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Abstract
We provide upper bounds on the perturbation of invariant subspaces of normal
matrices measured using a metric on the space of vector subspaces ofCn in terms of
the spectrum of both unperturbed and perturbed matrices as well as the spectrum of
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1 Introduction
Classical results on perturbation of invariant subspaces of a matrix usually take one of the
two forms: (1) perturbation measured in terms of a natural metric in the space of vec-
tor subspaces (usually expressed as the sine of the angle between subspaces) with upper
bound described in terms of the perturbation in the matrices as well as the spectra of both
unperturbed and perturbed matrices (for example, the Davis–Kahan sin� theorem [1] –
see Section VIII.3 of [2] where a generalization of this theorem is given for normal matri-
ces); or (2) perturbation measured in terms of bounds on norms of matrices that relate an
invariant subspace with its perturbation in a more complex manner (which, in general, is
not a natural metric in the space of vector subspaces) although the upper bound is based
on the spectrum of the unperturbed matrix only (see, for example, [1, 3] or Chapter V of
[4]).

In this paper1 we first derive an upper bound reminiscent of the Davis–Kahan sin�

theorem, but generalized for normal matrices and with modestly tighter bound (Propo-
sition 1). Then we use some geometric methods to derive a bound on perturbation mea-
sured in terms of a natural metric in the space of subspaces, but with upper bounds in
terms of spectrum of the unperturbed matrix only (Proposition 2) when the spectrum is

1A preprint version of this articles is posted on the arXiv preprint repository and can be accessed at
https://arxiv.org/abs/2103.09413 [5].
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well clustered (a relation formally described as “separation-preserving perturbation”). In
the latter case our proposed result also allows easy identification of the perturbed invariant
subspace (Lemma 7).

Definition 1 (Notations) Throughout the paper we assume M, ˜M ∈ C
n×n to be normal

matrices unless specified otherwise, and by “eigenvectors” we refer to their right eigenvec-
tors. The eigenvalues (not necessarily distinct) and corresponding unit eigenvectors (for
degenerate eigenspaces, any orthonormal basis thereof ) of M are λj and uj for j = 1, 2, . . . , n.
Likewise, the eigenvalues and corresponding unit eigenvectors of ˜M are ˜λj and ũj for
j = 1, 2, . . . , n. We will usually consider the eigenvectors to be column vectors in C

n×1. Let
U = [u1, u2, . . . , un] and ˜U = [̃u1, ũ2, . . . , ũn] be the unitary matrices that diagonalize M and
˜M respectively. A dagger as superscript on a matrix or a vector, (·)†, denotes the conju-
gate transpose (Hermitian transpose) of the matrix or vector. For notational convenience,
define N = {1, 2, . . . , n}.

As a convention, we choose primed lower-case Latin letters to index variables (eigenval-
ues or eigenvectors) with tilde on them. Given a set S ⊆ N , we define the set uS = {uj|j ∈ S}.
Likewise ũS = {̃uj′ |j′ ∈ S}. Define the multi-sets λS = {λj|j ∈ S} and˜λS = {˜λj′ |j′ ∈ S} (by as-
serting that these are multi-sets, we allow multiplicity in the values, thus ensuring these
sets have the same number of elements as S). We also define the complement of S as
Sc = N – S.

The outline of the paper is as follows:
1 In Sect. 2.1 we describe a natural metric dsp on Gr(q,Cn) (the space of

q-dimensional complex vector subspaces of Cn) to measure perturbation of
invariant subspaces of n × n normal matrices. This metric is equivalent to the
Frobenius norm of the sin� matrix between subspaces of Cn.

2 Some geometry lemmas are proven in Sect. 2.2, and then they are used in Sect. 3.3
for deriving bounds on the perturbation of invariant subspaces in terms of the
spectrum of the unperturbed matrix only (when the spectrum is well clustered).

3 In Sect. 3.2 we describe an upper bound on the distance between invariant
subspaces in terms of the spectrum of both unperturbed and perturbed matrices.
Some of these results give improvements on the Davis–Kahan sin� theorem for
normal matrices (although the Davis–Kahan sin� is usually stated for Hermitian
matrices, there exist generalizations of the theorem for normal matrices – see
Section VIII.3 of [2]). As an example (see Fig. 1), for any J ,˜J ⊆ N , with |J| = |˜J| = q,
Proposition 1 states

dsp
(

span(uJ ), span(̃ũJ )
) ≤

√

√

√

√

1
q
∑

j∈J

‖(˜M – M)uj‖2
2 – κj minj′∈˜J |˜λj′ – λj|2

minj′∈˜Jc |˜λj′ – λj|2 – κj minj′∈˜J |˜λj′ – λj|2

Figure 1 Partition of the eigenvalues of M (in blue) and ˜M (in red)
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with

κj =

⎧

⎨

⎩

0, if ‖(˜M – M)uj‖2 ≥ minj′∈˜Jc |˜λj′ – λj|,
1, if ‖(˜M – M)uj‖2 < minj′∈˜Jc |˜λj′ – λj|.

This is a tighter upper bound than the Davis–Kahan sin� theorem, which, as a
consequence, leads to the rediscovery of a couple of slight variations on the
Davis–Kahan sin� theorem in Corollary 5, where, as an example, one result states

dsp
(

span(uJ ), span(̃ũJ )
) ≤

min(1,
√

n–q
q )

max(sep(λJ ,˜λ̃Jc ), sep(λJc ,˜λ̃J ))
‖˜M – M‖2,

where sep(P, Q) = minp∈P,q∈Q |p – q| simply measures the min-min distance between
the sets (this is unlike the Davis–Kahan sin� theorem generalized for normal
matrices, where it is necessary to find a ‘strip’ or ‘annulus’ of width δ separating λJ

and˜λ̃Jc – see Theorem VIII.3.1 of [2]).
4 The next set of the main results of this paper appears in Sect. 3.3, which formalizes

the notion of well-clustered spectrum in Lemma 7, followed by Proposition 2 that
provides the upper bound on the perturbation of an invariant subspace in terms of
the spectrum of the unperturbed matrix only. These results rely on the geometry
lemmas from Sect. 2.2. As an example, one of the results of Proposition 2 states that
if ‖˜M – M‖2 < 1

2 sep(λJ ,λJc ), then

dsp
(

span(uJ ), span(̃ûJ )
)

≤ 1√q
min

(

√

√

√

√

∑

j∈J

( ‖(˜M – M)uj‖2

mink∈Jc |λk – λj| – ‖˜M – M‖2

)2

,

√

√

√

√

∑

j∈Jc

( ‖(˜M – M)uj‖2

mink∈J |λk – λj| – ‖˜M – M‖2

)2)

≤ min

(

1,
√

n – q
q

) ‖˜M – M‖2

sep(λJ ,λJc ) – ‖˜M – M‖2
,

wherêJ = {j′|minj∈N |˜λj′ – λj| = minj∈J |˜λj′ – λj|} is the set of indices corresponding
to the eigenvalues of ˜M that are closer to λJ than to λJc .

5 Sect. 4 demonstrates an application to the perturbation of a null-space of a matrix
in the context of a graph perturbation problem.

2 Preliminaries
2.1 A metric on Gr(q,Cn)
Definition 2 (Subspace distance) Suppose that X, Y ⊆ C

n are q-dimensional vector sub-
spaces of Cn.

Let {xj}j=1,2,...,q and {yj}j=1,2,...,q be orthonormal bases on X and Y . The subspace distance
between X and Y is defined as

dsp(X, Y ) =
1√
2q

∥

∥XX† – YY†
∥

∥

F , (1)
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where

X = [x1, x2, . . . , xq] and Y = [y1, y2, . . . , yq] (2)

are the n × q matrices in which the columns represent the unit vectors {xj}j=1,2,...,q and
{yj}j=1,2,...,q. X† and Y† are the Hermitian transpose (i.e., adjoint) of X and Y respectively.

Note that the matrices XX† and YY† are the projection operators on X and Y respec-
tively. The space of difference of such projection operators is well studied in the literature
(see [6, 7] for example), and the norms of such differences have been used as a metric on
Gr(q,Cn) (see [8] for example). In fact this metric is equivalent to the Frobenius norm of
the sin� matrix between subspaces of Cn that is used for measuring perturbation of in-
variant subspaces in the context of the Davis–Kahan sin� theorem. We choose the Frobe-
nius norm for measuring the distance between the projection operators and use a scaling
factor of 1√

2q for convenience and some additional properties of the metric. The following
lemmas outline some elementary and mostly standard properties of this metric.

Let X⊥ and Y ⊥ be orthogonal complements of X and Y respectively in C
n. Let

{xj}j=q+1,q+2,...,n and {yk}k=q+1,q+2,...,n be orthonormal basis for X⊥ and Y ⊥ respectively. Define

X⊥ = [xq+1, xq+2, . . . , xn] and Y⊥ = [yq+1, yq+2, . . . , yn]. (3)

Lemma 1 (Equivalent forms of dsp)
1 dsp(X, Y ) =

√

1 – 1
q ‖X†Y‖2

F =
√

1 – 1
q
∑q

j=1
∑q

k=1 |x†
j yk|2

2 dsp(X, Y ) =
√

1
q ‖X⊥†Y‖2

F =
√

1
q
∑n

j=q+1
∑q

k=1 |x†
j yk|2

Proof
1 In the following we use the definition ‖A‖2

F = tr(A†A) and the property that
tr(AB) = tr(BA).

(

dsp(X, Y )
)2

=
1

2q
∥

∥XX† – YY†
∥

∥

2
F

=
1

2q
tr
((

XX† – YY†
)†(XX† – YY†

))

=
1

2q
tr
(

XX†XX†
)

+ tr
(

YY†YY†
)

– tr
(

XX†YY†
)

– tr
(

YY†XX†
)

=
1

2q
(

tr
(

XX†
)

+ tr
(

YY†
)

– 2 tr
(

Y†XX†Y
))

(

since X†X = Y†Y = I
)

= 1 –
1
q
∥

∥X†Y
∥

∥

2
F

(

since tr
(

XX†
)

= tr
(

X†X
)

=
q

∑

j=1

x†
j xj = q, and likewise for Y

)

= 1 –
1
q

q
∑

j=1

q
∑

k=1

∣

∣x†
j yk

∣

∣

2.
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2 Note that [X, X⊥] is an n × n unitary matrix with columns being the vectors of the
orthonormal basis {xi}i=1,2,...,n. Thus, [X, X⊥][X, X⊥]† = XX† + X⊥X⊥† = I . Thus,

(

dsp(X, Y )
)2 = 1 –

1
q
∥

∥X†Y
∥

∥

2
F

= 1 –
1
q

tr
(

Y†XX†Y
)

= 1 –
1
q

tr
(

Y†
(

I – X⊥X⊥†)Y
)

= 1 –
1
q

tr
(

Y†Y
)

+
1
q

tr
(

Y†X⊥X⊥†Y
)

= 1 –
1
q

q +
1
q

tr
(

Y†X⊥X⊥†Y
)

=
1
q
∥

∥X⊥†Y
∥

∥

2
F =

1
q

n
∑

j=q+1

q
∑

k=1

∣

∣x†
j yk

∣

∣

2.
�

Lemma 2 (Properties of dsp)
1 The value of dsp(X, Y ) is independent of the choice of basis on X or Y (or the basis on

X⊥ or Y ⊥, if using the equivalent form in Lemma 1.2).
2 dsp is a metric on Gr(q,Cn) (the space of q-dimensional complex subspaces of Cn).
3 √qdsp(X, Y ) = √n – qdsp(X⊥, Y ⊥).
4 dsp(X, Y ) ≤ 1, with equality holding iff X and Y are orthogonal subspaces (which is

possible only if q ≤ n/2).

