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Abstract
We consider an optimal control problem for a class of stochastic singular affine
systems with Markovian jumps. We establish the existence and uniqueness of the
solution to stochastic singular affine systems with Markovian jumps for the first time.
Via square completion technique and the generalized Itô’s formula, we derive new
kinds of generalized differential Riccati equations (GDREs) and generalized backward
differential equations (GBDEs), which give sufficient conditions for the well-posedness
of the optimal control problem, and present an explicit representation of optimal
control. Also, we discuss the solvability of the GDREs in two cases. As an application,
we present a leader-follower differential game to demonstrate the practicability of
our results.
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1 Introduction
Optimal control theory is the science of finding an optimal solution from all possible con-
trol schemes. It is the core content of modern control theory. Its essence is developing op-
timal control law or control strategy under given performance objectives and constraints.
It is worth mentioning that the ideological basis of control theory can be traced back to
the book [19] by Wiener, which laid to the foundation of control theory.

Stochastic optimal control problems include various physical, biological, and electronic
systems, just to mention a few. In view of stochastic differential equations, even in the
nonlinear case, the theory is relatively mature [3, 9, 10, 16, 20]. In [15] the authors re-
searched linear quadratic (LQ) control problems for stochastic affine systems, which give
the open-loop and closed-loop solvabilities; for additional details, we refer the readers
to the book [21] and references therein. Recently, due to a better description of physical
systems than regular ones, a lot of researchers have focused on singular systems. How-
ever, the research related to stochastic singular control systems is still in its fancy; only
few papers can be obtained until now. Zhang and Xing [23] studied the optimal control
and stability of stochastic singular systems with state- and control-dependent multiplica-
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tive noise. They established a kind of GDREs, which are harder for solvability due to their
symmetry. In [24] the LQ problem for stochastic singular systems with state-dependent
multiplicative noise is discussed. The authors presented a new kind of Lyapunov func-
tional, which made the new GDREs easy to solve. In [17], we have discussed the stochastic
singular optimal control systems with state- and control-dependent multiplicative noise.
Moreover, for our new kinds of GDREs, we established the solvability in definite, singular,
and indefinite cases.

On the other side, the parameter system model with Markovian jump provides an ex-
pedient mathematical model to depict systematic dynamics in situation where the system
undergoes frequent unpredictable parameter changes. Researches on the stochastic linear
jump systems can be at least dated back to the work of Krasosvkii and Lidskii [6]. During
the last decades, the jump parameter LQ control systems have been extensively investi-
gated (see, for example, [4, 5, 11, 12, 22] and references therein). For the case of stochastic
Markov jump differential equation with state- and control-dependent multiplicative noise,
Li et al. [8] discussed the infinite time domain control problem with indefinite state and
control cost weighting matrices, whereas Li and Zhou [7] investigated the same control
problem with finite time domain. However, it is worth mentioning that the papers men-
tioned are all concerned with stochastic Markov jump differential equations, whereas for
the optimal control problem of stochastic singular Markov jump systems, to the best of
our knowledge, there is no existing literature. Meanwhile, it is necessary to investigate the
affine systems due to the development of the leader-follower differential games. Therefore
it is a natural question of the optimal control problem of stochastic singular affine systems
with Markovian jumps, which is of particular mathematical interest.

Directly inspired by the works mentioned, the purpose of this paper is investigating the
optimal control of stochastic singular affine systems with Markovian jumps. The main
content is as follows. We study the stochastic singular affine LQ control systems with
Markovian jumps for the first time, which generalizes the result in [17]. Then to get its
well-posedness, we introduce new kinds of GDREs and GBDEs. This is quite different
from [17] because of the affine character of our new system. Moreover, the solvability of
the GDREs is established. As a direct application, results of this paper also enrich the con-
tents related to the theory of leader-follower game, which is one of the most important
differential games.

This paper comprises several sections. Preliminaries are provided in Sect. 2. In Sect. 3,
we derive sufficient conditions for the well-posedness of the LQ control problem in finite-
and infinite-time horizons. Section 4 focuses on the solvability of GDREs via applying ma-
trix decomposition. In Sect. 5, as an application, we consider a leader-follower differential
game. Finally, the conclusions are given in Sect. 6.

2 Preliminaries
Let (�,F , {Ft}t≥0,P) be a filtered probability space, where there is a one-dimensional stan-
dard Wiener process {w(t)}t≥0 and a right-continuous homogeneous Markov chain {rt}t≥0

with state space ψ = {1, 2, . . . , l}, and Ft is the smallest σ -algebra generated by the pro-
cesses w(s) and rs, 0 ≤ s ≤ t, i.e., Ft = σ {w(s), rs|0 ≤ s ≤ t}. We assume that {rt} is indepen-
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dent of {w(t)} and has the transition probabilities

Pr{rt+� = j|rt = i} =

⎧
⎨

⎩

πij� + o(�), i �= j,

1 + πii� + o(�), i = j,

where πij ≥ 0 for i �= j and πii = –
∑l

j=1,j �=i πij.
Consider the stochastic singular system with Markovian jump

⎧
⎨

⎩

E dx(t) = [A(t, rt)x(t) + f (t)] dt + [C(t, rt)x(t) + g(t)] dw(t),

x(0) = x0, t ≥ 0,
(2.1)

where x(t) ∈ Rn is the state variable, x0 ∈ Rn is a given initial function, f (t) and g(t) are
both inhomogeneous terms, E ∈ Rn×n is a known singular matrix with rank(E) = r ≤ n,
A(t, rt) = Ai(t) and C(t, rt) = Ci(t) when rt = i, and Ai(t), Ci(t), i ∈ ψ , are specified matri-
ces of suitable sizes. For each i ∈ ψ , Ai, Ci ∈ L∞(0, T ; Rn×n) and f , g ∈ L2(0, T ; Rn). Here
the Lebesgue space Lp(0, T ; X) consists measurable functions φ : [0, T] → X such that
‖φ‖Lp(0,T ;X) < ∞, where

‖φ‖Lp(0,T ;X) =

⎧
⎨

⎩

(
∫ T

0 ‖φ(t)‖p dt)
1
p , 1 ≤ p < ∞,

sup0≤t≤T ‖φ(t)‖, p = ∞,

and X is the real Banach space Rn or Rn×n. Here we only consider the one-dimensional
Wiener process, since the multiplicative noise case can be easily generalized.

