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Abstract
In this paper, we compute a common solution of the fixed point problem (FPP) and
the generalized split common null point problem (GSCNPP) via the inertial hybrid
shrinking approximants in Hilbert spaces. We show that the approximants can be
easily adapted to various extensively analyzed theoretical problems in this framework.
Finally, we furnish a numerical experiment to analyze the viability of the approximants
in comparison with the results presented in (Reich and Tuyen in Rev. R. Acad. Cienc.
Exactas Fís. Nat., Ser. A Mat. 114:180, 2020).
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1 Introduction
The triplet (�, 〈·, ·〉,‖·‖) represents a real Hilbert space, the inner product, and the induced
norm, respectively. For an operator U : K → K , Fix(U) denotes the set of all fixed points of
the operator U , where K is a nonempty closed convex subset of �. Recall that the operator
U is called η-demimetric [46], where η ∈ (–∞, 1), if Fix(U) �= ∅ and

〈
p – q, (Id – U)p

〉 ≥ 1
2

(1 – η)
∥∥(Id – U)p

∥∥2 for all p ∈ K and q ∈ Fix(U),

where Id denotes the identity operator.
The η-demimetric operator is equivalently defined by

‖Up – q‖2 ≤ ‖p – q‖2 + η‖p – Up‖2 for all p ∈ K and q ∈ Fix(U).

The class of η-demimetric operators plays a prominent role in metric fixed point the-
ory and has been analyzed in various instances of fixed point problems [47, 48, 50]. We
remark that various nonlinear operators have been analyzed in connections with varia-
tional inequality problems, fixed point problems, equilibrium problems, convex feasibility
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problems, signal processing, and image reconstruction [3–6, 11, 12, 14–19, 23, 24, 26, 28–
30, 32, 34, 35, 37, 42, 43, 53–57]. In 2007, Aoyama et al. [2] suggested a Halpern [33]
type approximants for an infinite family of nonexpansive operators satisfying the AKTT-
Condition

∑∞
k=1 supp∈X ‖Uk+1p – Ukp‖ < ∞ for any bounded subset X of �. The following

construction of operator Sk for a countably infinite family of η-demimetric operators does
not require the AKTT-Condition and hence improves the performance of the approxi-
mants:

Qk,k+1 = Id,

Qk,k = λkU ′
kQk,k+1 + (1 – λk)Id,

Qk,k–1 = λk–1U ′
k–1Qk,k + (1 – λk–1)Id,

...

Qk,m = λmU ′
mQk,m+1 + (1 – λm)Id,

...

Qk,2 = λ2U ′
2Qk,3 + (1 – λ2)Id,

Sk = Qk,1 = λ1U ′
1Qk,2 + (1 – λ1)Id,

where 0 ≤ λm ≤ 1 and U ′
m = ρp + (1 – ρ)((1 – γ )Id + γ Um)p for all p ∈ K with Um be-

ing η-demimetric operator, ρ ∈ (0, 1), and 0 < γ < 1 – η. It is well known in the context
of operator Sk that each U ′

m is nonexpansive and the limit limk→∞ Qk,m exists. More-
over,

Sp = lim
k→∞

Skp = lim
k→∞

Qk,1p for all p ∈ K .

This implies that Fix(S) =
⋂∞

k=1 Fix(Sk) [36, 49].
The following concept of a split convex feasibility problem (SCFP) is presented in [20]:
Let H and W be nonempty closed convex subsets of real Hilbert spaces �1 and �2,

respectively. In SCFP, we compute

p ∈ H such that Vp ∈ W , (1.1)

where V : �1 → �2 is a bounded linear operator. The SCFP is a particular case of
the following split common null point problem (SCNPP) of maximal monotone opera-
tors:

Let A1 ⊆ �1 ×�1 and A2 ⊆ �2 ×�2 be two monotone operators such that � = A–1
1 (0) ∩

V –1(A–1
2 (0)) �= ∅. In SCNPP, we compute p ∈ �. Some interesting results on the SCNPP
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via iterative approximants can be found in [13, 21, 22, 44]. It is worth mentioning that the
concept of SCNPP has been extended to the concept of a generalized split common null
point problem (GSCNPP) in Hilbert spaces [39, 40]. In GSCNPP, we compute

p ∈ � := A–1
1 (0) ∩ V –1

1
(
A–1

2 (0)
) ∩ · · · ∩ V –1

1
(
V –1

2 · · · (V –1
N–1

(
A–1

N (0)
)))

, (1.2)

where Aj : �j → 2�j , j ∈ {1, 2, . . . , N}, is a finite family of maximal monotone operators,
and Vj : �j → �j+1, j ∈ {1, 2, . . . , N – 1}, is a finite family of bounded linear operators such
that Vj �= 0.

From the perspective of optimization, problem (1.2) has been analyzed via different it-
erative approximants. A variant of the classical CQ-algorithm, essentially due to Byrne
[13], is employed in [39], whereas shrinking projection approximants are analyzed in [40]
to obtain the strong convergence results in Hilbert spaces. It is therefore natural to ask
whether we can device strongly convergent approximants to compute a solution of GSC-
NPP and fixed point point problem of an infinite family of operators without employing
the AKTT-Condition.