Proof
1 Suppose that {x′

j}j=1,2,...,q and {y′
j}j=1,2,...,q are a different set of orthonormal bases on

X and Y respectively. Define X′ = [x′
1, x′

2, . . . , x′
q], Y′ = [y′

1, y′
2, . . . , y′

q]. Thus there
exist q × q unitary matrices RX , RY ∈ U(q) such that X = X′RX and Y = Y′RY . Then

(

dsp(X, Y )
)2

=
1

2q
∥

∥XX† – YY†
∥

∥

2
F

=
1

2q
∥

∥

(

X′RX
)(

X′RX
)† –

(

Y′RY
)(

Y′RY
)†∥
∥

2
F

=
1

2q
∥

∥X′X′† – Y′Y′†∥
∥

2
F .

For the equivalent form in Lemma 1.2 we can use the orthonormal basis
{x′

j}j=q+1,q+2,...,n and {y′
k}k=q+1,q+2,...,n for X⊥ and Y ⊥ respectively and analogously

derive at the equivalent form using the primed basis.
2 Nonnegativity and symmetry properties are obvious from the definition of dsp.

If X and Y are the same subspaces, we can choose the same basis for them (since
the value of dsp(X, Y ) is independent of the choice of a basis on X and Y ), doing so
makes it obvious that dsp(X, Y ) = 0.

Triangle inequality holds due to the fact that Frobenius norm of the difference of
matrices is a metric on C

n×n.



Bhattacharya Journal of Inequalities and Applications         (2022) 2022:75 Page 6 of 31

3 Note that X⊥ and Y ⊥ are (n – q)-dimensional subspaces of Cn. Furthermore, X is
the orthogonal complement of X⊥. As a consequence, due to Lemma 1.2,

dsp
(

X⊥, Y ⊥) =

√

1
n – q

∥

∥X†Y⊥∥
∥

F

=

√

1
n – q

∥

∥Y⊥†X
∥

∥

F

(

since ‖A‖F =
∥

∥A†
∥

∥

F .
)

=

√

1
n – q

√
qdsp(Y , X) =

√

q
n – q

dsp(X, Y ).

4 The last property is obvious from the result of Lemma 1.1.
�

2.2 Some results involving set distances
In this section we provide some geometry results that will be used in Sect. 3.3 for com-
puting the upper bounds on the perturbation of invariant subspaces in terms of the spec-
trum of the unperturbed matrix only. For the purpose of this paper and for simplicity, we
consider only closed subsets of metric spaces in the following lemmas, although all these
results can potentially be generalized for subsets that are open or/and closed in the metric
space.

Definition 3 Given closed subsets A, B of a metric space (� , d), we define the following:
1 Separation between the sets

sep(A, B) = min
a∈A,
b∈B

d(a, b);

2 Hausdorff distance between the sets

dH (A, B) = max
(

max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)
)

;

3 Diameter of a set

diam(A) = max
a∈A,
a′∈A

d
(

a, a′).

Lemma 3 If (� , d) is a metric space, then for any closed subsets P, Q, R ⊆ � ,

sep(P, Q) ≤ sep(P, R) + sep(R, Q) + diam(R). (4)

Proof Let (p∗, r1) ∈ arg minp∈P,r∈R d(p, r) (that is, p∗ ∈ P, r1 ∈ R are a pair of points such that
d(p∗, r1) = minp∈P,r∈R d(p, r) = sep(P, R)). Likewise, let (q∗, r2) ∈ arg minq∈Q,r∈R d(q, r) (that
is, d(q∗, r2) = sep(R, Q)). Then

sep(P, Q) ≤ d
(

p∗, q∗)
(

since sep(P, Q) = min
p∈P,
q∈Q

d(p, q)
)

≤ d
(

p∗, r1
)

+ d
(

r1, q∗) (triangle inequality)

= sep(P, R) + d
(

r1, q∗)
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Figure 2 Illustration for the proof of Lemma 4

≤ sep(P, R) + d(r1, r2) + d
(

q∗, r2
)

(triangle inequality)

= sep(P, R) + sep(R, Q) + d(r1, r2)

≤ sep(P, R) + sep(R, Q) + diam(R). (5)
�

Lemma 4 If (� , d) is a connected path metric space, then for any closed subsets P, Q,˜Q ⊆
� ,

sep(P, Q) ≤ sep(P,˜Q) + dH (˜Q, Q). (6)

Proof Let (p0, q∗) ∈ arg minp∈P,q∈Q d(p, q) (that is, p0 ∈ P, q∗ ∈ Q are a pair of points such
that d(p0, q∗) = minp∈P,q∈Q d(p, q)) – see Fig. 2. Likewise, let (p1, q̃∗) ∈ arg minp∈P,q′∈˜Q d(p, q′).
Furthermore, let q̃† ∈ arg minq′∈˜Q d(q∗, q′) and q† ∈ arg minq∈Q d(q, q̃∗).

Consider the shortest path γ : [0, 1] → � connecting q∗ and q̃† and parameterized by
the normalized distance from q∗, so that γ (0) = q∗, γ (1) = q̃† and

d
(

q∗,γ (u)
)

= ud
(

q∗, q̃†
)

. (7)

Likewise, μ : [0, 1] → � be the shortest path connecting q† and q̃∗, nd parameterized by
the normalized distance from q†, so that μ(0) = q†, μ(1) = q̃∗ and d(q†,μ(u)) = ud(q†, q̃∗).
Consequently, since μ(u) is a point on the shortest path connecting q† and q̃∗, we have

d
(

μ(u), q̃∗) = d
(

q†, q̃∗) – d
(

q†,μ(u)
)

= (1 – u)d
(

q†, q̃∗). (8)

Define f : [0, 1] →R as f (t) = d(p0,γ (t)), and g : [0, 1] →R as g(t) = d(p1,μ(t)). It is easy
to note that both f and g are continuous.

As a consequence, we have the following:

f (0) = d
(

p0, q∗) = min
p∈P,
q∈Q

d(p, q) ≤ d
(

p1, q†
)

= g(0),

g(1) = d
(

p1, q̃∗) = min
p∈P,
q′∈˜Q

d
(

p, q′) ≤ d
(

p0, q̃†
)

= f (1).

Thus, by intermediate value theorem, there exists u ∈ [0, 1] such that f (u) = g(u). That is,

d
(

p0,γ (u)
)

= d
(

p1,μ(u)
)

for some u ∈ [0, 1]. (9)
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Using this, we have

min
p∈P,
q∈Q

d(p, q) = d
(

p0, q∗)

≤ d
(

p0,γ (u)
)

+ d
(

q∗,γ (u)
)

(triangle inequality)

= d
(

p1,μ(u)
)

+ d
(

q∗,γ (u)
)

(using (9))

≤ d
(

p1, q̃∗) + d
(

μ(u), q̃∗) + d
(

q∗,γ (u)
)

(triangle inequality)

= min
p∈P,
q′∈˜Q

d
(

p, q′) + d
(

μ(u), q̃∗) + d
(

q∗,γ (u)
)

= min
p∈P,
q′∈˜Q

d
(

p, q′) + (1 – u)d
(

q†, q̃∗) + ud
(

q∗, q̃†
)

(using (7) and (8))

≤ min
p∈P,
q′∈˜Q

d
(

p, q′) + max
(

d
(

q†, q̃∗), d
(

q∗, q̃†
))

= min
p∈P,
q′∈˜Q

d
(

p, q′) + max
(

min
q∈Q

d
(

q, q̃∗), min
q′∈˜Q

d
(

q∗, q′)
)

(

definitions of q† and q̃†
)

≤ min
p∈P,
q′∈˜Q

d
(

p, q′) + max
(

max
q′∈˜Q

min
q∈Q

d
(

q, q′), max
q∈Q

min
q′∈˜Q

d
(

q, q′)
)

= sep(P,˜Q) + dH (˜Q, Q). �

Lemma 5 Suppose that P, Q,˜R are closed subsets of a metric space (� , d) such that

max
r′∈˜R

min
s∈P∪Q

d
(

s, r′) + dH (P ∪ Q,˜R) < sep(P, Q) (10)

Define (see Fig. 3)˜P,˜Q ⊆˜R such that

˜P =
{

r′ ∈˜R
∣

∣ min
s∈P∪Q

d
(

s, r′) = min
p∈P

d
(

p, r′)
}

and

˜Q =
{

r′ ∈˜R
∣

∣ min
s∈P∪Q

d
(

s, r′) = min
q∈Q

d
(

q, r′)
}

.
(11)

Then
1 {˜P,˜Q} constitutes a partition of˜R.
2 arg mins∈P∪Q d(s, p′) ⊆ P, ∀p′ ∈˜P, and arg mins∈P∪Q d(s, q′) ⊆ Q, ∀q′ ∈ ˜Q.

(Consequently, mins∈P∪Q d(s, p′) = mins∈P d(s, p′), ∀p′ ∈˜P, and
mins∈P∪Q d(s, q′) = mins∈Q d(s, q′), ∀q′ ∈ ˜Q.)

Figure 3 Illustration for Lemma 5
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3 arg minr′∈˜R d(p, r′) ⊆˜P, ∀p ∈ P, and arg minr′∈˜R d(q, r′) ⊆ ˜Q, ∀q ∈ Q. (Consequently,
minr′∈˜R d(p, r′) = minr′∈˜P d(p, r′), ∀p ∈ P, and minr′∈˜R d(q, r′) = minr′∈˜Q d(q, r′), ∀q ∈ Q.)

4 dH (P,˜P) ≤ dH (P ∪ Q,˜R), dH (Q,˜Q) ≤ dH (P ∪ Q,˜R), and
max(dH (P,˜P), dH (Q,˜Q)) = dH (P ∪ Q,˜R).