For the existence and uniqueness of a solution without impulse to system (2.1), we carry
out the following assumptions for every i ∈ ψ :

(H.2.1) rank
( 0 E

E Ai(t)
)

= n + r;
(H.2.2) rank(ECi(t)g(t)) = rank(E).

Remark 2.1 (H.2.1) is a basic assumption to help us eliminate the impulse phenomenon
in system (2.1).

Theorem 2.1 If both assumptions (H.2.1) and (H.2.2) hold, then the singular system (2.1)
has a unique impulse-free solution on [0, T].

Proof Given the constant-rank condition of the matrix E, we can take into account the
matrix decomposition. Under assumption (H.2.2), there are nonsingular matrices Mi and
Ni such that for every i ∈ ψ ,

MiENi =

(
[Ii]r 0

0 0

)

, MiCi(t)Ni =

(
Ci,1(t) Ci,2(t)

0 0

)

, Mig(t) =

(
gi,1(t)

0

)

,

where Ci,1(t) ∈ Rr×r , Ci,2(t) ∈ Rr×(n–r), and gi,1(t) ∈ Rr . Accordingly, define

MiAi(t)Ni =

(
Ai,11(t) Ai,12(t)
Ai,21(t) Ai,22(t)

)

, Mif (t) =

(
fi,1(t)
fi,2(t)

)

,
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where Ai,11(t), Ai,12(t), Ai,21(t), Ai,22(t), fi,1(t), and fi,2(t) are of appropriate dimensions. Let
ξ (t) = N–1

i x(t) = [ξT
1 (t) ξT

2 (t)]T , where ξ1(t) ∈ Rr , ξ2(t) ∈ Rn–r . Via the above transforma-
tions, system (2.1) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dξ1(t) = [Ai,11(t)ξ1(t) + Ai,12ξ2(t) + fi,1(t)] dt

+ [Ci,1(t)ξ1(t) + Ci,2(t)ξ2(t) + gi,1(t)] dw(t),

ξ1(0) = [[Ii]r 0]Mix0,

0 = Ai,21(t)ξ1(t) + Ai,22(t)ξ2(t) + fi,2(t).

(2.2)

On the other side, by assumption (H.2.1) we have the rank relation

rank
(
Ai,22(t)

)
= n – r, i ∈ ψ ,

that is, the matrix Ai,22(t) has full row rank. Then there is nonsingular matrix Fi(t) such
that for every i ∈ ψ , Ai,22(t)Fi(t) = [Ii]n–r . Let Ai,12(t)Fi(t) � Āi,12(i) and Ci,2(t)Fi(t) � C̄i,2(i).
Then we can transform system (2.2) as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dξ1(t) = [(Ai,11(t) – Āi,12(t)Ai,21(t))ξ1(t) + fi,1(t) – Āi,12(t)fi,2(t)] dt

+ [(Ci,1(t) – C̄i,2(t)Ai,21(t))ξ1(t) + ḡi,1(t) – C̄i,2(t)fi,2(t)] dw(t),

ξ1(0) = [[Ii]r 0]Mix0,

0 = Ai,21(t)ξ1(t) + ξ̄2(t) + fi,2(t),

(2.3)

where Fi(t)ξ̄2(t) = ξ2(t).
For every i ∈ ψ , the first equation in system (2.3) is a stochastic ordinary differential

equation. According to Theorem 6.14 in [21], it has a unique solution ξ1(t) on [0, T], and
so does (2.3). This completes the proof. �

3 Optimal control problem
In this section, we consider the LQ optimal control problem for stochastic singular systems
with Markovian jumps in finite-and infinite-time horizons.

3.1 Finite-time horizon case
Taking into account the stochastic singular equations with Markovian jumps, we have

⎧
⎪⎪⎨

⎪⎪⎩

E dx(t) = [A(t, rt)x(t) + B(t, rt)u(t) + f (t)] dt

+ [C(t, rt)x(t) + D(t, rt)u(t) + g(t)] dw(t),

x(t) = x0 ∈ Rn, t ≥ 0,

(3.1)

where x(t) ∈ Rn and u(t) ∈ Rm represent the state and control vectors, respectively. An
admissible control u is an Ft-adapted Rm-valued measurable process on [0, T]. The set
of all admissible controls is denoted by Uad ≡ L2

F (0, T ; Rm), and the others are defined
similarly as before.

As in Sect. 2, we impose the following basic assumptions for each i ∈ ψ , which just
correspond to the existence and uniqueness of the solution to system (3.1):
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(H.3.1) rank
( 0 E 0

E Ai(t) Bi(t)
)

= n + r;
(H.3.2) rank(E Ci(t) Di(t) g(t)) = rank(E).
For all (0, x0, i) and u ∈ Uad, the related cost functional is defined as

J
(
0, x0, i; u(·))

= E

{∫ T

0
xT (t)Q(t, rt)x(t) + uT (t)R(t, rt)u(t) dt + xT (T)H(rT )x(T)|r0 = i]

}

, (3.2)

and the objective of this control problem is minimizing the cost functional J(0, x0, i; u(·))
for a given (0, x0) ∈ [0, T) × Rn over u ∈ Uad. The value function is defined by

V̄ (0, x0, i) = inf
u∈Uad

J(0, x0, i; u).