To answer the above question, we consider the following GSCNPP and FPP:

p ∈ � = � ∩ Fix(S) �= ∅. (1.3)

For the computation of a solution of problem (1.3), we employ hybrid shrinking approxi-
mants embedded with the inertial extrapolation technique, essentially due to Polyak [38]
(see also [1, 7–10]), in Hilbert spaces.

The rest of the paper is organized as follows: In Sect. 2, we present mathematical pre-
liminaries. We establish strong convergence results of the approximants and their variant,
namely the Halpern-type approximants in Sect. 3. In Sect. 4, we elaborate the adaptability
of the approximants for various extensively analyzed theoretical problems in this frame-
work. Section 6 provides a numerical experiment to analyze the viability of the approxi-
mants in comparison with the existing results.

2 Preliminaries
We start this section with mathematical preliminary notions. We always assume that K is
a nonempty closed convex subset of a real Hilbert space �1.

Recall the nearest point projector 	
�1
K of �1 onto K ⊂ �1 is defined so that for every

p ∈ �1, we have a unique 	
�1
K p in K such that

∥∥p – 	
�1
K p

∥∥ ≤ ‖p – q‖ for all q ∈ K .

Note here that the nearest point projector has the following properties:
(i) ‖	�1

K p – 	
�1
K q‖2 ≤ 〈p – q,	�1

K p – 	
�1
K q〉 for all p, q ∈ K (firmly nonexpansive);

(ii) 〈p – 	
�1
K p,	�1

K p – q〉 ≥ 0 for all p ∈ �1 and q ∈ K (characterization property).
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Let the sets D(A1) = {p ∈ �1 | A1p �= ∅}, R(A1) = {u ∈ �1 | (∃p ∈ �1)u ∈ A1p}, G(A1) =
{(p, u) ∈ �1 × �1 | u ∈ A1p}, and Z(A1) = {p ∈ �1 | 0 ∈ A1p} denote the domain, range,
graph, and zeros of a set-valued operator A1 ⊆ �1 × �1, respectively. If a set-valued oper-
ator A1 satisfies 〈p – q, t – w〉 ≥ 0 for all (p, t), (q, w) ∈ gra(A1), then A1 is called monotone.
Recall also that a monotone operator A1 is called maximal monotone if its graph is not
strictly contained in the graph of any other monotone operator on �1. The well-defined
single-valued operator J A1

θ := (Id + θA1)–1 : R(Id + θA1) → D(A1) is known as the resol-
vent of A1, where θ > 0. The resolvent operator J A1

θ is closely related to A1 as q ∈ A–1
1 (0)

if and only if q = J A1
θ (q).

Lemma 2.1 ([46]) Let K ⊂ �1, and let U : K → �1 be an η-demimetric operator with
η ∈ (–∞, 1). Then Fix(U) is closed and convex.

Lemma 2.2 ([50]) Let K ⊂ �1, and let U : K → �1 be an η-demimetric operator with
η ∈ (–∞, 1) and Fix(U) �= ∅. Let γ be a real number such that 0 < γ < 1 – η and set M =
(1 – γ )Id + γ U . Then M is a quasinonexpansive operator of K into �1.

Lemma 2.3 ([45]) Let �1 be a real Hilbert space, and let (dk) be a sequence in �1. Then:
(i) If dk ⇀ d and ‖dk‖ → ‖d‖ as k → ∞, then dk → d as k → ∞ (the Kadec–Klee

property);
(ii) If dk ⇀ d as k → ∞, then ‖d‖ ≤ lim infk→∞ ‖dk‖.

Lemma 2.4 ([27]) Let A1 ⊆ �1 ×�1 be a maximal monotone operator. Then for θ ≥ θ̃ > 0,
we have

∥∥p – J A1
θ̃

p
∥∥ ≤ 2

∥∥p – J A1
θ p

∥∥ for all p ∈ �1.

Lemma 2.5 ([31]) Let K ⊂ �1. Then the operator Id – U satisfies the demiclosedness prin-
ciple with respect to the origin, that is, (Id – U)(d) = 0, provided that there exists a se-
quence (dk) in K that converges weakly to some d and ((Id – U)dk) converges strongly
to 0.

Lemma 2.6 ([52]) Let K ⊂ �1, and let (U ′
m) be a sequence of nonexpansive operators

such that
⋂∞

k=1 Fix(U ′
k) �= ∅ and 0 ≤ βm ≤ b < 1. Then for a bounded subset D of K , we

have

lim
k→∞

sup
p∈D

‖Sp – Skp‖ = 0.

3 Convergence analysis of the approximants
For the computation of a solution of (1.3), we propose the following approximants:
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Algorithm 1 Hybrid Shrinking Approximants (Algo.1)
Initialization: Suppose H0 = W0 = �1. Assume nonincreasing sequences ρk , τk ⊂
(0, 1), μk ∈ [0, 1), γk ∈ (0,∞), and let V0 be the identity operator on �1 and V̄j–1 =
{Vj–1Vj–2 · · ·V0} for all j ∈ {1, 2, . . . , N}. Choose the inertial parameter

μk =

⎧
⎨

⎩
min{ τk

‖dk –dk–1‖ ,μ} if dk �= dk–1;

μ otherwise,

where μ ∈ [0, 1), and (τk) is a sequence of positives satisfying
∑∞

k=1 τk < ∞.
Step 0. Choose arbitrarily d0, d1 ∈ �1 and set k ≥ 1;
Iterative Steps: Given dk ∈ �k , calculate ak , bk , and ck as follows:
Step 1. Compute

⎧
⎪⎪⎨

⎪⎪⎩

ak = (1 + μk)dk – μkdk–1;

bk = ρkak + (1 – ρk)Skak ;

ck = τkV̄j–1bk + (1 – τk)(J Aj
θj,k

(V̄j–1bk)).