5 If (� , d) is a connected path metric space, then sep(˜P,˜Q) ≥ sep(P, Q) – 2dH (P ∪ Q,˜R).
If the above holds, we say “˜R is a separation-preserving perturbation of P and Q” and call
{˜P,˜Q} to be the “separation-preserving partition of˜R”.

Proof 1. We first prove that {˜P,˜Q} constitutes a partition of˜R.
Proof for˜P ∪˜Q =˜R: For fixed r′ ∈˜R, an element of arg mins∈P∪Q d(s, r′) is either in P or in

Q. In the former case the point r′ will belong to˜P, while in the latter case it will belong to
˜Q (with the possibility that it belongs to both) due to Definition (11). Thus there does not
exist a point r′ ∈˜R that does not belong to either˜P or ˜Q.

Proof for ˜P ∩ ˜Q = ∅: We prove this by contradiction. If possible, let ρ ′ ∈˜P ∩ ˜Q. Since
ρ ′ ∈˜P, due to Definition (11), there exists p1 ∈ P such that mins∈P∪Q d(s,ρ ′) = d(p1,ρ ′).
Likewise, there exists q1 ∈ Q such that mins∈P∪Q d(s,ρ ′) = d(q1,ρ ′). Thus,

2 min
s∈P∪Q

d
(

s,ρ ′) = d
(

p1,ρ ′) + d
(

q1,ρ ′)

≥ d(p1, q1) (triangle inequality)

≥ min
p∈P,
q∈Q

d(p, q) (since p1 ∈ P, q1 ∈ Q)

⇒ 2 max
r′∈˜R

min
s∈P∪Q

d
(

s, r′) ≥ min
p∈P,
q∈Q

d(p, q)

⇒ max
r′∈˜R

min
s∈P∪Q

d
(

s, r′) + dH (P ∪ Q,˜R) ≥ sep(P, Q).

This contradicts assumption (10) of the lemma. Hence there cannot exist a ρ ′ ∈˜P ∩ ˜Q.
Thus˜P ∩˜Q = ∅.

2. We next prove arg mins∈P∪Q d(s, p′) ⊆ P, ∀p′ ∈˜P. We do this by contradiction.
If possible, suppose that there exists p′ ∈ ˜P such that arg mins∈P∪Q d(s, p′) � P. Then

there exists q ∈ Q such that mins∈P∪Q d(s, p′) = d(q, p′). But d(q, p′) ≥ mins∈Q d(s, p′) ≥
mins∈P∪Q d(s, p′). This implies mins∈P∪Q d(s, p′) = mins∈Q d(s, p′). Due to the definition of
˜Q in (11) this implies p′ ∈ ˜Q. However, we have already shown that ˜P ∩ ˜Q = ∅. This leads
to a contradiction. Thus arg mins∈P∪Q d(s, p′) ⊆ P, ∀p′ ∈˜P.

Likewise, we can prove arg mins∈P∪Q d(s, q′) ⊆ Q, ∀q′ ∈ ˜Q.
3. We next prove arg minr′∈˜R d(p, r′) ⊆˜P, ∀p ∈ P. We do this by contradiction.
If possible, suppose that there exists p3 ∈ P such that arg minr′∈˜R d(p3, r′) �˜P. Then there

exists ρ ′ ∈ ˜Q such that minr′∈˜R d(p3, r′) = d(p3,ρ ′).
Again, due to the definition of ˜Q in (11), for any ρ ′ ∈ ˜Q, there exists q3 ∈ Q such that

d(q3,ρ ′) = mins∈P∪Q d(s,ρ ′).
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Thus,

min
r′∈˜R

d
(

p3, r′) + min
s∈P∪Q

d
(

s,ρ ′) = d
(

p3,ρ ′) + d
(

q3,ρ ′)

≥ d(p3, q3) (triangle inequality)

≥ min
p∈P,
q∈Q

d(p, q) (since p3 ∈ P, q3 ∈ Q)

⇒ max
s∈P∪Q

min
r′∈˜R

d
(

s, r′) + max
r′∈˜R

min
s∈P∪Q

d
(

s, r′) ≥ min
p∈P,
q∈Q

d(p, q)

⇒ dH (P ∪ Q,˜R) + max
r′∈˜R

min
s∈P∪Q

d
(

s, r′) ≥ sep(P, Q).

This contradicts assumption (10) of the lemma. Hence there cannot exist p3 ∈ P such that
arg minr′∈˜R d(p3, r′) �˜P. Thus arg minr′∈˜R d(p, r′) ⊆˜P, ∀p ∈ P.

Likewise, we can prove arg minr′∈˜R d(q, r′) ⊆ ˜Q, ∀q ∈ Q.
4. Since arg mins∈P∪Q d(s, p′) ⊆ P, ∀p′ ∈ ˜P, we have mins∈P∪Q d(s, p′) = minp∈P d(p, p′),

∀p′ ∈˜P. Thus, maxp′∈˜P minp∈P d(p, p′) = maxp′∈˜P mins∈P∪Q d(s, p′).
Likewise, since arg minr′∈˜R d(p, r′) ⊆ ˜P, ∀p ∈ P, we have maxp∈P minp′∈˜P d(p, p′) =

maxp∈P minr′∈˜R d(p, r′).
Thus,

dH (P,˜P) = max
(

max
p∈P

min
p′∈˜P

d
(

p, p′), max
p′∈˜P

min
p∈P

d
(

p, p′)
)

= max
(

max
p∈P

min
r′∈˜R

d
(

p, r′), max
p′∈˜P

min
s∈P∪Q

d
(

s, p′)
)

≤ max
(

max
s∈P∪Q

min
r′∈˜R

d
(

s, r′), max
r′∈˜R

min
s∈P∪Q

d
(

s, r′)
)

(since P ⊆ P ∪ Q,˜P ⊆˜R)

= dH (P ∪ Q,˜R). (12)

Similarly, we can show

dH (Q,˜Q) = max
(

max
q∈Q

min
r′∈˜R

d
(

q, r′), max
q′∈˜Q

min
s∈P∪Q

d
(

s, q′)
)

≤ dH (P ∪ Q,˜R). (13)

Again, from (12) and (13),

max
(

dH (P,˜P), dH (Q,˜Q)
)

= max
(

max
p∈P

min
r′∈˜R

d
(

p, r′), max
q∈Q

min
r′∈˜R

d
(

q, r′),

max
p′∈˜P

min
s∈P∪Q

d
(

s, p′), max
q′∈˜Q

min
s∈P∪Q

d
(

s, q′)
)

= max
(

max
p∈P∪Q

min
r′∈˜R

d
(

p, r′), max
p′∈˜P∪˜Q

min
s∈P∪Q

d
(

s, p′)
)

= dH (P ∪ Q,˜R) (since˜P ∪˜Q =˜R)
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5.

sep(˜P,˜Q) ≥ sep(˜P, Q) – dH (Q,˜Q) (using Lemma4)

≥ sep(P, Q) – dH (P,˜P) – dH (Q,˜Q) (using Lemma4)

≥ sep(P, Q) – 2dH (P ∪ Q,˜R)
(

since dH (P,˜P) ≤ dH (P ∪ Q,˜R) and dH (Q,˜Q) ≤ dH (P ∪ Q,˜R)
)

�

Corollary 1 If P, Q, ˜R are closed subsets of a metric space (� , d) such that dH (P ∪ Q,˜R) <
1
2 sep(P, Q), then˜R is a separation-preserving perturbation of P and Q.

As a consequence, the separation-preserving partition {˜P,˜Q} of ˜R as defined in (11) sat-
isfies properties ‘1’ to ‘4’ in Lemma 5, as well as property ‘5’ (if (� , d) is a connected path
metric space) with an additional inequality:

sep(˜P,˜Q) ≥ sep(P, Q) – 2dH (P ∪ Q,˜R) > 0.

Proof The result follows directly from Lemma 5 by observing that

max
r′∈˜R

min
s∈P∪Q

d
(

s, r′) + dH (P ∪ Q,˜R) ≤ 2dH (P ∪ Q,˜R) < sep(P, Q). �

3 Results on perturbation upper bounds
Throughout this section we use the notations and conventions described in Definition 1.

3.1 Elementary results on spectrum perturbation
In this section we provide some elementary results relating the norm of the matrix per-
turbation and the perturbation of eigenvalues and eigenvectors.

Lemma 6 Define D ∈Cn×n such that Djj′ = (˜λj′ – λj)u†
j ũj′ . Then

D = U†(˜M – M)˜U . (14)

Equivalently,

(˜λj′ – λj)u†
j ũj′ = u†

j (˜M – M)̃uj′ , ∀j, j′ ∈ N . (15)

The latter relation in fact holds even when ˜M is not normal but ũj′ is simply a right eigen-
vector of ˜M with the corresponding eigenvalue˜λj′ .

Proof First we note that since M is normal with uj, a right eigenvector and the correspond-
ing eigenvalue λj, u†

j is a left eigenvector of M with the same eigenvalue. Thus,

u†
j (˜M – M)̃uj′ = u†

j
˜Mũj′ – u†

j Mũj′

= u†
j
˜λj′ ũj′ – λju†

j ũj′

= (˜λj′ – λj)u†
j ũj′ .

This proves (15).
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We note that if both M and ˜M are normal, the L.H.S. of (15) is the (j, j′)th element of
U†(˜M – M)˜U and the R.H.S. is Djj′ . �

Corollary 2

‖˜M – M‖2
2 ≥ ∥

∥(˜M – M)̃uj′
∥

∥

2
2 =

n
∑

j=1

|˜λj′ – λj|2
∣

∣u†
j ũj′

∣

∣

2, ∀j′ ∈ N

‖˜M – M‖2
2 ≥ ∥

∥(˜M – M)uj
∥

∥

2
2 =

n
∑

j′=1

|˜λj′ – λj|2
∣

∣u†
j ũj′

∣

∣

2, ∀j ∈ N .

(16)

The first relation holds even when ˜M is not normal, while the second relation holds even
when M is not normal.

Proof The inequalities follow from the definition of induced 2-norm for matrices.
When M is normal, {uj}j∈N forms an orthonormal basis in C

n. Noting that (15) is a scalar
equation, multiplying on both sides with uj and summing over j, we get

n
∑

j=1

(

(˜λj′ – λj)u†
j ũj′

)

uj =
n

∑

j=1

uj
(

u†
j (˜M – M)̃uj′

)

=

( n
∑

j=1

uju†
j

)

(˜M – M)̃uj′

= I(˜M – M)̃uj′ .

Taking the 2-norm on both sides of the above gives the first equality.
Switching the roles of tilde and nontilde terms in Lemma 6 and the above gives the

second relation. �

Corollary 3
1

‖˜M – M‖2 ≥ ∥

∥(˜M – M)̃uj′
∥

∥

2 ≥ min
j∈N

|˜λj′ – λj|, ∀j′ ∈ N , and

‖˜M – M‖2 ≥ ∥

∥(˜M – M)uj
∥

∥

2 ≥ min
j′∈N

|˜λj′ – λj|, ∀j ∈ N .