The following assumption will go into effect throughout this section:
(H.3.3) For every i ∈ ψ , the data arising in LQ problem (3.1)–(3.2) satisfy

⎧
⎪⎪⎨

⎪⎪⎩

Ai, Ci ∈ L∞(0, T ; Rn×n), Bi, Di ∈ L∞(0, T ; Rn×m),

Qi ∈ L∞(0, T ;Sn), Ri ∈ L∞(0, T ;Sm), Hi ∈ Sn,

f , g ∈ L2(0, T ; Rn).

where Sm denotes the set of all m × m symmetric matrices.

Definition 3.1 The optimization control problem (3.1)–(3.2) is called well-posed if

–∞ < V̄ (0, x0, i) < +∞ ∀x0 ∈ Rn,∀i ∈ ψ .

A well-posed problem is called attainable with respect to (0, x0, i) if there exists a con-
trol u∗ ∈ Uad that achieves V̄ (0, x0, i). In such a case, the control u∗ is called optimal with
respect to (0, x0, i).

Lemma 3.1 ([14]) For a symmetric matrix S, we can get

S† =
(
S†

)T , SS† = S†S, S ≥ 0 ⇔ S† ≥ 0,

where “†” denotes the Moore–Penrose pseudoinverse of a matrix.

Lemma 3.2 ([13]) Given matrices L, M, and N of appropriate sizes, the matrix equation

LXM = N (3.3)

has a solution X if and only if

LL†NM†M = N .

In addition, any solution to (3.3) can be written as

X = L†NM† + S – L†LSMM†,

where S is a matrix of appropriate size.
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Theorem 3.1 The finite-time horizon LQ stochastic control problem (3.1)–(3.2) is well-
posed if GDREs (3.4) and GBDEs (3.5) admit a solution pair (P̄(t), φ̄(t)), where P̄(t) =
(P1(t), . . . , Pl(t)) ∈ C(0, T ; (Rn×n)l), φ̄(t) = (φ1(t), . . . ,φl(t)) ∈ C(0, T ; (Rn)l).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ET Ṗi(t) = –[PT
i (t)Ai(t) + AT

i (t)Pi(t) + CT
i (t)(E†)T PT

i (t)EE†Ci(t) + Qi(t)

+
∑l

j=1 πijET Pj(t)] + LT
i (t)K†

i (t)Li(t),

ET Pi(T) = Hi, ET Pi(t) = PT
i (t)E,

0 = [Ki(t)K†
i (t) – Ii]Li(t),

Li(t) = BT
i (t)Pi(t) + DT

i (t)(E†)T PT
i (t)EE†Ci(t),

Ki(t) = Ri(t) + DT
i (t)(E†)T PT

i (t)EE†Di(t) ≥ 0, a.e. t ∈ [0, T], i ∈ ψ .

(3.4)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ET φ̇i(t) = –[AT
i (t)φi(t) + PT

i (t)f (t) + CT
i (t)(E†)T PT

i (t)EE†g(t) +
∑l

j=1 ETφj(t)]

+ LT
i (t)K†

i (t)hi(t),

hi(t) = BT
i (t)φi(t) + DT

i (t)(E†)T PT
i (t)EE†g(t),

ETφi(T) = 0.

(3.5)

Moreover, the set of all optimal controls with respect to the initial (0, x0, i) ∈ [0, T) × Rn ×
ψ is deteremined by (parameterized by (Yi, zi))

u∗(t) = –
l∑

i=1

{
K†

i (t)
(
Li(t)x(t) + hi(t)

)
+

[
Yi(t) – K†

i (t)Ki(t)Yi(t)
]
x(t)

+ zi(t) – K†
i (t)Ki(t)zi(t)

}
χ{rt=i}(t). (3.6)

Furthermore, the value function is presented by

V̄ (0, x0, i) = E

{∫ T

0
–hT (t, rt)K†(t, rt)h(t, rt) + gT (t)

(
E†

)T PT (t, rt)EE†g(t)

+ 2f T (t)φ(t, rt) dt
∣
∣
∣r0 = i

}

+ xT
0 ET Pi(0)x0 + 2xT

0 ETφi(0), (3.7)

where C(0, T ; (Rn×n)l) is the set of all the (Rn×n)l-valued continuous functions on [0, T].

Proof We prove this result by using the completion of squares. First, define a Lyapunov–
Krasovskii functional with PT

i (t)E = ET Pi(t), i ∈ ψ , on the interval [0, T] as follows:

V (t, x, i) = V1(t, x, i) + V2(t, x, i) = xT (t)ET Pi(t)x(t) + 2xT (t)ETφi(t).

Then applying generalized Itô’s formula [1] to V1(t, x, i) and V2(t, x, i), after some manip-
ulations, we have

E
[
xT (T)ET PrT (T)x(T)–xT

0 ET Pr0 (0)x0|r0 = i
]

= E

{∫ T

0
	V1

(
t, x(t), rt

)
dt

∣
∣
∣r0 = i

}

, (3.8)
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where

	V1(t, x, i)

= xT (t)

[

ET Ṗi(t) + AT
i (t)Pi(t) + PT

i (t)Ai(t) + CT
i (t)

(
E†

)T PT
i (t)EE†Ci(t)

+
l∑

j=1

ET Pj(t)

]

x(t) + 2uT (t)
{[

BT
i (t)Pi(t) + DT

i (t)
(
E†

)T PT
i (t)EE†Ci(t)

]
x(t)

+ DT
i (t)

(
E†

)T PT
i (t)EE†g(t)

}
+ uT (t)DT

i (t)
(
E†

)T PT
i (t)EE†Di(t)u(t)

+ 2xT (t)
[
PT

i (t)f (t) + CT
i (t)

(
E†

)T PT
i (t)EE†g(t)

]
+ gT (t)

(
E†

)T PT
i (t)EE†g(t),

and

2E
[
xT (T)ETφrT (T) – xT

0 ETφr0 (0)|r0 = i
]

= 2E
{∫ T

0
	V2

(
t, x(t), rt

)
dt

∣
∣
∣r0 = i

}

(3.9)

with

	V2(t, x, i) = 2xT (t)

[

AT
i (t)φi(t) + ET φ̇i(t) +

l∑

j=1

ETφj(t)

]

+ 2uT (t)BT
i (t)φi(t) + 2f T (t)φi(t).