The approximants abort if ak = bk = ck = dk , and then dk is the required approximation.
Otherwise,
Step 2. Compute

Hk+1 =
{

p ∈ �1 : ‖bk – p‖2 ≤ ‖dk – p‖2 + μ2
k‖dk – dk–1‖2 + 2μk〈dk – p, dk – dk–1〉

}
,

Wk+1 =
{

p ∈ �1 : ‖ck – V̄j–1p‖ ≤ ‖V̄j–1bk – V̄j–1p‖},

dk+1 = 	
�1
Hk+1∩Wk+1

d1 ∀k ≥ 1.

Fix k =: k + 1 and reiterate Step 1.

We assume the following control conditions on the approximants:
(C1)

∑∞
k=1 μk‖dk–1 – dk‖ < ∞;

(C2) 0 < a ≤ ρk ≤ b < 1;
(C3) lim infk→∞ τk > 0;
(C4) minj{infk{θj,k}} ≥ m > 0.

Theorem 3.1 Any approximants defined via Algorithm 1, under control conditions (C1)–
(C4), converge strongly to an element in �.

Proof We divide the proof into different steps for understanding.
Step 1. We show that the approximants (dk) defined in Algorithm 1 are stable.
Claim: Hk and Wk are closed and convex subsets of �1 for all k ≥ 0.
Consider, for each k ≥ 0, the following representation of the subsets Hk and Wk :

Hk =
{

p ∈ �1 :

〈bk – dk , p〉 ≤ 1
2
(‖bk‖2 – ‖dk‖2 + μ2

k‖dk – dk–1‖2 + 2μk〈dk – p, dk – dk–1〉
)}

,
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Wk =
{

p ∈ �1 : 〈V̄j–1bk – ck , V̄j–1p〉 ≤ 1
2
(‖V̄j–1bk‖2 – ‖ck‖2)

}
,

=
{

p ∈ �1 :
〈
V̄ ∗

j–1(V̄j–1bk – ck), p
〉 ≤ 1

2
(‖V̄j–1bk‖2 – ‖ck‖2)

}
.

The claim follows from the above representations of closed and convex subsets Hk and Wk

of �1 for all k ≥ 1. Further, the sets � and Fix(S) (from Lemma 2.1) are closed and convex.
Hence we have that � is nonempty, closed, and convex. Let q ∈ �, � ⊂ H0 = �1. Now it
follows from Algorithm 1 that

‖ak – q‖2 =
∥∥(1 + μk)dk – μk(dk–1 – q)

∥∥2

≤ ‖dk – q‖2 + μ2
k‖dk – dk–1‖2 + 2μk〈dk – q, dk – dk–1〉. (3.1)

From (3.1) and Lemma 2.2 we obtain

‖bk – q‖2 =
∥∥ρkak + (1 – ρk)Skak – q

∥∥2

≤ ρk‖ak – q‖2 + (1 – ρk)‖Skak – q‖2 – ρk(1 – ρk)
∥∥(Id – Sk)ak

∥∥2

≤ ρk‖ak – q‖2 + (1 – ρk)‖ak – q‖2 – ρk(1 – ρk)
∥∥(Id – Sk)ak

∥∥2

≤ ‖ak – q‖2 – ρk(1 – ρk)
∥∥(Id – Sk)ak

∥∥2

≤ ‖dk – q‖2 + μ2
k‖dk – dk–1‖2 + 2μk〈dk – q, dk – dk–1〉. (3.2)

This shows that � is contained in Hk for all k ≥ 1. Now assume that � ⊂ Wk for some
k ≥ 1. Using the nonexpansiveness of J Aj

θj,k
, (3.1), and (3.2), we get

‖ck – V̄j–1q‖2 =
∥∥τk(V̄j–1bk – V̄j–1q) + (1 – τk)

(
J Aj

θj,k
(V̄j–1bk) – V̄j–1q

)∥∥2

≤ τk‖V̄j–1bk – V̄j–1q‖2 + (1 – τk)
∥∥J Aj

θj,k
(V̄j–1bk) – J Aj

θj,k
(V̄j–1q)

∥∥2

≤ τk‖V̄j–1bk – V̄j–1q‖2 + (1 – τk)‖V̄j–1bk – V̄j–1q‖2

≤ ‖V̄j–1bk – V̄j–1q‖2. (3.3)

It follows from estimate (3.3) that � ⊂ Wk+1, and hence � ⊂ Hk+1 ∩ Wk+1. Consequently,
by Step 1 the approximants (dk) defined in Algorithm 1 are stable.

