and so Tϕ is not complex symmetric Toeplitz

operators.

Corollary 3.7 Let ϕ(z) = aznzm + bzk , where n, m, k ∈N with n > m and a, b ∈C with |a| 
=
|b|. Then Tϕ on S2

α,β (D) is never complex symmetric with the conjugation Cμ,λ.

Remark 3.8 If ϕ(z) = aznzm for a ∈ C and m, n ∈ N with m 
= n or ϕ(z) = z2z + bz for b ∈ C

with b 
= 1. By Theorem 3.1 and Corollary 3.7, Tϕ is never complex symmetric with the
conjugation Cμ,λ in S2

α,β(D) and the Hardy space H2(T).

4 Conclusion
In this paper, we make characterizations for Toeplitz operators to be complex symmetric
on the generalized derivative Hardy space S2

α,β (D) with respect to the conjugations Cξ ,
Cμ,λ as in Theorem 2.6. Moreover, in Theorem 2.9, we deduce the necessary and sufficient
conditions for complex symmetric Toeplitz operators with any conjugation C. Next, for
the conjugation Cμ,λ, we also obtain complex symmetric Toeplitz operators with non-
harmonic symbols of the form ϕ(z) =

∑∞
i=0(aizni zmi + bizsi zti ) in Theorem 3.1. The results

of this paper provide an answer in the generalized derivative Hardy space S2
α,β(D) as in the

question raised in [8].
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