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Abstract
In this paper, for every relation R on a vector space V , we consider the R-vector space
(V ,R) and define the notions of R-convexity, R-convex hull, and R-extreme point in this
space. Some examples are provided to compare them with the reference cases. The
effects of some operations on R-convex sets are investigated. In particular, it is shown
that the R-interior of an R-convex set is also an R-convex set under some restrictions
on R. Also, we give some equivalent conditions for R-extremeness. Moreover, the
notions of R-convex and R-affine maps on R-vector spaces are defined, and some
results that assert the relation between an R-convex map f and its R-epigraph under
some limitations on R are considered. Several propositions, such as R-continuous
maps preserve R-compact sets and R-affine maps preserve R-convex sets, are
presented, and some results on the composition of R-convex and R-affine maps are
considered. Finally, some applications of R-convexity are investigated in optimization.
More precisely, we show that the extrema values of R-affine R-continuous maps are
reached on R-extreme points. Moreover, local and global minimum points of an
R-convex map f on R-convex set K are considered.
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1 Introduction and preliminaries
Various generalizations of the classical concept of a convex function have been introduced,
especially during the second half of the twentieth century. These generalizations have
been explored in various fields, such as economics, engineering, statistics, and applied
sciences, and they have provided interesting results in several branches related to math-
ematics such as convex analysis, nonlinear optimization, linear programming, geometric
functional analysis, control theory, and dynamical systems; see for example [2, 13, 21], and
the references therein. Recently, the extensions of convexity have been considered by many
researchers. For example, Nikoufar et al. studied convexity in various branches of pure and
applied mathematical areas [3, 18, 25]. Also, we refer the readers to η-convexity and co-
ordinate convexity [9, 27, 37]; GA-convexity and GG-convexity [15, 20, 39]; s-convexity
[1]; preinvexity [35]; strong convexity [29, 30, 38]; quasi-convexity [32]; Schur convex-
ity [28, 34]; and pseudo-convexity [24]. Also, see the following recent related references:
[12, 19, 31], and [36].

Over the last forty years, another type of extension of convexity, in which the convex
coefficients need not commute with each other, has been considered. Examples include
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C∗-convexity [22, 23], matrix convexity and operator convexity [8, 33], and the extension
of C∗-convexity to ∗-rings [4–6], and [7]. The basic concepts of convex analysis can be
seen in [26] and [14].

Recently, the notions of orthogonal metric spaces and metric spaces with relation have
been considered by many researchers [10, 16, 17], and [11]. In [16], the authors introduced
R-metric spaces and studied some of the properties of these spaces. We recall some no-
tions and some notations as follows.

Suppose that (M, d) is a metric space and R is a relation on M. Then the triple (M, d, R)
or in brief M is called an R-metric space. An R-sequence {xn}n∈N in an R-metric space M is
a sequence {xn}n∈N such that xnR xn+k for each n, k ∈ N, and R-sequence {xn}n∈N is said to
converge to x if, for every ε > 0, there is an integer N such that d(xn, x) < ε for every n ≥ N .
In this case, we write xn

R−→ x, and the R-sequence {xn}n∈N in M is said to be an R-Cauchy
sequence if, for every ε > 0, there exists an integer N such that d(xn, xm) < ε for n ≥ N and
m ≥ N . It is clear that xnR xm or xmR xn.

Also, the concepts of open and closed sets are defined in these spaces. For E ⊆ M, the
element x ∈ M is called an R-limit point of E if there exists an R-sequence {xn}n∈N in E
such that xn �= x for all n ∈ N and xn

R−→ x. The set of all R-limit points of E is denoted by
E′R, and the set E is R-closed if E′R ⊆ E. Precisely, the R-closure of E is the set ER = E ∪ E′R.
For E ⊆ M, if Ec is R-closed, then E is said R-open and E is called R-compact if every
R-sequence {xn}n∈N in E has a convergent subsequence in E. The element x ∈ E is an R-
interior point for E if, for every R-sequence {xn}n∈N such that xn

R−→ x, there exists N ∈ N

such that xn ∈ E for every n ≥ N . The set of all of R-interior points of E is denoted by
R – int(E).

The map f : M → M is said to be R-continuous at x ∈ M if, for every R-sequence {xn}n∈N
in M that xn

R−→ x, we have f (xn) R−→ f (x). Also, f is said to be R-continuous on M if f is
R-continuous at each x ∈ M.