Hence by equations (3.8)–(3.9) and the cost function (3.2) we get

	V1(t, x, i) + 	V2(t, x, i) + xT (t)Qi(t)x(t) + uT (t)Ri(t)u(t)

= xT (t)

[

ET Ṗi(t) + AT
i (t)Pi(t) + PT

i (t)Ai(t) + CT
i (t)

(
E†

)T PT
i (t)EE†Ci(t) + Qi(t)

+
l∑

j=1

ET Pj(t)

]

x(t) + 2uT (t)
(
Li(t)x(t) + hi(t)

)
+ uT (t)Ki(t)u(t)

+ 2xT (t)

[

PT
i (t)f (t) + CT

i (t)
(
E†

)T PT
i (t)EE†g(t) + AT

i (t)φi(t) + ET φ̇i(t)

+
l∑

j=1

ETφj(t)

]

+ gT (t)
(
E†

)T PT
i (t)EE†g(t) + 2f T (t)φi(t). (3.10)

Now let Yi ∈ L2
F (0, T ; Rm×n) and zi ∈ L2

F (0, T ; Rm) be given for every i ∈ ψ . Set

G1
i (t) = Yi(t) – K†

i (t)Ki(t)Yi(t), G2
i (t) = zi(t) – K†

i (t)Ki(t)zi(t).

Applying Lemma 2.1 and the above discussion, for k = 1, 2, we have

Ki(t)Gk
i (t) = K†

i (t)Gk
i (t) = 0, LT

i (t)Gk
i (t) = 0.
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Hence

	V1(t, x, i) + 	V2(t, x, i) + xT (t)Qi(t)x(t) + 2uT (t)LT
i (t)x(t) + uT (t)Ri(t)u(t)

=
[
u(t) + K†

i (t)
(
Li(t)x(t) + hi(t)

)
+ G1

i (t)x(t) + G2
i (t)

]
Ki(t)

× [
u(t) + K†

i (t)
(
Li(t)x(t) + hi(t)

)
+ G1

i (t)x(t) + G2
i (t)

]

– hT
i (t)K†

i (t)hi(t) + gT (t)
(
E†

)T PT
i (t)EE†g(t) + 2f T (t)φi(t).

Thus we can represent the cost functional as follows:

J
(
0, x0, i; u(·))

= E

{∫ T

0

[
u(t) + K†(t, rt)

(
L(t, rt)x(t) + h(t, rt)

)
+ G1(t, rt)x(t) + G2(t, rt)

]T K(t, rt)

× [
u(t) + K†(t, rt)

(
L(t, rt)x(t) + h(t, rt)

)
+ G1(t, rt)x(t) + G2(t, rt)

]

– hT (t, rt)K†(t, rt)h(t, rt) + gT (t)
(
E†

)T PT
i (t)EE†g(t) + 2f T (t)φ(t, rt) dt

∣
∣
∣r0 = i

}

+ xT
0 ET Pi(0)x0 + 2xT

0 ETφi(0). (3.11)

Hence J(0, x0, i; u(·)) is minimized by the control (3.6) with value function (3.7).
On the other hand, we show that any optimal control can be expressed by (3.6) for some

Yi and zi. Let u∗ be an optimal control; thus we know that the integrand on the right-hand
side of (3.11) must be zero almost everywhere in t. This gives

Ki(t)u∗(t) = K†
i (t)

[
Li(t)x(t) + hi(t)

]
+ G1

i (t)x(t) + G2
i (t), i ∈ ψ .

Applying Lemma 3.2 to solve the above equation in u∗, we get (3.6). This completes the
proof. �

Corollary 3.1 Optimal controls can be obtained in the following cases:
(i) If Ki(t) ≡ 0 for a.e. t ∈ [0, T] and all i ∈ ψ , then any admissible control is optimal;

(ii) If Ki(t) > 0 for a.e. t ∈ [0, T] and all i ∈ ψ , then the optimal control can be expressed
by

u∗(t) = –
l∑

i=1

{
K–1

i (t)
[
Li(t)x(t) + hi(t)

]}
χ{rt=i}(t),

whose number is determined by the solutions of (3.4)–(3.5).
In particular, if the coefficient matrices in (3.1)–(3.2) are the form A(t, rt) = A(t), B(t, rt) =

B(t), etc., then we can get a sufficient condition for the corresponding optimal control prob-
lem and the display expression for optimal control as well.