Step 2. We next show that limk→∞ ‖dk – d1‖ exists.
Observe that

‖dk+1 – d1‖ ≤ ‖q – d1‖ for all q ∈ � ⊂ Hk+1,

since dk+1 = 	
�1
Hk+1∩Wk+1

d1. In particular,

‖dk+1 – d1‖ ≤ ∥∥	
�1
� d1 – d1

∥∥.

These estimates establish the boundedness of the approximants (‖dk – d1‖). Since dk =
	

�1
Hk∩Wk

d1 and dk+1 = 	
�1
Hk+1∩Wk+1

d1 ∈ Hk+1, we have

‖dk – d1‖ ≤ ‖dk+1 – d1‖.
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This yields that the approximants (‖dk – d1‖) are nondecreasing, and hence

lim
k→∞

‖dk – d1‖ exists. (3.4)

Step 3. We now show that q̃ ∈ �.
We first compute

‖dk+1 – dk‖2 = ‖dk+1 – d1‖2 + ‖dk – d1‖2 – 2〈dk – d1, dk+1 – d1〉
= ‖dk+1 – d1‖2 + ‖dk – d1‖2 – 2〈dk – d1, dk+1 – dk + dk – d1〉
= ‖dk+1 – d1‖2 – ‖dk – d1‖2 – 2〈dk – d1, dk+1 – dk〉
≤ ‖dk+1 – d1‖2 – ‖dk – d1‖2.

By (3.3) the above computation yields

lim
k→∞

‖dk+1 – dk‖ = 0. (3.5)

In view of the control condition (C1), we get

lim
k→∞

‖ak – dk‖ = lim
k→∞

μk‖dk – dk–1‖ = 0. (3.6)

As a consequence of estimates (3.5) and (3.6), we also obtain that

lim
k→∞

‖ak – dk+1‖ = 0. (3.7)

Since dk+1 ∈ Hk+1, we have

‖bk – dk+1‖ ≤ ‖dk – dk+1‖2 + μ2
k‖dk – dk–1‖2 + 2μk〈dk – dk+1, dk – dk–1〉.

This estimate, in the light of estimate (3.5) and the control condition (C1), yields that

lim
k→∞

‖bk – dk+1‖ = 0. (3.8)

Similarly, we infer from estimates (3.5) and (3.8) that

lim
k→∞

‖bk – dk‖ = 0, (3.9)

and from the estimates (3.6) and (3.9) that

lim
k→∞

‖bk – ak‖ = 0. (3.10)

In view of the control condition (C2), consider the variant of estimate (3.2)

a(1 – b)
∥∥(Id – Sk)ak

∥∥2 ≤ ‖dk – q‖2 – ‖bk – q‖2

≤ (‖dk – q‖ + ‖bk – q‖)‖dk – bk‖.
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Letting k → ∞ and using (3.9) and (C2), we have

lim
k→∞

‖ak – Skak‖ = 0. (3.11)

Observe that

‖bk – Skbk‖ ≤ ‖bk – ak‖ + ‖ak – Skak‖ + ‖Skak – Skbk‖
≤ 2‖bk – ak‖ + ‖ak – Skak‖.

The above computation, in view of estimates (3.10) and (3.11), yields

lim
k→∞

‖bk – Skbk‖ = 0. (3.12)

Note that dk+1 = 	
�1
Hk∩Wk

(d1) ∈ Wk . Therefore we have

‖ck – V̄j–1dk+1‖ ≤ ‖V̄j–1bk – V̄j–1dk+1‖ ≤ ‖V̄j–1‖‖bk – dk+1‖.

Employing estimate (3.8), the above computation yields

lim
k→∞

‖ck – V̄j–1dk+1‖ = 0. (3.13)

Reasoning as above, we infer from estimates (3.8) and (3.13) that

lim
k→∞

‖ck – V̄j–1bk‖ = 0 (3.14)

and from estimates (3.9) and (3.14) that

lim
k→∞

‖ck – V̄j–1dk‖ = 0. (3.15)

Since (dk) is bounded, there exists a subsequence (dkt ) of (dk) such that dkt ⇀ q̃ ∈ �1 as
t → ∞. Therefore bkt ⇀ q̃ and ckt ⇀ V̄j–1q̃ as t → ∞. From the definition of V̄j–1 we have
V̄j–1dkt ⇀ V̄j–1q̃ as t → ∞ for all j ∈ {1, 2, . . . , N}.

Using (3.14), we estimate that

lim
t→∞

∥∥V̄j–1ckt – J Aj
θj,k

(V̄j–1ckt )
∥∥ = 0

for all j ∈ {1, 2, . . . , N}. Then from Lemma 2.4 and (C4) we obtain the inequality

∥∥V̄j–1ckt – J Aj
θ (V̄j–1ckt )

∥∥ ≤ 2
∥∥V̄j–1ckt – J Aj

θj,k
(V̄j–1ckt )

∥∥.