The first relation holds even when ˜M is not normal, while the second relation holds
even when M is not normal.

2 The following results are a consequence of the Bauer–Fike theorem for normal
matrices [9]:

‖˜M – M‖2 ≥ max
j∈N

∥

∥(˜M – M)̃uj′
∥

∥

2 ≥ max
j′∈N

min
j∈N

|˜λj′ – λj|,

‖˜M – M‖2 ≥ max
j∈N

∥

∥(˜M – M)uj
∥

∥

2 ≥ max
j∈N

min
j′∈N

|˜λj′ – λj|.

Once again, the first relation holds even when ˜M is not normal, while the second
relation holds even when M is not normal.
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Proof From the result of Corollary 2, when M is normal (and ˜M is not necessarily normal),
for all j′ ∈ N ,

‖˜M – M‖2
2 ≥ ∥

∥(˜M – M)̃uj′
∥

∥

2
2

=
n

∑

j=1

|˜λj′ – λj|2
∣

∣u†
j ũj′

∣

∣

2

≥ min
j∈N

|˜λj′ – λj|2
n

∑

j=1

∣

∣u†
j ũj′

∣

∣

2

= min
j∈N

|˜λj′ – λj|2‖̃uj′ ‖2 (

since {uj}j∈N forms an orthonormal basis
)

= min
j∈N

|˜λj′ – λj|2.

Since this is true for any j′ ∈ N , it follows that ‖˜M – M‖2 ≥ maxj′∈N minj∈N |˜λj′ – λj|.
A similar set of the results can be derived with the tilde and nontilde terms exchanged. �

3.2 Distance between invariant subspaces of normal matrices with partitioned
spectra

Suppose J ,˜J ⊆ N such that |J| = |˜J| = q. We are interested in understanding how much the
invariant space span(uJ ) of M differs from the invariant space span(̃ũJ ) of ˜M. The results
in this section are variations and modest improvements on the Davis–Kahan sin� the-
orem [1] (see Section VIII.3 of [2] for example). In Proposition 1 and the two corollaries
that follow, we present results of the form

dsp
(

span(uJ ), span(̃ũJ )
) ≤ F (˜M – M, uN ,λN ,˜λN ; J ,˜J),

where F is a function specific to the exact statement of the proposition or corollary.
For a given invariant subspace span(uJ ) of M, we can consider all the possible q-

dimensional invariant subspaces of˜J and choose the one that is closest to span(uJ ) as its
perturbation. As a consequence, for any of these results, we can write

min
˜J∈Sq,n

dsp
(

span(uJ ), span(̃ũJ )
) ≤ min

˜J∈Sq,n
F (˜M – M, uN ,λN ,˜λN ; J ,˜J),

where Sq,n is the set of all q-element subsets of N = {1, 2, . . . , n}. This gives a combinatorial
means of finding the q-dimensional invariant subspace of ˜M that is closest to span(uJ ).

Definition 4 For a, b, c ∈R with a ≤ min(b, c), we define

[

a, min(b, c–)
]

=

⎧

⎨

⎩

[a, b] if c > b,

[a, c) if c ≤ b.
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Proposition 1 For any J ,˜J ⊆ N with |J| = |˜J| = q,

dsp
(

span(uJ ), span(̃ũJ )
)

≤
√

√

√

√

1
q
∑

j∈J

‖(˜M – M)uj‖2
2 – κj minj′∈˜J |˜λj′ – λj|2

minj′∈˜Jc |˜λj′ – λj|2 – κj minj′∈˜J |˜λj′ – λj|2 (17)

for any κj ∈ [0, min(1, (
minj′∈˜Jc |˜λj′ –λj|2
minj′∈˜J |˜λj′ –λj|2 )–)], j ∈ J .

The tightest bound in (17) is obtained by choosing

κj =

⎧

⎨

⎩

0 if ‖(˜M – M)uj‖2 ≥ minj′∈˜Jc |˜λj′ – λj|,
1 if ‖(˜M – M)uj‖2 < minj′∈˜Jc |˜λj′ – λj|.

(18)

Proof From Corollary 2, for all j ∈ N ,

∥

∥(˜M – M)uj
∥

∥

2
2

=
∑

j′∈˜J
|˜λj′ – λj|2

∣

∣u†
j ũj′

∣

∣

2 +
∑

j′∈˜Jc

|˜λj′ – λj|2
∣

∣u†
j ũj′

∣

∣

2

≥ min
j′∈˜J

|˜λj′ – λj|2
∑

j′∈˜J

∣

∣u†
j ũj′

∣

∣

2 + min
j′∈˜Jc

|˜λj′ – λj|2
∑

j′∈˜Jc

∣

∣u†
j ũj′

∣

∣

2 (19)

= min
j′∈˜J

|˜λj′ – λj|2
(

1 –
∑

j′∈˜Jc

∣

∣u†
j ũj′

∣

∣

2
)

+ min
j′∈˜Jc

|˜λj′ – λj|2
∑

j′∈˜Jc

∣

∣u†
j ũj′

∣

∣

2

≥ κj min
j′∈˜J

|˜λj′ – λj|2
(

1 –
∑

j′∈˜Jc

∣

∣u†
j ũj′

∣

∣

2
)

+ min
j′∈˜Jc

|˜λj′ – λj|2
∑

j′∈˜Jc

∣

∣u†
j ũj′

∣

∣

2

for any κj ∈ [0, 1].

⇒
(

min
j′∈˜Jc

|˜λj′ – λj|2 – κj min
j′∈˜J

|˜λj′ – λj|2
)
∑

j′∈˜Jc

∣

∣u†
j ũj′

∣

∣

2

≤ ∥

∥(˜M – M)uj
∥

∥

2
2 – κj min

j′∈˜J
|˜λj′ – λj|2 (20)

⇒
∑

j′∈˜Jc

∣

∣u†
j ũj′

∣

∣

2 ≤ ‖(˜M – M)uj‖2
2 – κj minj′∈˜J |˜λj′ – λj|2

minj′∈˜Jc |˜λj′ – λj|2 – κj minj′∈˜J |˜λj′ – λj|2

for any κj ∈ [0, min(1, (
minj′∈˜Jc |˜λj′ – λj|2
minj′∈˜J |˜λj′ – λj|2 )–)]. (21)

In the last step, we ensured that minj′∈˜Jc |˜λj′ – λj|2 – κj minj′∈˜J |˜λj′ – λj|2 is positive by re-
stricting the domain of κj appropriately.

Thus, from (21) we have

(

dsp
(

span(uJ ), span(̃ũJ )
))2

=
1
q
∑

j∈J
j′∈˜Jc

∣

∣u†
j ũj′

∣

∣

2 (due to Lemma 1.2)
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≤ 1
q
∑

j∈J

‖(˜M – M)uj‖2
2 – κj minj′∈˜J |˜λj′ – λj|2

minj′∈˜Jc |˜λj′ – λj|2 – κj minj′∈˜J |˜λj′ – λj|2 (22)

for any κj ∈ [0, min(1, (
minj′∈˜Jc |˜λj′ –λj|2
minj′∈˜J |˜λj′ –λj|2 )–)], j ∈ J .

Additionally, we note that

∥

∥(˜M – M)uj
∥

∥

2 < min
j′∈˜Jc

|˜λj′ – λj| ⇒ min
j′∈˜Jc

|˜λj′ – λj| > min
j′∈˜J

|˜λj′ – λj|
(

since, due to Corollary 3,
∥

∥(˜M – M)uj
∥

∥

2 ≥ min
j′∈N

|˜λj′ – λj|
)

.

Thus, when ‖(˜M – M)uj‖2 < minj′∈˜Jc |˜λj′ –λj|, the valid domain of κj is [0, 1]. The statement
about the tightest bound then follows from the fact that the function f (κ) = a–κc

b–κc , κ ∈ [0, d]
(with d < b

c ) is minimized with κ = 0 when a ≥ b, and with κ = d when a < b. �

The key achievement in the above proposition is to provide an upper bound on the
distance (in terms of dsp) between the invariant subspaces span(uJ ) and span(̃ũJ ) in terms
of the distance between the matrices M and ˜M and their eigenvalues. For a given/fixed
matrix perturbation (˜M–M) and appropriately chosen˜J , inequality (17) can be interpreted
as a relation between the perturbation in the eigenvalues {λj|j ∈ J} and the perturbation in
the invariant space span(uJ ). This relationship, in general, can be expected to be an inverse
one – with higher perturbation in the eigenvalues we will have a lower (upper bound on
the) perturbation in the invariant space, and vice versa.

It is easy to note that the equality in (17) holds when

(i)
minj′∈˜Jc |˜λj′ –λj|2
minj′∈˜J |˜λj′ –λj|2 > 1, ∀j ∈ J , allowing us to choose κj = 1, ∀j ∈ J , and

(ii)

min
j′∈˜J

|˜λj′ – λj1 | = min
j′∈˜J

|˜λj′ – λj2 |, ∀j1, j2 ∈ J ,

min
j′∈˜Jc

|˜λj′ – λj1 | = min
j′∈˜Jc

|˜λj′ – λj2 |, ∀j1, j2 ∈ Jc.