Corollary 3.2 Consider the following optimal control problem:

min J
(
0, x0; u(·)) = E

{∫ T

0
xT (t)Q(t)x(t) + uT (t)R(t)u(t) dt + xT (T)Hx(T)

}

(3.12)
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with the state equation
⎧
⎨

⎩

E dx(t) = [A(t)x(t) + B(t)u(t) + f (t)] dt + [C(t)x(t) + D(t)u(t) + g(t)] dw(t),

x(0) = x0.
(3.13)

Suppose that there are P ∈ C(0, T ; Rn×n) and φ ∈ C(0, T ; Rn) satisfying the GDREs (3.14)
and the GBDEs (3.15):

⎧
⎪⎪⎨

⎪⎪⎩

ET Ṗ(t) = –[PT (t)A(t) + AT (t)P(t) + CT (t)(E†)T PT (t)EE†C(t) + Q(t)]

+ LT (t)[R(t) + DT (t)(E†)T PT (t)EE†D(t)]–1L(t),

ET P(T) = H , ET P(t) = PT (t)E;

(3.14)

⎧
⎪⎪⎨

⎪⎪⎩

ET φ̇(t) = –[AT (t)φ(t) + PT (t)f (t) + CT (t)(E†)T PT (t)EE†g(t)]

+ LT (t)[R(t) + DT (t)(E†)T PT (t)EE†D(t)]–1h(t),

ETφ(T) = 0.

(3.15)

Then the optimal control problem (3.12)–(3.13) is well-posed and can be represented as

u∗(t) = –
[
R(t) + DT (t)

(
E†

)T PT (t)EE†D(t)
]–1[L(t)x(t) + h(t)

]
,

and the optimal value of the cost functional can be represented by

J
(
0, x0; u∗(·))

= E

{∫ T

0
–hT (t)

[
R(t) + DT (t)

(
E†

)T PT (t)EE†D(t)
]–1h(t) + gT (t)

(
E†

)T PT (t)EE†g(t)

+ 2f T (t)φ(t) dt
}

+ xT
0 ET P(0)x0 + 2xT

0 ETφ(0),

where

L(t) = BT (t)P(t) + DT (t)
(
E†

)T PT (t)EE†C(t),

h(t) = BT (t)φ(t) + DT (t)
(
E†

)T PT (t)EE†g(t).

3.2 Infinite-time horizon case
Consider the following stochastic singular system with Markovian jumps:

⎧
⎨

⎩

E dx(t) = [A(rt)x(t) + B(rt)u(t)] dt + [C(rt)x(t) + D(rt)u(t)] dw(t),

x(0) = x0.
(3.16)

Definition 3.2 System (3.16) is called mean-square stabilizable if there is a feedback con-
trol

u(t) =
l∑

i=1

[
Kix(t)

]
χ{rt=i},

where K1, . . . , Kl are given matrices, that is stabilizing with respect to any initial state (x0, i).
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For a given (x0, i) ∈ Rn × ψ , we define the set of admissible controls

U (x0, i) =
{

u(·) ∈ Lloc
2

(
Rm)|u(·) is mean-square stabilizing with respect to (x0, i)

}
,

where

Lloc
2

(
Rm)

=
{

φ(·, ·) : [0, +∞) × � �→ Rm
∣
∣
∣φ(·, ·) is Ft-adapted, Lebesgue measurable,

and E

∫ T

0

∣
∣φ(t,ω)

∣
∣2 dt < +∞ ∀T ≥ 0

}

.

The control problem in this subsection is to find a control that minimizes the following
quadratic cost associated with (3.16):

J
(
x0, i; u(·)) = E

{∫ ∞

0
xT (t)Q(rt)x(t) + uT (t)R(rt)u(t) dt

∣
∣
∣r0 = i

}

. (3.17)

The value function is similarly defined as

V̄ (x0, i) = inf
u(·)∈U (x0,i)

J
(
x0, i; u(·)).

(H.3.4) The data arising in the LQ control problem (3.16)–(3.17) satisfy, for each i ∈ ψ ,

⎧
⎨

⎩

Ai, Ci ∈ Rn×n, Bi, Di ∈ Rn×m,

Qi ∈ Sn, Ri ∈ Sm.

(H.3.5) System (3.16) is mean-square stabilizable.

Theorem 3.2 Under hypotheses (H.3.4)–(H.3.5), the infinite-time horizon stochastic LQ
control problem (3.16)–(3.17) is well-posed if the generalized algebraic Riccati equations
(GAREs) (3.18) have a solution P = (P1, . . . , Pl) ∈ (Rn×n)l .

⎧
⎪⎪⎨

⎪⎪⎩

0 = –[PT
i Ai + AT

i Pi + CT
i (E†)T PT

i EE†Ci + Qi +
∑l

j=1 πijET Pj] + LT
i K–1

i Li,

ET Pi = PT
i E,

Ki = Ri + DT
i (E†)T PT

i EE†Di > 0, i ∈ ψ ,

(3.18)

where Li = BT
i Pi + DT

i (E†)T PT
i EE†Ci.

In such a case the optimal control can be expressed as

u∗(t) = –
l∑

i=1

{
K–1

i Lix(t)
}
χ{rt=i},

and the value function is presented by

V̄ (x0, i) = xT
0 ET Pix0.
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Proof Suppose that there exists a solution P satisfying equation (3.18). Set the Lyapunov–
Krasovskii functional

V (t, x, i) = xT (t)ET Pix(t).

Applying generalized Itô’s formula to system (3.16), we derive

E
[
xT (T)ET PrT x(T) – xT

0 ET Pr0 x0|r0 = i
]

= E

{∫ T

0
	V

(
t, x(t), rt

)
dt

∣
∣
∣r0 = i

}

, (3.19)

where

	V (t, x, i) = xT (t)

[

AT
i Pi + PiAi + CT

i
(
E†

)T PT
i EE†Ci +

l∑

j=1

ET Pj

]

x(t)

+ 2uT (t)
[
BT

i Pi + DT
i
(
E†

)T PT
i EE†Ci

]
x(t) + uT (t)DT

i
(
E†

)T PT
i EE†Diu(t).