This estimate implies that

lim
t→∞

∥∥V̄j–1ckt – J Aj
θ (V̄j–1ckt )

∥∥ = 0 (3.16)
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for all j ∈ {1, 2, . . . , N}. By Lemma 2.5 we have V̄j–1q̃ ∈ Fix(J Aj
θ ) for all j ∈ {1, 2, . . . , N}, that

is, q̃ ∈ �. It remains to show that q̃ ∈ Fix(S). Observe that

‖bk – Sbk‖ ≤ ‖bk – Skbk‖ + ‖Skbk – Sbk‖
≤ ‖bk – Skbk‖ + sup

p∈D
‖Skp – Sp‖.

Using (3.12) and Lemma 2.6, this estimate implies that limk→∞ ‖bk – Sbk‖ = 0. This, to-
gether with the fact that bkt ⇀ q̃, implies by Lemma 2.5 that q̃ ∈ Fix(S) =

⋂∞
k=1 Fix(Sk).

Hence q̃ ∈ �.
Step 4. The final part is showing that dk → q = 	

�1
� d1.

Since q = 	
�1
� d1 and q̃ ∈ �, Lemma 2.3 implies that

‖q – d1‖ ≤ ‖q̃ – d1‖ ≤ lim inf
t→∞ ‖dkt – d1‖

≤ lim sup
t→∞

‖dkt – d1‖ ≤ ‖q – d1‖.

Using the uniqueness of q yields the equality q̃ = q. From Step 2 it follows that ‖dkt – d1‖ ≤
‖q – d1‖, and from Lemma 2.3 we obtain limk→∞ dk = q̃ = q = 	

�1
� d1. �

We first apply Theorem 3.1 to the following problem:

� :=
s⋂

j=1

A–1
j (0) ∩ V –1

( N⋂

�=s+1

A–1
� (0)

)

∩ Fix(S),

where Aj ⊆ �1 × �1, j ∈ {1, 2, . . . , s}, and A� ⊆ �1 × �1, � = {s + 1, s + 2, . . . , N}, are fi-
nite families of maximal monotone operators, and Sk : �1 → �1 is an infinite family of
η-demimetric operators.

Corollary 3.2 Assume that � �= ∅. Then the approximants initialized by arbitrary d0, d1 ∈
�1 and H0 = W0 = �1 with the nonincreasing sequences ρk , τk ⊂ (0, 1), μk ∈ [0, 1), and
γk ∈ (0,∞) for k ≥ 1 defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak = (1 + μk)dk – μkdk–1,

bk = ρkak + (1 – ρk)Skak ,

ck = τkV̄j–1bk + (1 – τk)(J Aj
θj,k

(V̄j–1bk));

Hk+1 = {p ∈ �1 :

‖bk – p‖2 ≤ ‖dk – p‖2 + μ2
k‖dk – dk–1‖2 + 2μk〈dk – p, dk – dk–1〉},

Wk+1 = {p ∈ �1 : ‖ck – V̄j–1p‖ ≤ ‖V̄j–1bk – V̄j–1p‖},
dk+1 = 	

�1
Hk+1∩Wk+1

d1 ∀k ≥ 1,

(3.17)

under the control conditions (C1)–(C4), converge strongly to an element in �.

We now consider the following Halpern-type variant of Algorithm 1:
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Algorithm 2 Hybrid Shrinking Halpern Approximants (Algo.2)
Initialization: Choose arbitrarily t, d0, d1 ∈ �1, and H0 = W0 = �1, set k ≥ 1 and non-
increasing sequences ρk , τk ⊂ (0, 1), μk ∈ [0, 1), and γk ∈ (0,∞), let V0 be the identity
operator on �1, and let V̄j–1 = {Vj–1Vj–2 · · ·V0} for all j ∈ {1, 2, . . . , N}. Choose the iner-
tial parameter

μk =

⎧
⎨

⎩
min{ τk

‖dk –dk–1‖ ,μ} if dk �= dk–1,

μ otherwise,

where μ ∈ [0, 1), and (τk) is a sequence of positives satisfying
∑∞

k=1 τk < ∞.
Iterative Steps: Given dk ∈ �k , calculate bk and ck as follows:
Step 1. Compute

⎧
⎪⎪⎨

⎪⎪⎩

ak = (1 + μk)dk – μkdk–1,

bk = ρkt + (1 – ρk)Skak ,

ck = τkV̄j–1bk + (1 – τk)(J Aj
θj,k

(V̄j–1bk)).

The approximants abort if k > kmax for some chosen sufficiently large number kmax, and
then dk is the required approximation. Otherwise,
Step 2. Compute

Hk+1 =
{

p ∈ �1 : ‖bk – p‖2 ≤ ρk‖t – p‖2 + (1 – ρk)
(‖dk – p‖2 + μ2

k‖dk – dk–1‖2

+ 2μk〈dk – p, dk – dk–1〉
)}

,

Wk+1 =
{

p ∈ �1 : ‖ck – V̄j–1p‖ ≤ ‖V̄j–1bk – V̄j–1p‖},

dk+1 = 	
�1
Hk+1∩Wk+1

t ∀k ≥ 1.

Fix k =: k + 1 and reiterate Step 1.

Theorem 3.3 Any approximants defined via Algorithm 2, under the control conditions
(C1)–(C4), converge strongly to an element in �.