(These conditions hold, for example, when˜λ̃J and˜λ̃Jc are small translations of λJ

and λJc respectively in C.)
In Proposition 1, without loss of generality, we can interchange the roles of J and Jc

(likewise˜J and˜Jc). Observing that span(uJc ) and span(̃ũJc ) are (n – q) dimensional sub-
spaces of Cn which are orthogonal complements of span(uJ ) and span(̃ũJ ) respectively, we
then obtain

dsp
(

span(uJ ), span(̃ũJ )
)

=
√

n – q
q

dsp
(

span(uJc ), span(̃ũJc )
)

(due to Lemma2.3)

≤
√

√

√

√

1
q
∑

j∈Jc

‖(˜M – M)uj‖2
2 – κj minj′∈˜Jc |˜λj′ – λj|2

minj′∈˜J |˜λj′ – λj|2 – κj minj′∈˜Jc |˜λj′ – λj|2 (23)

for any κj ∈ [0, min(1, (
minj′∈˜J |˜λj′ –λj|2
minj′∈˜Jc |˜λj′ –λj|2 )–)], j ∈ Jc.
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Corollary 4 For any κJ ∈ [0, min(1, (
minj∈J ,j′∈˜Jc |˜λj′ –λj|2

maxj∈J minj′∈˜J |˜λj′ –λj|2 )–)] and

κJc ∈ [0, min(1, (
minj∈Jc ,j′∈˜J |˜λj′ –λj|2

maxj∈Jc minj′∈˜Jc |˜λj′ –λj|2 )–)],
1.

dsp
(

span(uJ ), span(̃ũJ )
)

≤ 1
q

min

(

√

√

√

√

√

∑

j∈J ‖(˜M – M)uj‖2
2 – κJ

∑

j∈J minj′∈˜J |˜λj′ – λj|2
min j∈J

j′∈˜Jc
|˜λj′ – λj|2 – κJ maxj∈J minj′∈˜J |˜λj′ – λj|2 ,

√

√

√

√

√

∑

j∈Jc ‖(˜M – M)uj‖2
2 – κJc

∑

j∈Jc minj′∈˜Jc |˜λj′ – λj|2
min j∈Jc

j′∈˜J
|˜λj′ – λj|2 – κJc maxj∈Jc minj′∈˜Jc |˜λj′ – λj|2

)

. (24)

2.

dsp
(

span(uJ ), span(̃ũJ )
)

≤

√

√

√

√

√

√

√

√

√

√

√

1
q

(

‖˜M – M‖2
F – (

κJ
∑

j∈J minj′∈˜J |˜λj′ – λj|2
+ κJc

∑

j∈Jc minj′∈˜Jc |˜λj′ – λj|2 )

)

(
min j′∈˜Jc

j∈J
|˜λj′ – λj|2

+ min j′∈˜J
j∈Jc

|˜λj′ – λj|2 ) – (
κJ maxj∈J minj′∈˜J |˜λj′ – λj|2

+ κJc maxj∈Jc minj′∈˜Jc |˜λj′ – λj|2 )

(25)

Proof With κj ∈ [0, min(1, (
minj′∈˜Jc |˜λj′ –λj|2
minj′∈˜J |˜λj′ –λj|2 )–)], j ∈ J ,

q
(

dsp
(

span(uJ ), span(̃ũJ )
))2

≤
∑

j∈J

‖(˜M – M)uj‖2
2 – κj minj′∈˜J |˜λj′ – λj|2

minj′∈˜Jc |˜λj′ – λj|2 – κj minj′∈˜J |˜λj′ – λj|2 (due to Proposition1)

≤
∑

j∈J ‖(˜M – M)uj‖2
2 –

∑

j∈J κj minj′∈˜J |˜λj′ – λj|2
minj∈J (minj′∈˜Jc |˜λj′ – λj|2 – κj minj′∈˜J |˜λj′ – λj|2)
(

since
∑

k∈S

ck

dk
≤

∑

k∈S ck

mink∈S dk

)

≤
∑

j∈J ‖(˜M – M)uj‖2
2 –

∑

j∈J κj minj′∈˜J |˜λj′ – λj|2
min j∈J

j′∈˜Jc
|˜λj′ – λj|2 – maxj∈J κj minj′∈˜J |˜λj′ – λj|2

(

min
k∈S

(ck – dk) ≥ min
k∈S

ck – max
k∈S

dk

)

. (26)

We next choose κj = κk , ∀j, k ∈ J and denote this value by

κJ ∈
⋂

j∈J

[

0, min

(

1,
(

minj′∈˜Jc |˜λj′ – λj|2
minj′∈˜J |˜λj′ – λj|2

)

–

)]

⊇
[

0, min

(

1,
( min j∈J

j′∈˜Jc
|˜λj′ – λj|2

maxj∈J minj′∈˜J |˜λj′ – λj|2
)

–

)]

.
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Thus,

q
(

dsp
(

span(uJ ), span(̃ũJ )
))2

≤
∑

j∈J ‖(˜M – M)uj‖2
2 – κJ

∑

j∈J minj′∈˜J |˜λj′ – λj|2
min j∈J

j′∈˜Jc
|˜λj′ – λj|2 – κJ maxj∈J minj′∈˜J |˜λj′ – λj|2 (27)

for any κJ ∈ [0, min(1, (
minj∈J ,j′∈˜Jc |˜λj′ –λj|2

maxj∈J minj′∈˜J |˜λj′ –λj|2 )–)].

By interchanging the roles of J and Jc (accordingly,˜J and˜Jc) and noting that span(uJc )
and span(̃ũJc ) are (n – q) dimensional sub-spaces of Cn, we get

(n – q)
(

dsp
(

span(uJc ), span(̃ũJc )
))2

≤
∑

j∈Jc ‖(˜M – M)uj‖2
2 – κJc

∑

j∈Jc minj′∈˜Jc |˜λj′ – λj|2
min j∈Jc

j′∈˜J
|˜λj′ – λj|2 – κJc maxj∈Jc minj′∈˜Jc |˜λj′ – λj|2 (28)

for any κJc ∈ [0, min(1, (
minj∈Jc ,j′∈˜J |˜λj′ –λj|2

maxj∈Jc minj′∈˜Jc |˜λj′ –λj|2 )–)].
On the other hand, since span(uJ ) and span(uJc ) are orthogonal complements (likewise,

span(ũJ ) and span(ũJc ) are orthogonal complements), using Lemma 2, we can write (28) as

q
(

dsp
(

span(uJ ), span(̃ũJ )
))2

≤
∑

j∈Jc ‖(˜M – M)uj‖2
2 – κJc

∑

j∈Jc minj′∈˜Jc |˜λj′ – λj|2
min j∈Jc

j′∈˜J
|˜λj′ – λj|2 – κJc maxj∈Jc minj′∈˜Jc |˜λj′ – λj|2 (29)

for any κJc ∈ [0, min(1, (
minj∈Jc ,j′∈˜J |˜λj′ –λj|2

maxj∈Jc minj′∈˜Jc |˜λj′ –λj|2 )–)].
Combining (27) and (29) proves part ‘1’.
Again, adding (27) and (29), we have

q
(

min
j∈J

j′∈˜Jc

|˜λj′ – λj|2 + min
j∈Jc
j′∈˜J

|˜λj′ – λj|2

– κJ max
j∈J

min
j′∈˜J

|˜λj′ – λj|2 – κJc max
j∈Jc

min
j′∈˜Jc

|˜λj′ – λj|2
)

× (

dsp
(

span(uJ ), span(̃ũJ )
))2

≤
∑

j∈J

∥

∥(˜M – M)uj
∥

∥

2
2 +

∑

j∈Jc

∥

∥(˜M – M)uj
∥

∥

2
2

– κJ
∑

j∈J

min
j′∈˜J

|˜λj′ – λj|2 – κJc
∑

j∈Jc

min
j′∈˜Jc

|˜λj′ – λj|2.

The part ‘2’ of the result then follows by observing that

∑

j∈J

∥

∥(˜M – M)uj
∥

∥

2
2 +

∑

j∈Jc

∥

∥(˜M – M)uj
∥

∥

2
2 =

∥

∥(˜M – M)U
∥

∥

2
F = ‖˜M – M‖2

F .
�

Corollary 5 (Generalized Davis–Kahan [1] sin� theorem for normal matrices – see Sec-
tion VIII.3 of [2])
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1.

dsp
(

span(uJ ), span(̃ũJ )
) ≤

min(1,
√

n–q
q )

max(sep(λJ ,˜λ̃Jc ), sep(λJc ,˜λ̃J ))
‖˜M – M‖2;

2.

dsp
(

span(uJ ), span(̃ũJ )
) ≤

1√q ‖˜M – M‖F
√

sep(λJ ,˜λ̃Jc )2 + sep(λJc ,˜λ̃J )2

≤
√

n/q
sep(λJ ,˜λ̃Jc )2 + sep(λJc ,˜λ̃J )2

‖˜M – M‖2.

Proof In (27), setting κJ = 0, we get

(

dsp
(

span(uJ ), span(̃ũJ )
))2 ≤

1
q
∑

j∈J ‖(˜M – M)uj‖2
2

sep(λJ ,˜λ̃Jc )2
≤ ‖(˜M – M)‖2

2

sep(λJ ,˜λ̃Jc )2
.

Interchanging the roles of the tilde and nontilde terms in this result, we analogously obtain

(

dsp
(

span(̃ũJ ), span(uJ )
))2 ≤ ‖(˜M – M)‖2

2

sep(˜λ̃J ,λJc )2
.

The above two together give

(

dsp
(

span(̃ũJ ), span(uJ )
))2 ≤ ‖(˜M – M)‖2

2

max(sep(λJ ,˜λ̃Jc ), sep(λJc ,˜λ̃J ))2
. (30)

In the above inequality, interchanging the roles of J and Jc (accordingly,˜J and˜Jc) and
observing that by Lemma 2 dsp(span(̃ũJ ), span(uJ )) =

√

n–q
q dsp(span(̃ũJc ), span(uJc )), we ob-

tain

(

dsp
(

span(̃ũJ ), span(uJ )
))2 ≤ n – q

q
‖(˜M – M)‖2

2

max(sep(λJ ,˜λ̃Jc ), sep(λJc ,˜λ̃J ))2
. (31)

(30) and (31) together conclude the proof of part ‘1’.
The second result follows directly from part ‘2’ of Corollary 4 by setting κJ = κJc = 0 and

using the fact that for Q ∈C
n×n, ‖Q‖F ≤ √

n‖Q‖2. �

3.3 Bound on perturbation of invariant subspace of a normal matrix with
well-clustered spectrum

In this section we specialize the earlier results for the situation when λJ and λJc are
well-clustered (i.e., the separation between them is large) compared to the perturbation
(˜M – M). In the following lemma we outline the conditions under which the perturbed
eigenvalues˜λN will also remain well clustered.

Lemma 7 For any J ⊆ N , define Jc = N – J . If ‖˜M – M‖2 < 1
2 sep(λJ ,λJc ), then:
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1. ˜λN is a separation-preserving perturbation of λJ and λJc . More explicitly, defining

̂J =
{

j′
∣

∣min
j∈N

|˜λj′ – λj| = min
j∈J

|˜λj′ – λj|
}

and

̂Jc =
{

j′
∣

∣min
j∈N

|˜λj′ – λj| = min
j∈Jc

|˜λj′ – λj|
} (32)

makes {˜λ̂J ,˜λ̂Jc} a separation-preserving partition of˜λN , with

sep(˜λ̂J ,˜λ̂Jc ) > sep(λJ ,λJc ) – 2‖˜M – M‖2.

2. |˜λ̂J | = |λJ | (equivalently, |˜λ̂Jc | = |λJc |), where | · | denotes the number of elements in the
multi-sets (recall that λJ and˜λ̂J are multi-sets, allowing them to contain multiple
copies of nondistinct eigenvalues, if any, of M and ˜M respectively).