The paper is organized as follows. We continue this introductory section with a review
of the basic definitions and notations of relative metric spaces, i.e., metric spaces equipped
with relations, that are needed for the next sections.

In Sect. 2, we first define the notions of R-vector space, vector space equipped with
relation, and R-convexity in these spaces. After giving some examples that distinct the
notions of convexity and R-convexity in general, the effect of some operations on R-convex
sets is investigated. More precisely, we show that the R-interior of an R-convex set is R-
convex under certain constraints on R.

Section 3 is devoted to studying R-extreme points, which are the relative extreme points
of R-convex sets. After defining this notion and giving some examples, we prove that ev-
ery extreme point is an R-extreme point, but the reverse is not necessarily true. Next, we
define the R-convex hull of the sets and set some conditions that for R-convex set W ,
R – co(W ) = W . In the main theorem of this section, we give several equivalent condi-
tions for R-extremeness, and in the last example of this section, we show that generally,
the Krein–Milman type theorem does not hold. It seems that one can deduce a Krein–
Milman type result for R-convex R-compact sets by putting additional restrictions on the
relation R.

In Sect. 4, we introduce the notions of R-convex maps and R-affine maps on R-vector
spaces. In classical convexity, f is a convex function if and only if the epigraph of f is
a convex set. In this section, we prove such a result for R-convex maps, and then some
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corollaries of this theorem will be given. In continuation, by putting additional conditions
on the relation R, we prove several propositions which assert that R-continuous maps
take R-compact sets to R-compact sets, and R-affine maps preserve R-convexity. Also,
the composition of an R-affine map and a preserving R-affine map is R-affine, and the
composition of an increasing R-convex map and a preserving R-convex map is also an
R-convex map.

The presented results in this manuscript make powerful tools for important applications
in optimization theory. Finally, we concentrate on some applications of R-convexity in the
optimization theory. More precisely, we show that the R-affine R-continuous maps take
their extreme values on R-extreme points. Moreover, for an R-convex map f on R-convex
set K , the set of all elements of K on which f takes its minimum is an R-convex set, and in
R-vector metric space M, every local minimum x0 of f is a global minimum of f on the set
[x0]R ∩ K , where [x0]R = {x ∈ M; x0R x}. Furthermore, if R is an equivalence relation with
an additional condition, then for the global maximum x0 of f , f is constant on [x0]R ∩ K .

2 R-convex sets
In [10, 16], and [11], the authors considered some spaces with relations to them and ob-
tained important and interesting results. It seems that these properties are independent
of the relation and this fact was not considered. This section is devoted to preliminaries of
R-vector spaces that are needed to study the R-convexity property for sets. Some examples
are considered to clarify the contents.

Definition 2.1 Let R be a relation on a vector space V . Then V (or the pair (V , R)) is called
to be an R-vector space.

In [16], the authors introduced R-convex sets for R-metric space R
k . We recall this no-

tion for an R-vector space as follows.

Definition 2.2 A subset W of an R-vector space V is said to be R-convex if λw1 + (1 –
λ)w2 ∈ W whenever w1, w2 ∈ W , w1R w2, and 0 < λ < 1. In this case, the combination λw1 +
(1 – λ)w2 is called an R-convex combination of two elements w1 and w2.

The following remark and examples illustrate the relation between two notions “con-
vexity” and “R-convexity”.

Remark 2.3 Every convex set W in an R-vector space V is an R-convex set. However, the
reverse of the result is not true.

Example 2.4 Suppose that V = R and R is the equality relation on V , and W = N. Then N

is an R-convex set, but it is not a convex set.

Example 2.5 Let V = R
2 and

W =
{

(x, y); x2 + y2 ≤ 1
} ∪ {

(x, y); (x – 4)2 + y2 ≤ 1
}

and

(x1, y1)R(x2, y2) ⇐⇒ (x1, y1), (x2, y2) ∈ {
(x, y); x2 + y2 ≤ 1

}
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or

(x1, y1), (x2, y2) ∈ {
(x, y); (x – 4)2 + y2 ≤ 1

}

Then W is an R-convex set but it is not convex.