Proof Observe that for each k ≥ 1, the subsets Hk have the following form:

Hk =
{

p ∈ �1 : ‖bk – p‖2 ≤ ρk‖t – p‖2 + (1 – ρk)
(‖dk – p‖2 + μ2

k‖dk – dk–1‖2

+ 2μk〈dk – z, dk – dk–1〉
)}

.

Arguing similarly as in the proof of Theorem 3.1 (Steps 1–2), we deduce that �, Hk , and
Wk are closed and convex. Moreover, � ⊂ Hk+1 ∩ Wk+1 for all k ≥ 1. Furthermore, the
sequence (dk) is bounded, and

lim
k→∞

‖dk+1 – dk‖ = 0. (3.18)
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Since dk+1 = 	
�1
Hk∩Wk

(t) ∈ Hk , we have

‖bk – dk+1‖2

≤ ρk‖t – dk+1‖2 + (1 – ρk)
(‖dk – dk+1‖2 + μ2

k‖dk – dk–1‖2 + 2μk〈dk – z, dk – dk–1〉
)
.

Letting k → ∞, using (3.18) along (C1)–(C2), and the boundedness of (dk), we obtain

lim
k→∞

‖bk – dk+1‖ = 0.

Similarly, we get

lim
k→∞

‖bk – dk‖ = 0.

Let bk = ρkt + (1 – ρk)Skak . An easy calculation along (C1)–C2) implies that

‖Skak – ak‖ ≤ 1
(1 – ρk)

‖bk – ak‖ +
ρk

(1 – ρk)
‖t – ak‖.

This estimate implies that

lim
k→∞

‖Skak – ak‖ = 0.

The rest of the proof of Theorem 3.3 follows immediately from the proof of Theorem 3.1
and is therefore omitted. �

4 Applications
Our main result in the previous section has various interesting applications of great im-
portance in the field. We present some of these applications.

4.1 Generalized split feasibility problems
In the context of generalized split feasibility problems [20], we recall that the indicator
function jK is a proper lower semicontinuous convex function (PCLS), where K ⊂ �1.
Therefore ∂jK , the subdifferential of jK , satisfies the maximal monotonicity such that
∂jK (p) = NK

p , where NK
p denotes the normal cone of K at u. From this we can deduce that

∂jK coincides with 	
�1
K . Assume that

� := K1 ∩ V –1
1 (K2) ∩ · · · ∩ V –1

1
(
V –1

2 · · · (V –1
N–1(KN )

)) �= ∅,

where Kj ⊂ �j, j ∈ {1, 2, . . . , N}.

Theorem 4.1 Assume that � = � ∩ Fix(S) �= ∅. Then the approximants initialized by ar-
bitrary d0, d1 ∈ �1 and H0 = W0 = �1 with the nonincreasing sequences ρk , τk ⊂ (0, 1),
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μk ∈ [0, 1), and γk ∈ (0,∞) for k ≥ 1 defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak = (1 + μk)dk – μkdk–1,

bk = ρkak + (1 – ρk)Skak ,

ck = τkV̄j–1bk + (1 – τk)(	�j
Kj

(V̄j–1bk)),

Hk+1 = {z ∈ �1 :

‖bk – z‖2 ≤ ‖dk – z‖2 + μ2
k‖dk – dk–1‖2 + 2μk〈dk – z, dk – dk–1〉},

Wk+1 = {z ∈ �1 : ‖ck – V̄j–1z‖ ≤ ‖V̄j–1bk – V̄j–1z‖},
dk+1 = 	

�1
Hk+1∩Wk+1

d1 ∀k ≥ 1,

(4.1)

under the control conditions (C1)–(C4), converge strongly to an element in �.

4.2 Generalized split variational inequality problems
The well-known variational inequality problem deals with computation of a point p ∈ K
such that

〈Ap, q – p〉 ≥ 0 ∀q ∈ K ,

where A : K → �1 is a nonlinear monotone operator defined with respect to K ⊂ �1.
By Sol(K ,A) we denote the set of all solutions associated with the variational inequality
problem. We consider the following problem:

� := Sol(K1,A1) ∩ V –1
1

(
Sol(K2,A2)

) ∩ · · · ∩ V –1
1

(
V –1

2 · · · (V –1
N–1

(
Sol(KN ,AN )

))) �= ∅.

Theorem 4.2 Assume that � = � ∩ Fix(S) �= ∅. Then the approximants initialized by ar-
bitrary d0, d1 ∈ �1 and H0 = W0 = �1 with the nonincreasing sequences ρk , τk ⊂ (0, 1),
μk ∈ [0, 1), and γk ∈ (0,∞) for k ≥ 1 defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak = (1 + μk)dk – μkdk–1,

bk = ρkak + (1 – ρk)Skak ;

ck = τkV̄j–1bk + (1 – τk)	Kj (Id – θj,kAj)V̄j–1bk ,

Hk+1 = {z ∈ �1 :

‖bk – z‖2 ≤ ‖dk – z‖2 + μ2
k‖dk – dk–1‖2 + 2μk〈dk – z, dk – dk–1〉},

Wk+1 = {z ∈ �1 : ‖ck – V̄j–1z‖ ≤ ‖V̄j–1bk – V̄j–1z‖},
dk+1 = 	

�1
Hk+1∩Wk+1

d1 ∀k ≥ 1,

(4.2)

under the control conditions (C1)–(C4), converge strongly to an element in �.