From assumption (H.3.5) we have E[V (∞)] = 0. Then extending the integral interval to
[0,∞) for equation (3.19) and combining with (3.17), we eventually obtain

J
(
x0, i; u(·)) = E

∫ ∞

0

[
u(t) + KiLix(t)

]T Ki
[
u(t) + KiLix(t)

]
dt + xT

0 ET Pix0. (3.20)

From (3.20) we can obviously obtain the optimal control and the value function. This com-
pletes the proof. �

4 The solvability of GDREs
We give some conditions under which the GDREs are solvable in this section. Due to
limited capacity, we only deal with the following case:

⎧
⎪⎪⎨

⎪⎪⎩

ET Ṗi = –[PT
i (t)Ai + AT

i Pi(t) + CT
i (E†)T PT

i (t)EE†Ci + Qi +
∑l

j=1 πijET Pj(t)]

+ PT
i (t)BiR–1

i BT
i Pi(t),

ET Pi(T) = Hi, ET Pi(t) = PT
i (t)E, i ∈ ψ .

(4.1)

First, we declare some transformations that will be used later:

M–T
i Pi(t)Ni =

(
Pi,11(t) Pi,12(t)
Pi,21(t) Pi,22(t)

)

, Q̂i � NT
i QiNi =

(
Qi,11 Qi,12

QT
i,12 Qi,22

)

,

M–T
i HiM–1

i =

(
Hi,11 Hi,12

HT
i,12 Hi,22

)

, E† = Ni

(
[Ii]r 0

0 0

)

Mi,

where Pi,11(t) ∈ Rr×r , Pi,12(t) ∈ Rr×(n–r), Pi,21(t) ∈ R(n–r)×r , Pi,22(t) ∈ R(n–r)×(n–r).
For discussing the solvability conditions for GDREs (4.1), we make a necessary assump-

tion.
(H.4.1) Qi(t) ≥ 0 and Hi ≥ 0 for every i ∈ ψ .
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Under this assumption, Q̂i ≥ 0 and Hi,11 ≥ 0 for each i ∈ ψ , and thus there exist two
matrices Fi,1 ∈ Rn×r and Fi,2 ∈ Rn×(n–r) such that

Q̂i =

(
Qi,11 Qi,12

QT
i,12 Qi,22

)

=

(
FT

i,1

FT
i,2

)

(Fi,1Fi,2).

Next, we can directly use the above transformations to GDREs (4.1), which can be di-
vided into

–

(
Ii 0
0 0

)(
Ṗi,11(t) Ṗi,12(t)
Ṗi,21(t) Ṗi,22(t)

)

=

(
PT

i,11(t) PT
i,21(t)

PT
i,12(t) PT

i,22(t)

)(
Ai,11 Ai,12

Ai,21 Ai,22

)

+

(
AT

i,11 AT
i,21

AT
i,12 AT

i,22

)(
Pi,11(t) Pi,12(t)
Pi,21(t) Pi,22(t)

)

+

(
Qi,11 Qi,12

QT
i,21 Qi,22

)

+

(
CT

i,1 0
Ci,2 0

)(
Ii 0
0 0

)(
PT

i,11(t) PT
i,21(t)

PT
i,12(t) PT

i,22(t)

)(
Ii 0
0 0

)(
CT

i,1 0
Ci,2 0

)T

–

(
PT

i,11(t) PT
i,21(t)

PT
i,12(t) PT

i,22(t)

)(
Bi,1

Bi,2

)

R–1
i

(

BT
i,1 BT

i,2

)
(

Pi,11(t) Pi,12(t)
Pi,21(t) Pi,22(t)

)

(4.2)

with the boundary condition Pi,11(T) = Hi,11.
Next, from the equality ET Pi(t) = PT

i (t)E we have Pi,11(t) = PT
i,11(t) and Pi,12(t) = 0. Sub-

stituting them into (4.2), after some manipulations, we obtain the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṗi,11(t) = –Pi,11(t)Ai,11 – AT
i,11Pi,11(t) – PT

i,21(t)Ai,21 – AT
i,21Pi,21(t)

– Qi,11 – CT
i,1Pi,11(t)Ci,1 –

∑l
j=1 πijPj,11(t)

+ [Pi,11(t)Bi,1 + PT
i,21(t)Bi,2]R–1

i [BT
i,1Pi,11(t) + BT

i,2Pi,21(t)],

0 = –PT
i,22(t)Ai,21 – AT

i,12Pi,11(t) – AT
i,22Pi,21(t) – QT

i,12 – CT
i,2Pi,11Ci,1

+ PT
i,22(t)Bi,2R–1

i [BT
i,1Pi,11(t) + BT

i,2Pi,21(t)],

0 = –PT
i,22(t)Ai,22 – AT

i,22Pi,22 – Qi,22 – CT
i,2Pi,11(t)Ci,2 + PT

i,22(t)Bi,2R–1
i BT

i,2Pi,22(t).

(4.3)

Case 1
(H.4.2) Ci,2 = 0 and the triple (Ai,22 Bi,2 Fi,2) is completely controllable and observable

for every i ∈ ψ .
In this case, equation (4.3) can be transformed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṗi,11(t) = –Pi,11(t)Ai,11 – AT
i,11Pi,11(t) – PT

i,21(t)Ai,21 – AT
i,21PT

i,21(t)

– Qi,11 – CT
i,1Pi,11(t)Ci,1 –

∑l
j=1 πijPj,11(t)

+ [Pi,11(t)Bi,1 + PT
i,21(t)Bi,2]R–1

i [BT
i,1Pi,11(t) + BT

i,2Pi,21(t)], (4.4a)

0 = –PT
i,22(t)Ai,21 – AT

i,12Pi,11(t) – AT
i,22Pi,21(t) – QT

i,12

+ PT
i,22(t)Bi,2R–1

i [BT
i,1Pi,11(t) + BT

i,2Pi,21(t)], (4.4b)