Example 2.6 Let V = R, W = [–2, 0) ∪ {2}, and

xR y ⇐⇒ x, y ≤ 0.

W is an R-convex set, but it is not convex.

Example 2.7 Let V be an R-vector space such that R is an equivalence relation. If there
exists a v0 ∈ V such that v0R v for all v ∈ V , then R = V ×V and the notions of R-convexity
and convexity are equivalent. Since for v1, v2 ∈ V we have

v0R v1 and v0R v2 �⇒ v1R v0 and v0R v2 �⇒ v1R v2.

The union and intersection of sets preserve R-convexity property. In the next proposi-
tion, we investigate these subjects.

Proposition 2.8 Let V be an R-vector space. Then the following statements hold.
i. The intersection of every family of R-convex sets in V is also an R-convex set.

ii. For every chain of R-convex sets {Ei}i∈I , the set
⋃

i∈I Ei is an R-convex set.
iii. If {Ei}i∈I is a sequence of R-convex sets in V , then lim supi∈I Ei and lim infi∈I Ei are

also R-convex.

Furthermore, not all properties of convex sets hold for R-convex sets, as is illustrated in
the following two remarks.

Remark 2.9 The scalar multiplier of a convex set is convex. But it is not true for R-convex
sets. Assume that E is an R-convex set and α ∈ C. Then the set αE is not necessarily R-
convex. For example, set E = (0, 1) ∪ (2, 3) and for x, y ∈R,

xR y ⇐⇒ x, y ∈ (0, 1) or x, y ∈ (2, 3).

Hence E is an R-convex set, but for α = 1
3 , the set αE = (0, 1

3 )∪( 2
3 , 1) is not R-convex because

2
9

R
7
9

and
1
2

× 2
9

+
1
2

× 7
9

=
1
2

/∈ αE.

Remark 2.10 For convex sets E1 and E2, the set E1 + E2 is also convex. But it is not valid
for R-convex sets. To see this, let E1 = (0, 2) ∪ (3, 5) and E2 = {–1}, and for x, y ∈ R,

xR y ⇐⇒ x, y ∈
(

1
2

, 3
)

or x, y ∈ (3, 5) or x = y = –1.

It can be verified that E1 and E2 are R-convex, but the set E1 + E2 = (–1, 1) ∪ (2, 4) is not
R-convex because for the numbers x = 3

4 and y = 2.5, xR y and some of their R-convex
combinations are not in E1 + E2.
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The closure of any convex set is convex. This will be investigated in the following exam-
ple using an R-convex set and its R-closure.

Example 2.11 Let V = R and E = (0, 1) ∪ (4, 5), and

xR y ⇐⇒ (0 < x, y ≤ 4 or x, y > 4), ∀x, y ∈R.

Then ER = [0, 1] ∪ [4, 5], which is not R-convex.

Remark 2.1 The set of all interior points of a convex set is convex, but this is not true for
R-convex sets. In other words, the R-interior points of any R-convex set are not necessarily
an R-convex set. See the following example as a counterexample.

Example 2.12 Suppose that M := R
2, E := {(x, 0)| – 1 ≤ x ≤ 1} ⊆ R

2, and the relation R is
defined on M as follows:

(x, 0)R(y, 0) ⇐⇒ (
x, y ∈ [–1, 0] or x, y ∈ [0, 1] or x, y ∈ {–1, 1})

and

(x, x)R(y, y), ∀x, y ∈R.

Then E is an R-convex set. But R – int(E) = E – {(0, 0)} is not an R-convex set since
(–1, 0)R(1, 0), but

1
2

(–1, 0) +
1
2

(1, 0) = (0, 0) /∈ R – int(E).

In the following theorem, we provide the conditions to preserve the R-convexity from E
to R – int(E).

Theorem 2.13 Let (M, d, R) be an R-metric vector space such that R is an equivalence
relation on M, which has the following properties for every x, y ∈ M:

i. xR y �⇒ xR(λx + (1 – λ)y), ∀λ; 0 < λ < 1.
ii. If xn

R−→ x and yR x, then yR xn (∀n ≥ N ) for some N ∈N.
Then the R-convexity of E ⊆ M implies that R – int(E) is also an R-convex set.