Proof Let hAj ⊂ �j × �j be defined by

hAj p =

⎧
⎨

⎩
Ajp + NKj (p) if p ∈ Kj,

∅ if p /∈ Kj,

where NKj (p) := {q ∈ �j : 〈t – p, q〉 ≤ 0 for all t ∈ Kj}, j = {1, 2, . . . , N}.
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Note that hAj is maximal monotone [41] such that

0 ∈ hAj (p) ⇐⇒ p ∈ Sol(Kj,Aj) ⇐⇒ p = 	Kj

(
p – θj,kAj(p)

)
.

The rest of the proof now follows from Theorem 3.1. �

4.3 Generalized split minimization problems
Let the set of minimizers associated with the function φ : �1 → (–∞,∞] be denoted as

arg min(φ) :=
{

p ∈ �1 : φ(p) ≤ φ(q) for all q ∈ �1
}

.

If φ is a proper convex lower semicontinuous (PCLS) function, then ∂φ is a maximal
monotone operator. Moreover, q ∈ (∂φ)–10 ⇔ 0 ∈ ∂φ(q) (see [25]). Now observe that

� := arg min
x∈�1

φ1(x) ∩ V –1
1

(
arg min

x∈�2
φ2(x)

) ∩ · · ·

∩ V –1
1

(
h–1

2 · · · (V –1
N–1

(
arg min

x∈�N
φN (x)

))) �= ∅,

where φj : �j → (–∞,∞] is as defined above.

Theorem 4.3 Assume that � = � ∩ Fix(S) �= ∅. Then the approximants initialized by ar-
bitrary d0, d1 ∈ �1 and H0 = W0 = �1 with the nonincreasing sequences ρk , τk ⊂ (0, 1),
μk ∈ [0, 1), and γk ∈ (0,∞) for k ≥ 1 defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak = (1 + μk)dk – μkdk–1,

bk = ρkak + (1 – ρk)Skak ,

ck = τkV̄j–1bk + (1 – τk)J ∂φj
θj,k

V̄j–1bk ,

Hk+1 = {p ∈ �1 :

‖bk – p‖2 ≤ ‖dk – p‖2 + μ2
k‖dk – dk–1‖2 + 2μk〈dk – p, dk – dk–1〉},

Wk+1 = {p ∈ �1 : ‖ck – V̄j–1p‖ ≤ ‖V̄j–1bk – V̄j–1p‖},
dk+1 = 	

�1
Hk+1∩Wk+1

d1 ∀k ≥ 1,

(4.3)

under the control conditions (C1)–(C4), converge strongly to an element in �.

4.4 Signal processing
This subsection deals with the case of signal recovery problem, which we aim to solve
by applying Theorem 4.1. The following underdetermined formalism denotes the signal
recovery problem:

Vd = κ – ϑ , (4.4)

where κ ∈ R
M is the measured noise data with noise ϑ , d ∈ R

N is the sparse original data
for recovery, and V : RN →R

M (M < N ) is the bounded linear observation matrix. Formal-
ism (4.4) is equivalent to the well-known least absolute shrinkage and selection operator
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Table 1 Comparison of Theorems 4.1 and 4.4 (Reich et al. [40])

No. of Iterations CPU Time

Test I Test II Test I Test II

IGSNPP, Theorem 4.1 2841 6069 0.4969 6.4199
GSNPP, Theorem 4.4 [40] 3573 7903 0.7023 9.8853

Figure 1 Comparison of two algorithms for Numerical Test 1

(LASSO) problem [51] in the following convex constrained optimization formalism:

min
d∈RN

{
1
2
‖Vd – κ‖2

}
subject to t ≥ ‖d‖1. (4.5)

If we set � = K1 ∩ V –1(K2) �= ∅ with K1 = {d | t ≥ ‖d‖1} and K2 = {κ}, then the LASSO
problem can be easily solved via Theorem 4.1. To conduct the numerical experiment, we
generate (i) the matrix V N×M from the standard normal distributions with zero mean and
unit variance, (ii) d having m � N nonzero elements via a uniform distribution in [–2, 2],
and (iii) κ from a Gaussian noise with signal-to-noise ratio SNR = 40. The approximants
are initiated with randomly chosen d0, d1 and abort when the following mean square error
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Figure 2 Comparison of two algorithms for Numerical Test 2

is satisfied:

Ek =
1
N

∥∥dk – d∗∥∥ < 10–4.

Here d∗ is called the estimated signal of d.
For Theorem 4.1, we choose μk = 1

(100×k+1)1.04 , ρk = 1
k1.02 , t = m – 0.001, and ϑ = 0.

We recover the signals for the following two tests:

Numerical Test 1 Choose N = 512, M = 256, and m = 15.

Numerical Test 2 Choose N = 1024, M = 512, and m = 30.

From Table 1 and Figs. 1 and 2 we conclude that IGSNPP as in Theorem 4.1 reconstruct
the original signal (A) faster than the algorithm for GSNPP as in Theorem 4.4 [40] in
the compressed sensing. Moreover, the graph of error function values (B) and objective
function values (C) generated by IGSNPP as in Theorem 4.1 converge faster as compared
to the algorithm for GSNPP as in Theorem 4.4 [40].