0 = –PT
i,22(t)Ai,22 – AT

i,22Pi,22 – Qi,22 + PT
i,22(t)Bi,2R–1

i BT
i,2Pi,22(t). (4.4c)
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Equation (4.4c) ia an algebraic Riccati equation, and under assumption (H.4.2), it has a
unique positive definite solution Pi,22(t) for any given i ∈ ψ [24]. Substituting Pi,22(t) into
(4.4b), we get

Pi,21(t) = Li,1(t)Pi,11(t) + Li,2(t),

where

Li,1(t) = –
(
Ai,22 – Bi,2R–1

i BT
i,2Pi,22(t)

)–T(
AT

i,12 – PT
i,22(t)Bi,2R–1

i BT
i,1

)
,

Li,2(t) = –
(
Ai,22 – Bi,2R–1

i BT
i,2Pi,22(t)

)–T(
PT

i,22(t)Ai,21 + QT
i,12

)
.

Moreover, substituting Pi,21(t) into equation (4.4a), after some calculations, we have

Ṗi,11(t) = –Pi,11(t)Ai,0 – AT
i,0Pi,11 – Qi,0 – CT

i,1Pi,11(t)Ci,1 –
l∑

j=1

πijPj,11(t)

+ Pi,11(t)Bi,0R–1
i BT

i,0Pi,11(t),

where

Qi,0 = Qi,11 + LT
i,2(t)Ai,21 + AT

i,21Li,2(t) + LT
i,2(t)Bi,2R–1

i BT
i,2Li,2(t),

Ai,0 = Ai,11 + LT
i,1(t)Ai,21 –

[
Bi,1 + Li,1(t)Bi,2

]
R–1

i BT
i,2Li,2(t),

Bi,0 = Bi,1 + Li,1(t)Bi,2.

Similarly to the proof of Theorem 1 in [18], we can prove that there exist Ci,0 and Di,0 such
that Qi,0 = CT

i,0Ci,0 and Ri = DT
i,0Di,0.

(H.4.3) (i) There exists ρ > 0 such that DT
i,0Di,0 ≥ ρIm for all i ∈ ψ .

(ii) The triple (Ci,0 Ai,0 Ci,1; Q̄) is detectable for every i ∈ ψ , where
Q̄ = (qij)i,j∈ψ .

(iii) The elements of the matrix Q̄ satisfy qij ≥ 0, j �= i, j, i ∈ ψ .
(iv) The triple (Ai,0 Ci,1 Bi,0; Q̄) is stabilizable for each i ∈ ψ .

Under these assumptions, by Theorem 5.6.15 in [2] there exists a unique positive
semidefinite and bounded solution Pi,11(t), which is also stabilizing.

Case 2
(H.4.2′) Ai,21 = 0, Bi,2 = 0, and λi + λj �= 0, where λi and λj are arbitrary eigenvalues of

Ai,22, i ∈ ψ .
In this case, equation (4.3) can be transformed into

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṗi,11(t) = –Pi,11(t)Ai,11 – AT
i,11Pi,11(t) – Qi,11 – CT

i,1Pi,11(t)Ci,1 –
∑l

j=1 πijPj,11(t)

+ Pi,11(t)Bi,1R–1
i BT

i,1Pi,11(t), (4.5a)

0 = –AT
i,12Pi,11(t) – AT

i,22Pi,21(t) – QT
i,12 – CT

i,2Pi,11(t)Ci,1, (4.5b)

0 = –PT
i,22(t)Ai,22 – AT

i,22Pi,22 – Qi,22 – CT
i,2Pi,11(t)Ci,2. (4.5c)
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Under assumption (H.4.2′), equation (4.5c) has a unique solution Pi,2(t) for any given i ∈ ψ

[24]. Then similarly to case 1, we get a unique positive semidefinite and bounded solution
Pi,11(t) for equation (4.5a). Substituting Pi,11(t) into (4.5b), we get that

Pi,21(t) = –A–T
i,22

(
AT

i,12Pi,11(t) + CT
i,2Pi,11(t)Ci,1 + QT

i,12
)
.

Then the solution Pi(t) can also be obtained.

Remark 4.1 For GBDEs (3.15), using the results for linear BDEs, we can deal with it by a
similar method, but we omit it here for simplicity.

5 Application
In this section, we study a stochastic LQ leader-follower differential game, where the state
equation is an Itô-type linear stochastic singular equations with Markovian jump, and the
cost function is quadratic.

Consider the following stochastic singular system with Markovian jumps:

⎧
⎪⎪⎨

⎪⎪⎩

E dx(t) = [A(t, rt)x(t) + B1(t, rt)u1(t) + B2(t, rt)u2(t)] dt

+ [C(t, rt)x(t) + D1(t, rt)u1(t) + D2(t, rt)u2(t)] dw(t),

x(0) = x0, t ≥ 0,

where uk(t) ∈ Rmk is the control process of player k, for which we denote the admissible
control set by Uk[0, T] � L2

F (0, T ; Rmk ), k = 1, 2. For player k, the cost functional is defined
by

Jk
(
0, x0, i; u1(·), u2(·))

= E

{∫ T

0

[
xT (t)Qk(t, rt)x(t) + uT

k (t)Rk(t, rt)uk(t)
]

dt + xT (T)Hk(rT )x(T)
∣
∣
∣r0 = i

}

,

where Qi,k(t) = QT
i,k(t), Hi,k = HT

i,k , Ri,k(t) = RT
i,k(t), k = 1, 2, i ∈ ψ . We give an assumption

imposed throughout this section.
(H.5.1) For every i ∈ ψ , D1,i = 0 or D2,i = 0.
In the leader-follower game, player 2 is the leader, and player 1 is the follower. For a fixed

initial state x0 ∈ Rn and any choice u2 ∈ U2[0, T] of player 2, player 1 should expect to select
ū1 ∈ U1[0, T] such that J1(0, x0, i; ū1(·), u2(·)) is the minimum of J1(0, x0, i; u1(·), u2(·)) over
u1 ∈ U1[0, T] (denoted as Problem (LQ)1)). Knowing that the follower would take such
an optimal control ū1, player 2 would be willing to select some ū2 ∈ U2[0, T] minimizing
J2(0, x0, i; ū1(·), u2(·)) over u ∈ U2[0, T] (denoted as Problem (LQ)2)).