Proof
1. We first observe that

‖˜M – M‖2 ≥ max
(

max
j∈N

min
j′∈N

|˜λj′ – λj|, max
j′∈N

min
j∈N

|˜λj′ – λj|
)

= dH (λN ,˜λN ). (33)

As a consequence, dH (λN ,˜λN ) ≤ ‖˜M – M‖2 < 1
2 sep(λJ ,λJc ). Then the proof of the

first part follows directly from Corollary 1 by setting P = λJ , Q = λJc and˜R =˜λN .
2. We prove the second part by contradiction.

If possible, let |˜λ̂J | �= |λJ |. Without loss of generality, we will assume |˜λ̂J | < |λJ | (if the
|˜λ̂J | > |λJ |, we can show the contradiction for |˜λ̂Jc | < |λJc | instead).

Define a path M : [0, 1] →R
n×n connecting M and ˜M as

M(t) = t˜M + (1 – t)M.

Although M(t) is not necessarily normal for all t, its characteristic equation is a
degree-n polynomial equation in its eigenvalue with coefficient of the highest degree
term equal to 1 and other coefficients being polynomials in t. Since the roots of such
a polynomial are continuous functions of the coefficients, the eigenvalues of ˜M(t) are
continuous functions of t. Thus, we define λj : [0, 1] →C to be the paths of the
eigenvalues such that λj(0) = λj for all j ∈ {1, 2, . . . , n}. λj(1) are the eigenvalues of
M(1) = ˜M, so that λj(1) =˜λσ (j) for some permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n}
(see Fig. 4).

Since |˜λ̂J | < |λJ |, there exists at least one k ∈ J (with λk = λk(0) ∈ λJ ) such that
λk(1) /∈˜λ̂J (equivalently, λk(1) ∈˜λ̂Jc ).

Define g(t) = minj∈J |λk(t) – λj| and h(t) = minj∈Jc |λk(t) – λj|. Thus,

g(0) = min
j∈J

∣

∣λk(0) – λj
∣

∣ = min
j∈J

|λk – λj| = 0 (since λk ∈ λJ ) ≤ h(0).

Figure 4 Illustration for the proof of Lemma 7
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Again,

h(1) = min
j∈Jc

∣

∣λk(1) – λj
∣

∣

≤ min
j∈J

∣

∣λk(1) – λj
∣

∣

(

since λk(1) ∈˜λ̂Jc , from the definition of̂Jc,

min
j∈Jc

∣

∣λk(1) – λj
∣

∣ = min
j∈N

∣

∣λk(1) – λj
∣

∣

)

= g(1).

Thus, by intermediate value theorem, there exists t′ ∈ [0, 1] such that g(t′) = h(t′).
That is, minj∈J |λk(t′) – λj| = minj∈Jc |λk(t′) – λj|. Equivalently,

sep
(

λJ ,
{

λk
(

t′)}) = sep
(

λJc ,
{

λk
(

t′)}) for some t′ ∈ [0, 1]. (34)

Now,

∥

∥M
(

t′) – M
∥

∥

2 ≥ min
j∈N

∣

∣λk
(

t′) – λj
∣

∣ (Corollary3.1)

= min
(

min
j∈J

∣

∣λk
(

t′) – λj
∣

∣, min
j∈Jc

∣

∣λk
(

t′) – λj
∣

∣

)

=
1
2

(

min
j∈J

∣

∣λk
(

t′) – λj
∣

∣ + min
j∈Jc

∣

∣λk
(

t′) – λj
∣

∣

)

(

since from (34), min
j∈J

∣

∣λk
(

t′) – λj
∣

∣ = min
j∈Jc

∣

∣λk
(

t′) – λj
∣

∣

)

=
1
2
(

sep
(

λJ ,
{

λk
(

t′)}) + sep
(

λJc ,
{

λk
(

t′)}) + diam
({

λk
(

t′)}))

(since the diameter of a point is zero)

≥ 1
2

sep(λJ ,λJc ) (using Lemma3). (35)

However, ‖M(t′) – M‖2 = t′‖˜M – M‖2 < t′ 1
2 sep(λJ ,λJc ) ≤ 1

2 sep(λJ ,λJc ). We thus
end up with a contradiction. �

In the following propositions, we express the upper bounds on dsp(span(uJ ), span(̃ûJ )) in
terms of (˜M – M) and nontilde terms only.

Proposition 2 For any J ⊆ N such that |J| = q, define Jc = N – J . If ‖˜M – M‖2 <
1
2 sep(λJ ,λJc ),

1.

dsp
(

span(uJ ), span(̃ûJ )
)

≤ 1√q
min

(

√

√

√

√

∑

j∈J

( ‖(˜M – M)uj‖2

mink∈Jc |λk – λj| – ‖˜M – M‖2

)2

,

√

√

√

√

∑

j∈Jc

( ‖(˜M – M)uj‖2

mink∈J |λk – λj| – ‖˜M – M‖2

)2)

(36)
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≤ min

(

1,
√

n – q
q

) ‖˜M – M‖2

sep(λJ ,λJc ) – ‖˜M – M‖2
. (37)

2.

dsp
(

span(uJ ), span(̃ûJ )
) ≤

1√
2q ‖˜M – M‖F

sep(λJ ,λJc ) – ‖˜M – M‖2
, (38)

wherêJ and̂Jc are as defined in (32).

Proof For any j ∈ J ,

min
j′∈̂Jc

|˜λj′ – λj| = sep
({λj},˜λ̂Jc

)

≥ sep
({λj},λJc

)

– dH (λJc ,˜λ̂Jc ) (due to Lemma4)

≥ sep
({λj},λJc

)

– dH (λN ,˜λN )
(

due to Lemma5.4., dH (λJc ,˜λ̂Jc ) ≤ dH (λN ,˜λN )
)

≥ sep
({λj},λJc

)

– ‖˜M – M‖2 (using (33))

= min
k∈Jc

|λk – λj| – ‖˜M – M‖2. (39)

Thus, in Proposition 1 choosing κj = 0, ∀j ∈ J , we get

(

dsp
(

span(uJ ), span(̃ûJ )
))2 ≤ 1

q
∑

j∈J

‖(˜M – M)uj‖2
2

minj′∈̂Jc |˜λj′ – λj|2

≤ 1
q
∑

j∈J

‖(˜M – M)uj‖2
2

(mink∈Jc |λk – λj| – ‖˜M – M‖2)2
(40)

≤
1
q
∑

j∈J ‖(˜M – M)uj‖2
2

minj∈J (mink∈Jc |λk – λj| – ‖˜M – M‖2)2

(

since
∑

k∈S

ck

dk
≤

∑

k∈S ck

mink∈S dk

)

≤ ‖˜M – M‖2
2

(sep(λJ ,λJc ) – ‖˜M – M‖2)2
(41)

(

since ‖˜M – M‖2 ≥ ∥

∥(˜M – M)uj
∥

∥

2 and

min
k∈J

(ck – α)2 =
(

min
k∈J

ck – α
)2)

.

In the above, switching the roles of J and Jc (likewise,̂J and̂Jc) and noting that span(uJc )
and span(̃ûJc ) are (n – q)-dimensional subspaces of Cn, we get

(

dsp
(

span(uJc ), span(̃ûJc )
))2 ≤ 1

n – q
∑

j∈Jc

‖(˜M – M)uj‖2
2

(mink∈J |λk – λj| – ‖˜M – M‖2)2

≤ ‖˜M – M‖2
2

(sep(λJ ,λJc ) – ‖˜M – M‖2)2
.
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But since span(uJc ) and span(̃ûJc ) are orthogonal complements of span(uJ ) and span(̃ûJ )
respectively, from Lemma 2 we have (n – q)(dsp(span(uJc ), span(̃ûJc )))2 = q(dsp(span(uJ ),
span(̃ûJ )))2. This gives us from the above

(

dsp
(

span(uJ ), span(̃ûJ )
))2 ≤ 1

q
∑

j∈Jc

‖(˜M – M)uj‖2
2

(mink∈J |λk – λj| – ‖˜M – M‖2)2
(42)

≤ n – q
q

‖˜M – M‖2
2

(sep(λJ ,λJc ) – ‖˜M – M‖2)2
. (43)

Combining (41) and (43) gives the first result of the proposition.
The second result can be obtained directly using Corollary 5.2 and observing that due

to (39), sep(λJ ,˜λ̂Jc ) ≥ sep(λJ ,λJc ) – ‖˜M – M‖2 (and analogously sep(λJc ,˜λ̂J ) ≥ sep(λJ ,λJc ) –
‖˜M – M‖2). �

Assuming q ≤ n/2, it is worth noting that defining ε = 1
2 sep(λJ ,λJc ) – ‖˜M – M‖2, the sec-

ond inequality of the first result in the above proposition becomes dsp(span(uJ ), span(̃ûJ )) ≤
‖˜M–M‖2

‖˜M–M‖2+2ε
. Thus, with ε → 0, this inequality becomes dsp(span(uJ ), span(̃ûJ )) < 1, render-

ing the result uninformative /redundant. Thus, the higher the separation between λJ and
λJc (relative to ‖˜M – M‖2), the tighter will be the upper bound in the result of the propo-
sition.

An interpretation of the result in the above proposition is that a perturbation ˜M – M
of the matrix M will result in a perturbation in the invariant subspace span(uJ ) such that
the distance between the subspace and its perturbed counterpart is bounded by the upper
bounds mentioned in the proposition. One key feature of the proposition, however, is that
the upper bound in the inequality does not depend on̂J . As a consequence, for any other
size-q subset˜J of N such that span(ũJ ) is closer to span(uJ ) than span(ûJ ) still satisfies the
same upper bound. That is, if ‖˜M – M‖2 < 1

2 sep(λJ ,λJc ), then

min
˜J∈Sq,n

dsp
(

span(uJ ), span(̃ũJ )
) ≤ min

(

1,
√

n – q
q

) ‖˜M – M‖2

sep(λJ ,λJc ) – ‖˜M – M‖2

min
˜J∈Sq,n

dsp
(

span(uJ ), span(̃ũJ )
) ≤

1√
2q ‖˜M – M‖F

sep(λJ ,λJc ) – ‖˜M – M‖2
,

(44)

where Sq,n is the set of all q-element subsets of N = {1, 2, . . . , n}.

4 Application to null-space perturbation in the context of a graph connection
problem

We consider a simple application of the above results in the context of a graph theory
problem. Some definitions and basic properties of a weighted, undirected, simple graphs
are listed below [10].

1 A graph G consists of a set of n vertices V(G) = {v1, v2, . . . , vn} and an edge set
E(G) ⊆ V(G) ×sym V(G) (where ‘×sym’ represent the symmetric Cartesian product
so that for the undirected graph the order of the vertices in an edge is irrelevant,
making (vk , vl) = (vl, vk)). Each edge (vk , vl) ∈ E(G) is assigned a positive real weight
Akl(= Alk). Nonexistent edges are implicitly assumed to have zero edge weight so
that Akl = 0,∀(vk , vl) /∈ E(G). The matrix A ∈R

n×n is called the weighted adjacency
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matrix of the graph G and is a symmetric matrix with zero diagonal for an
undirected, simple graph.