5 Numerical experiment and results
In this section, we focus on numerical implementation of our proposed algorithm. Com-
parison with Reich et al. [40]) shows the effectiveness and efficiency of our proposed al-
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gorithm. All codes were written in MATLAB R2020a and performed on a laptop Intel(R)
Core(TM) i3-3217U @ 1.80 GHz, RAM 4.00 GB.

Example 5.1 Let �1 = R
2 and �2 = R

4 with the inner product defined by 〈x, y〉 = xy, for all
x, y ∈R

2,R4 and the induced usual norm | · |.
Consider the following problem: find an element q ∈R

2 such that

q ∈ � = �1 ∩ V –1(�2) ∩ Fix(S) �= ∅,

where

�1 =
{

x ∈R
2 | ‖x – a1‖2 ≤ R2

1
}

, �2 =
{

x ∈R
4 | ‖x – a2‖2 ≤ R2

2
}

,

and V : R2 → R
4 is a bounded linear matrix randomly generated in the closed interval

[–5, 5]. Let the operators Sk : R2 → R
2 be defined by Sk(x) = (–(k + 1)x1, –(k + 1)x2) for

k = 1, 2. Then Sk is a η-demimetric operator with η1 = 1
3 and η2 = 1

2 , respectively. It is easy
to observe that

⋂2
k=1 Fix(Sk) = {0} and � := {�1 ∩ V –1(�2)} = 0. Hence � = �∩ Fix(S) = 0.

Furthermore, the coordinate of the center a is randomly generated in the closed interval
[–1, 1], and the radii R1 and R2 are randomly generated in the closed intervals [5, 9] and
[9, 17], respectively. The coordinates of the initial point d0, d1 are randomly generated
in the closed interval [–5, 5]. Choose μ = 0.9, m = 0.01, ρk = 1

100k+1 , and β1 = 1
100k+1 . We

provide a numerical test of the hybrid shrinking approximants defined in Theorem 4.1 (i.e.,
Theorem 4.1 with μk �= 0) with the noninertial variant of Theorem 4.4 (i.e., Theorem 4.4,
Reich et al. [40]). It is remarked that the function Ek is defined by

Ek =
1
2
[∥∥dk – 	R

2
�1 (dk)

∥∥2 +
∥∥Vdk – 	R

4
�2 (Vdk)

∥∥2] for k ≥ 1.

Note that at the kth step, Ek = 0, and then dk ∈ �, which implies that dk is a solution of
this problem. The stopping criterion is defined as Ek < 10–5. The different choices of d0,
d1 are given as follows:

Case I: d0 = [6, 8]T , d1 = [3, 7]T .
Case II: d0 = [6.5, 7.2]T , d1 = [–1.4, –9.7]T .

Case III: d0 = [3, –4.7]T , d1 = [1.2, 4]T .

Table 2 Comparison of Theorems 4.1 and 4.4 (Reich et al. [40]) with different values of μk

No. of Iterations CPU Time

Case I Case II Case III Case I Case II Case III

Theorem 4.1 (μ = 0.15) 13 18 15 0.03426 0.04521 0.03218
Theorem 4.1 (μ = 0.35) 12 17 14 0.04036 0.08146 0.05919
Theorem 4.1 (μ = 0.75) 11 15 12 0.05731 0.09032 0.07984
Theorem 4.1 (μ = 0.95) 10 14 11 0.09104 1.09821 0.09978
Theorem 4.4 (Reich et al. [40]) 57 67 49 2.93910 3.12310 2.11351
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Figure 3 Example 5.1: Case I

Figure 4 Example 5.1: Case II

Remark 5.2
(i) The example presented above serves for two purposes:

• impact of different values of μk on our proposed algorithm
• comparison with the noninertial (μk = 0) type algorithm proposed by Reich et

al. [40] given in Theorem 4.4.
(ii) The numerical results presented in Table 2 and Figs. 3–5 indicate that our

proposed approximants are efficient, easy to implement, and do well for any values
of μk �= 0 in both number of iterations and CPU time required.

(iii) We observe that the CPU time of Theorem 4.1 increases, but the number of
iterations decreases as the parameter μ approaches 1.
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Figure 5 Example 5.1: Case III

(iv) We observe from the numerical implementation above and our proposed algorithm
outperformed the noninertial version proposed by Reich et al. [40] given in
Theorem 4.4 both in the number of iterations and CPU time required to reach the
stopping criterion.

6 Conclusions
The problem for computing a common solution via unifying approximants, of a finite fam-
ily of GSCNPP and the FPP for a countably infinite family of nonlinear operators has its
own importance in the fields of monotone operator theory and fixed point theory. We
proved that the approximants perform in an effective and efficient way when compared
with the existing approximants, in particular, those studied in Hilbert spaces. The theo-
retical framework of the algorithm has been strengthened with an appropriate numerical
example. Moreover, this framework has also been implemented to various instances of
the split inverse problems. We would like to emphasize that the above mentioned prob-
lems occur naturally in many applications. Therefore iterative algorithms are inevitable
in this field of investigation. As a consequence, our theoretical framework constitutes an
important topic of future research.
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