To summarize, we need to solve two LQ optimal control problems, the optimal control
ū1 for the first one and the optimal control ū2 for the second one. However, when a control
is given, the corresponding optimal control problem is precisely what we have dealt with
in Section 3. So we can directly use the developed conclusions.

(i) LQ problem for the follower:
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Theorem 5.1 Suppose the following equations (5.1)–(5.2) admit a solution pair (P1(t),
φ1(t)), where P1(t) ∈ C(0, T ; (Rn×n)l), φ1(t) ∈ C(0, T ; (Rn)l):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ET Ṗ1,i(t) = –[PT
1,i(t)Ai(t) + AT

i (t)P1,i(t) + CT
i (t)(E†)T PT

1,i(t)EE†Ci(t) + Q1,i(t)

+
∑l

j=1 πijET P1,j(t)] + LT
1,i(t)K–1

1,i (t)L1,i(t),

ET P1,i(T) = H1,i, ET P1,i(t) = PT
1,i(t)E,

L1,i(t) = BT
1,i(t)P1,i(t) + DT

1,i(t)(E†)T PT
1,i(t)EE†Ci(t),

K1,i(t) = R1,i(t) + DT
1,i(t)(E†)T PT

1,i(t)EE†D1,i(t) > 0, i ∈ ψ ;

(5.1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ET φ̇1,i(t) = –[AT
i (t)φ1,i(t) + PT

1,i(t)B2,i(t)u2(t) + CT
i (t)(E†)T PT

1,i(t)EE†D2,i(t)u2(t)

+
∑l

j=1 ETφ1,j(t)] + LT
1,i(t)K–1

1,i (t)h1,i(t),

h1,i(t) = BT
1,i(t)φ1,i(t) + DT

1,i(t)(E†)T PT
1,i(t)EE†D2,i(t)u2(t),

ETφ1,i(T) = 0.

(5.2)

Then Problem (LQ)1 is well-posed. Optimal control in regard to the initial (0, x0, i) can be
presented by

ū1(t) = –
l∑

i=1

{
K–1

1,i (t)
[
L1,i(t)x(t) + h1,i(t)

]}
χ{rt=i}(t).

(ii) LQ problem for the leader:

Theorem 5.2 Suppose the following equations (5.3)–(5.4) admit a solution pair (P2(t),
φ2(t)), where P2(t) ∈ C(0, T ; (Rn×n)l), φ2(t) ∈ C(0, T ; (Rn)l):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ET Ṗ2,i(t) = –[PT
2,i(t)Ai(t) + AT

i (t)P2,i(t) + CT
i (t)(E†)T PT

2,i(t)EE†Ci(t) + Q2,i(t)

+
∑l

j=1 πijET P2,j(t)] + LT
2,i(t)K–1

2,i (t)L2,i(t),

ET P2,i(T) = H2,i, ET P2,i(t) = PT
2,i(t)E,

L2,i(t) = BT
2,i(t)P2,i(t) + DT

2,i(t)(E†)T PT
2,i(t)EE†Ci(t),

K2,i(t) = R2,i(t) + DT
2,i(t)(E†)T PT

2,i(t)EE†D2,i(t) > 0, i ∈ ψ ;

(5.3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ET φ̇2,i(t) = –[AT
i (t)φ2,i(t) + PT

2,i(t)B1,i(t)ū1(t) + CT
i (t)(E†)T PT

2,i(t)EE†D1,i(t)ū1(t)

+
∑l

j=1 ETφ2,j(t)] + LT
2,i(t)K–1

2,i (t)h2,i(t),

h2,i(t) = BT
2,i(t)φ2,i(t) + DT

2,i(t)(E†)T PT
2,i(t)EE†D1,i(t)ū1(t),

ETφ2,i(T) = 0.

(5.4)

Then Problem (LQ)2 is well-posed. Optimal control in regard to the initial (0, x0, i) can be
presented by

ū2(t) = –
l∑

i=1

{
K–1

2,i (t)
[
L2,i(t)x(t) + h2,i(t)

]}
χ{rt=i}(t).

Remark 5.1 It is worth pointing out that for the main conclusions of Theorems 5.1 and
5.2, assumption (H.5.1) is necessary, that is, we should obtain explicit expressions of the
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controls ū1 and ū2 at the mean time. On the other hand, under this assumption, our results
for application to the leader-follower differential game have certain limitations, and we will
pay more attention to this problem in the future.

6 Conclusion
We separately study an optimal control problem for a kind of stochastic singular affine
systems with Markovian jumps in finite- and infinite-time horizons. By generalized Itô’s
formula and square completion technique we establish a sufficient condition for the well-
posedness of control problem. In particular, we also obtain the solvability of GDREs by ap-
plying some matrix decomposition. As a typical application, we discuss a leader-follower
differential game.

Due to the considerable application potential of this class of stochastic affine singular
systems, it will receive more research attention. We also need to pay attention to the fact
that it is necessary to calculate an explicit representation of the solutions to GDREs and
GBDEs. Therefore we will leave these issues for research in the future.
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