2 The weighted degree matrix D is an n × n diagonal matrix in which the kth diagonal
element is the sum of the elements in the kth row (equivalently, kth column) of A.
Thus Dkk is the sum of the weights of the edges emanating from vk (also called the
degree of the vertex).

3 The weighted Laplacian matrix of the graph is defined as L = D – A. An eigenvector
of L is an n-dimensional real vector and can be interpreted as a distribution over the
vertices (with the kth element of the vector being the value associated to vk ∈ E(G)).

4 The eigenvalues of L are nonnegative. The null-space of L for a graph with q
disjoint components is q-dimensional, with the null-space spanned by vectors
corresponding to distributions that are uniform over the vertices of each of those
components. Without loss of generality we index the eigenvalues in an increasing
order of their magnitudes so that 0 = λ1 = λ2 = · · · = λq ≤ λq+1 ≤ λq+2 ≤ · · · ≤ λn.
The corresponding unit eigenvectors are u1, u2, . . . , un. Note that since a graph has
at least one connected component, λ1 = 0 for any graph. Furthermore, without loss
of generality, we choose uj to be a distribution that is uniformly positive over the
vertices if Gj and zero over the rest of the vertices in the graph.

5 Define J = {1, 2, . . . , q}, so that span(uJ ) is the null-space of L.
If G has q disjoint components, we define Gj, j = 1, 2, . . . , q, to be the subgraph consti-

tuting of the vertices and edges in the jth component only. Thus, V(G) =
⋃q

j=1 V(Gj) and
E(G) =

⋃q
j=1 E(Gj) (more compactly, we write G =

⋃q
j=1 Gj). We also define the collection

of these subgraphs as

G = {G1, G2, . . . , Gq}.

We are interested in understanding perturbation of the invariant subspace span(uJ ) (the
null-space) of L as new edges are established between the different disjoint components
(henceforth also referred to as “clusters”) of the graph. Let the graph constructed by estab-
lishing the inter-cluster edges be ˜G with ˜A, ˜D, and˜L its adjacency, degree, and Laplacian
matrices respectively. Note that since ˜G is constructed by just adding edges between the
subgraphs {Gj}j=1,2,...,q of G, all of these subgraphs are induced subgraphs of ˜G.

4.1 Computation of ‖(˜L – L)uj‖2

For any induced subgraph H ∈ ˜G, we consider the edges that connect vertices in H to
vertices not in H (inter-cluster edges). These are edges of the form (vk , vl) such that vk ∈
V(H), vl /∈ V(H). We define a few quantities involving the weights on such edges.

Definition 5
1. External degree of a vertex relative to a subgraph: Given a subgraph H ⊆ ˜G and a

vertex vk ∈ V(H), the external degree of vk relative to H in ˜G is defined as the sum of
the weights on edges connecting vk to vertices outside H :

EDH,˜G(vk) =
∑

{l|vl /∈V(H)}
˜Akl. (45)
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Figure 5 An example graph˜G and induced
subgraph H. Weight values on the inter-cluster edges
are written symbolically. In this example, EDH,˜G(v) = w1

+w2, CP˜G(H) =
1
5 (((w1 +w2)2 +w2

3 +w2
4) + (w2

1 +w2
2 +

(w3 +w4)2)), andMED
˜G(H) = max(w1 +w2,w3,w4)

2. Coupling of a subgraph in a graph: Given an induced subgraph H ⊆ ˜G, we define the
coupling of H in ˜G as

CP
˜G(H)

=
1

|V(H)|
(

∑

{k|vk∈V(H)}

(

EDH,˜G(vk)
)2 +

∑

{l|vl /∈V(H)}

(

ED(˜G–H),˜G(vl)
)2
)

=
1

|V(H)|
(

∑

{k|vk∈V(H)}

(

∑

{l|vl /∈V(H)}
˜Akl

)2

+
∑

{l|vl /∈V(H)}

(

∑

{k|vk∈V(H)}
˜Akl

)2)

, (46)

where (˜G – H) is the induced subgraph of ˜G constituting of all the vertices not in H .
That is, V(˜G – H) = {v ∈ V(˜G)|v /∈ V(H)} and E(˜G – H) = {(v, w) ∈ E(˜G)|v, w /∈ V(H)}.

3. Maximum external degree of vertices in a subgraph: Given a subgraph H ⊆ ˜G, the
maximum external degree of vertices in H in ˜G is defined as the maximum value of
the external degrees of vertices in H relative to H in ˜G:

MED
˜G(H) = max

v∈V(H)
EDH,˜G(v) = max

{k|vk∈V(H)}

∑

{l|vl /∈V(H)}
˜Akl. (47)

Note that the computation of the above quantities requires the knowledge of only the
weights on edges connecting vertices in H to vertices outside H in ˜G (see Fig. 5 for an
example).

In the definition of CP
˜G, referring to H as a cluster and considering the rest of the graph

another cluster, the quantity within the innermost brackets is the sum of the weights on
inter-cluster edges connected to a vertex, which is squared and summed over all the ver-
tices that have at least one inter-cluster edge connected to it. This quantity is then divided
by the number of vertices in H . Thus a large subgraph which is weakly connected to the
rest of the graph will have a lower coupling value.

The following lemma provides bounds on CP
˜G(H) in terms of a simpler summation over

the inter-cluster edge weights (or square thereof ).

Lemma 8

2
|V(H)|

∑

{k,l|vk∈V(H),
vl /∈V(H)}

˜A2
kl ≤ CP

˜G(H) ≤ 2
|V(H)|

(

∑

{k,l|vk∈V(H),
vl /∈V(H)}

˜Akl

)2

. (48)
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Proof The proof follows directly using the fact that for a set of positive numbers αh, h ∈ S,
∑

h∈S α2
h ≤ (

∑

h∈S αh)2. �

Notations and assumptions for the rest of the paper In the rest of the paper we assume
that G is a graph with q disjoint components G = {G1, G2, . . . , Gq} and ˜G is the graph ob-
tained by establishing edges between the components (so that each Gj is an induced sub-
graph of both G and ˜G). The Laplacian matrices of the two graphs are L and˜L respectively.
Since G has q connected components, its null-space is q dimensional (with correspond-
ing eigenvalues λ1 = λ2 = · · · = λq), for which we choose a basis {uj}j=1,2··· ,q such that the
distribution corresponding to uj is uniform and positive on the vertices in Gj and zero
everywhere else.

A weaker version of the following lemma appears in the author’s prior work [11, 12] and
expresses the quantity ‖(˜L – L)uj‖2 in terms of the weights on edges connecting vertices
in Gj to vertices outside Gj in ˜G.

Lemma 9 For all j ∈ {1, 2, . . . , q},

∥

∥(˜L – L)uj
∥

∥

2
2 = CP

˜G(Gj). (49)

Proof Suppose vk ∈ V(Gj) ⊆ V(G). Since ˜Dkk and Dkk are the degrees of the vertex in the
graphs ˜G and G respectively, they are equal iff all the neighbors of vk are in Gj. Otherwise
˜Dkk – Dkk is the net outgoing degree of the vertex vk from the subgraph Gj. That is, if
vk ∈ V(Gj), then

˜Dkk – Dkk =
∑

{l|vl /∈V(Gj)}
˜Akl. (50)

An edge (vk , vl) exists in both ˜G and G (and have the same weight, i.e., ˜Akl = Akl) iff vk

and vl belong to the same subgraph Gj. Otherwise Akl = 0 (the edge is nonexistent in G).
Thus,

˜Akl – Akl =

⎧

⎨

⎩

˜Akl, if vk ∈ V(Gj), vl /∈ V(Gj),

0, otherwise.
(51)

Next we consider the vector uj (for j = 1, . . . , q), which by definition is nonzero and uni-
form only on vertices in the subgraph Gj. Let ulj be the lth element of the unit vector uj.
Since |V(Gj)| of the elements of the vector are nonzero and uniform, we have

ulj =

⎧

⎨

⎩

1√|V(Gj)|
, if vl ∈ V(Gj),

0, otherwise.
(52)

Thus the kth element of the vector (˜L – L)uj,

[

(˜L – L)uj
]

k =
∑

l

(˜Dkl –˜Akl – Dkl + Akl)ulj

= (˜Dkk – Dkk)ukj –
∑

l

(˜Akl – Akl)ulj
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(since ˜D and D are diagonal matrices)

=

⎛

⎝

1
√|V(Gj)|

⎧

⎨

⎩

(˜Dkk – Dkk), if vk ∈ V(Gj)

0, otherwise

⎞

⎠

–
(

1
√|V(Gj)|

∑

{l|vl∈V(Gj)}
(˜Akl – Akl)

)

(using (52))

=
1

√|V(Gj)|

⎛

⎝

⎧

⎨

⎩

∑

{l|vl /∈V(Gj)}
˜Akl, if vk ∈ V(Gj)

0, otherwise

–
∑

{l|vl∈V(Gj)}

⎧

⎨

⎩

˜Akl, if vk /∈ V(Gj)

0, otherwise

⎞

⎠ (using (50) and (51))

=
1

√|V(Gj)|

⎧

⎨

⎩

∑

{l|vl /∈V(Gj)}
˜Akl, if vk ∈ V(Gj)

–
∑

{l|vl∈V(Gj)}
˜Akl, if vk /∈ V(Gj).

(53)

Thus,

∥

∥(˜L – L)uj
∥

∥

2
2

=
1

|V(Gj)|
(

∑

{k|vk∈V(Gj)}

(

∑

{l|vl /∈V(Gj)}
˜Akl

)2

+
∑

{k|vk /∈V(Gj)}

(

∑

{l|vl∈V(Gj)}
˜Akl

)2)

. (54)

�

Lemma 10

‖˜L – L‖2 ≤ 2 max
j∈{1,...,q}

MED
˜G(Gj). (55)

Proof Suppose vk ∈ V(Gj(k)) (where j : {1, 2, . . . , |V(G)|} → {1, 2, . . . , q} maps the index of
a vertex to the index of the subgraph in G that the vertex belongs to). The sum of the
elements of the kth row of (˜A – A) is

∑

l

(˜Akl – Akl) =
∑

l

⎧

⎨

⎩

˜Akl, if vl /∈ V(Gj(k))

0, otherwise
(using (51))

=
∑

{l|vl /∈V(Gj(k))}
˜Akl

= EDGj(k),˜G(vk) (Definition5). (56)

Since (˜A – A) is a symmetric matrix, its 2-norm is equal to its spectral radius ρ(˜A – A).
Furthermore, since all elements of (˜A – A) are nonnegative, using the Perron–Frobenius
theorem [13], we get

‖˜A – A‖2 = ρ(˜A – A) ≤ max
k∈N

EDGj(k),˜G(vk)

= max
j∈{1,...,q}

max
{k|

vk∈V(Gj)}
EDGj(k),˜G(vk)
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(since maximizing over all vertices in ˜G is same as

maximizing over the subgraphs Gj and for each

subgraph maximizing over the vertices in the subgraph)

= max
j∈{1,...,q}

MED
˜G(Gj). (57)

Again, since (˜D – D) is a diagonal matrix with positive diagonal elements (due to (50)),
its 2-norm is the maximum out of its diagonal elements. That is,

‖˜D – D‖2 = max
k∈N

(˜Dkk – Dkk) = max
k∈N

∑

{l|vl /∈V(Gj(k))}
˜Akl (using (50))

= max
k∈N

EDGj(k),˜G(vk)

= max
j∈{1,...,q}

MED
˜G(Gj) (following similar steps as in (56) and (57)). (58)

Thus,

‖˜L – L‖2 =
∥

∥(˜D – D) – (˜A – A)
∥

∥

2 ≤ ‖˜D – D‖2 + ‖˜A – A‖2

≤ 2 max
j∈{1,...,q}

MED
˜G(Gj). �

In the following discussions, without loss of generality, we assume that the eigenvalues
of ˜L are indexed in an increasing order of magnitude 0 =˜λ1 ≤˜λ2 ≤ · · · ≤˜λn. The corre-
sponding eigenvectors are ũ1, ũ2, . . . , ũn.

4.2 Bounds on null-space perturbation with known spectrum of ˜L
The following proposition gives a bound on the perturbation of the null-space of L upon
introducing edges between the subgraphs in G = {G1, G2, . . . , Gq} by considering the sub-
space distance between the null-space of L and a specific invariant sub-space of˜L.

Proposition 3 Choose˜J = {1, 2, . . . , q}. Then

dsp
(

span(uJ ), span(̃ũJ )
) ≤ 1

˜λq+1

√

√

√

√

1
q

q
∑

j=1

CP
˜G(Gj). (59)

Proof We first note that due to Lemma 9
√

CP
˜G(Gj) = ‖(˜L – L)uj‖2, ∀j ∈ {1, 2, . . . , q}. The

proof then follows from Proposition 1 by setting κj = 0, ∀j = 1, 2, . . . q and noting that
minj∈{1,2,...,q},j′∈{q+1,q+2,...,n} |˜λj′ – λj| =˜λq+1. �

The results of Proposition 3 can be re-interpreted by considering G to be the graph ob-
tained by cutting ˜G into q-subgraphs. We call the set of subgraphs hence constructed upon
performing the cut G = {G1, G2, . . . , Gq} a q-cut of ˜G. Given a graph ˜G, we consider all pos-
sible q-cuts of ˜G. A q-cut G = {G1, G2, . . . , Gq} results in a graph G =

⋃q
j=1 Gj with q disjoint

components. The following corollary is then a direct consequence of the proposition.
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Corollary 6 Given a graph ˜G (with Laplacian ˜L with eigenvalues 0 =˜λ1 ≤ · · · ≤˜λn and
corresponding eigenvectors ũ1, . . . , ũn), let G be the set of all q-cuts of ˜G. We consider a q-cut
such that the sum of the couplings of the resultant q subgraphs in ˜G is minimum. That is,

G∗ ∈ arg minG∈G

∑

G′∈G

CP
˜G
(

G′). (60)

Let the corresponding graph G∗ =
⋃

G′∈G∗ G′ have eigenvalues 0 = λ∗
1 = λ∗

2 = · · · = λ∗
q ≤

λ∗
q+1 ≤ · · · ≤ λ∗

n and corresponding eigenvectors u∗
1, u∗

2, . . . , u∗
n. Then

dsp
(

span
({̃u1, . . . , ũq}

)

, span
({

u∗
1, . . . , u∗

q
})) ≤ 1

˜λq+1

√

1
q

∑

G′∈G∗
CP

˜G
(

G′). (61)

The interpretation of the above corollary is that the “best” q-cut of a graph ˜G (min-
imizing total inter-cluster coupling, as defined by (60)) results in a graph such that the
distance between the nullspace of the cut graph’s Laplacian and the space spanned by the
first q eigenvectors of the Laplacian of ˜G is bounded above by a quantity proportional to
the total inter-cluster coupling (which was minimized in the first place).

4.3 Bounds on null-space perturbation with known spectrum of L
Proposition 4 If maxj∈{1,...,q} MED

˜G(Gj) < λq+1
4 , then

dsp
(

span(uJ ), span(̃ûJ )
) ≤

√

1
q
∑q

j=1 CP˜G(Gj)

λq+1 – 2 maxk∈{1,...,q} MED
˜G(Gk)

≤ 2 maxj∈{1,...,q} MED
˜G(Gj)

λq+1 – 2 maxj∈{1,...,q} MED
˜G(Gj)

, (62)

wherêJ = {1, 2, . . . , q} = {j′|minj∈N |˜λj′ – λj| =˜λj′ }.

Proof Recall that the eigenvalues of the Laplacian L of G are (0 =)λ1 = λ2 = · · · = λq ≤
λq+1 ≤ · · · ≤ λn. Let J = {1, 2, . . . , q} so that Jc = {q + 1, q + 2, . . . , n} and sep(λJ ,λJc ) = λq+1.

Using Lemma 10, we have

‖˜L – L‖2 ≤ 2 max
j∈{1,...,q}

MED
˜G(Gj) <

λq+1

2
=

sep(λJ ,λJc )
2

. (63)

Thus the conditions for Lemma 7 and Proposition 2 hold, and ˜L is a separation preserv-
ing perturbation of L. Hence, by Lemma 7, there exists a separation preserving partition
{˜λ̂J ,˜λ̂Jc} of˜λN such that

̂J =
{

j′
∣

∣min
j∈N

|˜λj′ – λj| = min
j∈J

|˜λj′ – λj| =˜λj′
}

(since λj = 0,∀j ∈ J).

Thus, for any j′ ∈̂J ,

˜λj′ = min
j′∈N

|˜λj′ – λj| ≤ ‖˜L – L‖2 (due to Corollary3)

≤ λq+1

2
(from (63)). (64)
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Figure 6 Graph G (immersed in R
2 for visualization) and its spectrum. Each individual cluster in the graph is

Gj , j = 1, 2, . . . , 12

This implies that the elements of˜λ̂J are closer to 0(= λ1 = λ2 = · · · = λq) than they are to
λq+1. SincêJ has q-elements (due to Lemma 7.2) and is a unique set (by definition), we
have˜λ̂J = {˜λ1,˜λ2, . . . ,˜λq} to be the set constituting of the lowest q eigenvalues of˜L. Thus,
̂J = {1, 2, . . . , q}.

Since we showed that ‖˜L – L‖2 ≤ 1
2 sep(λJ ,λJc ), as direct consequence of Proposition 2,

we have the following:

(

dsp
(

span(uJ ), span(̃ûJ )
))2

≤ 1
q
∑

j∈J

( ‖(˜L – L)uj‖2

mink∈Jc |λk – λj| – ‖˜L – L‖2

)2

.

≤
1
q
∑

j∈J CP˜G(Gj)
(λq+1 – 2 maxk∈{1,...,q} MED

˜G(Gk))2

(

using Lemma9 and Lemma10 and the

fact that min
k∈Jc

|λk – λj| = λq+1,∀j ∈ {1, 2, . . . , n}
)

≤
(

2 maxj∈{1,...,q} MED
˜G(Gj)

λq+1 – 2 maxj∈{1,...,q} MED
˜G(Gj)

)2

(

using Lemma 9 and 10,
∑

j∈J

CP
˜G(Gj) =

∑

j∈J

∥

∥(˜L – L)uj
∥

∥

2
2

≤ q‖˜L – L‖2
2 ≤ q

(

2 max
j∈{1,...,q}

MED
˜G(Gj)

)2
)

. �

4.4 Example
As an illustration, we consider the graph G shown in Fig. 6 with 12 disjoint components,
thus q = 12. The graph is generated with n = 333 vertices clustered into 12 components in
a randomized manner with only intra-cluster edges. The weight on every edge is chosen to
be 1. Figure 6(a) shows an immersion of the graph in R

2 just for he purpose of visualization
(the exact coordinates of the vertices have no significance).

We then construct ˜G by establishing randomized edges between the components of
G. The weight on every inter-cluster edge is also chosen to be 1. Figure 7(a) shows the
immersion of the resultant graph.
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Figure 7 The graph˜G, the spectrum of its Laplacian, and its first 12 eigenvectors (c–n) visualized as
distribution over the vertices (red is positive, blue is negative)

Figure 8 The basis {u′
j }j=1,2,...,q of the null-space of L visualized as distributions over the vertices (red is

positive, blue is negative). Compare this with Figs. 7(c–n)

Direct computation reveals that for these graphs, ˜λq+1 = 18.436 and 1
q
∑q

j=1 CP˜G(Gj) =
0.5417. The L.H.S. of (59) is dsp(span(u{1,2,...,12}), span(̃u{1,2,...,12})) = 2.516 × 10–2, while the

R.H.S. is
√

1
q
∑q

j=1 CP˜G(Gj)
˜λq+1

= 3.992 × 10–2, thus validating the result of Proposition 3.

Again, maxj∈{1,...,q} MED
˜G(Gj) = 3 and λq+1

4 = 4.6091, thus satisfying the condition for

Proposition 4. The R.H.S. in (62) is
√

1
q
∑q

j=1 CP˜G(Gj)
λq+1–2 maxk∈{1,...,q} MED

˜G(Gk ) = 6.036 × 10–2, thus validat-
ing the result of the proposition.
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Since the chosen basis {uj}j=1,2,...,q for the null-space of L consists of distributions such
that uj is uniform and positive over vertices of Gj and zero everywhere else, this basis
is not ideal for a visual comparison with {̃uj}j=1,2,...,q. For a visual comparison between
span(u{1,2,...,q}) and span(̃u{1,2,...,q}), we choose a basis for the null-space of L that is clos-
est to {̃uj}j=1,2,...,q: Define the q × q matrix R = ([u1, u2, . . . , uq])+[̃u1, ũ2, . . . , ũq], where (·)+

indicates the Moore–Pesrose pseudoinverse. We need to chose a unitary matrix that is
close to R. This is given by taking the SVD of R = V�W † and defining R′ = VW †. Then
a basis for span(u{1,2,...,q}) is defined by the columns of [u1, u2, . . . , uq]R′ =: [u′

1, u′
2, . . . , u′

q].
Figure 8 shows these vectors as distributions over the vertices of G.
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