Proof Suppose that E is an R-convex set, x, y ∈ int(E), xR y, and λ ∈ (0, 1). We must show
that z := λx + (1 – λ)y ∈ R – int(E). Let {zn} be an arbitrary R-sequence in M such that
zn

R−→ z. The set E is R-convex, so xR y implies that z ∈ E. Using condition i, xR y implies
that xR z, and hence yR z (since R is an equivalence relation).

On the other hand, since zn
R−→ z and xR z, by using condition ii, we conclude that xR zn,

(∀n ≥ N1), and hence yR zn (∀n ≥ N1) for some N1 ∈N. For each m ∈ N, put

xn,m :=
1
m

zn +
(

1 –
1
m

)
x, yn,m :=

1
m

zn +
(

1 –
1
m

)
y.

Then, for each n ≥ N1, in view of condition i, we have xR xn,m and yR yn,m for all m ∈ N.
Since R is an equivalence relation on M, we can conclude from xR xn,m (∀m ∈ N) that
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{xn,m}∞m=1 is an R-sequence in M, and xn,m
R−→ x as m → ∞. Similarly, yR yn,m, (∀m ∈ N)

implies that {yn,m}∞m=1 is an R-sequence in X, and yn,m
R−→ y as m → ∞. Thus, there are

positive integers M1 and M2 such that xn,m ∈ E, ∀m ≥ M1, and yn,m ∈ E, ∀m ≥ M2. By
taking M0 = max{M1, M2}, for each m ≥ M0, we have

αxn,m + (1 – α)yn,m ∈ E, (0 < α < 1),

and furthermore, we have

λxn,m + (1 – λ)yn,m ∈ E, ∀m ≥ M0.

Therefore, for all m ≥ M0, we conclude that

w :=
1
m

zn +
(

1 –
1
m

)
z

=
1
m

zn +
(

1 –
1
m

)(
λx + (1 – λ)y

)

= λ

(
1
m

zn +
(

1 –
1
m

)
x
)

+ (1 – λ)
(

1
m

zn +
(

1 –
1
m

)
y
)

= λxn,m + (1 – λ)yn,m ∈ E.

Finally, if d(zj, z) < d(w, z) then zj ∈ E, which implies that z ∈ R – int(E), and the proof is
completed. �

3 R-extreme points
In this section, we define R-extreme point concept for an R-convex subset in R-vector
spaces. Also, we define R-convex hull of the sets in R-vector spaces. The main results
of this section are presented in Proposition 3.9 and Theorem 3.10, and some equivalent
conditions for R-extremeness in the special R-vector spaces are obtained.

Definition 3.1 In an R-vector space V , an R-open line segment is a set of the following
form:

(v1, v2) :=
{
λv1 + (1 – λ)v2; 0 < λ < 1

}

for v1, v2 ∈ V such that v1R v2. We say that this R-open line segment is proper if v1 �= v2.

Definition 3.2 Let W be an R-convex set in an R-vector space V . Then a point w ∈ W is
called an R-extreme point for W if there is no proper R-open line segment that contains
w and lies entirely in W . The set of all of R-extreme points of W is denoted by R – ext(W ).

Remark 3.3 The following statements are valid:
i. For vector space V and R = V × V , the extremeness and R-extremeness are

equivalent.
ii. Every extreme point of an R-convex set is an R-extreme point of this set in R-vector

spaces.
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In the following, some examples are given to illustrate the concept of R-extreme points
and the differences between the extreme points and R-extreme points.

Example 3.4 Consider the R-vector space (R,≤).
i. If W = [a, b], then ext(W ) = R – ext(W ) = {a, b}.

ii. If W = (a, b), then ext(W ) = R – ext(W ) = ∅.
iii. In general, in R-vector space (R,≤), a set W is convex if and only if W is R-convex

and ext(W ) = R – ext(W ).

Example 3.5 Suppose that V = R
2 and R := A × A ⊆ R

2 such that A = {(x, y); x ≤ 0}. If
W = {(x, y); y ≥ 0}, then W is R-convex and ext(W ) = ∅ but R – ext(W ) = {(x, y) ∈ W ; x >
0}∪ {(0, 0)}. To see this, assume that (x, y) ∈R

2 such that x > 0 and y ≥ 0, then (x, y) cannot
be written as an R-convex combination of two points of W . Also, if y > 0, then (0, y) /∈ R-
ext(W ) because

(0, y) =
1
2

(
0,

y
2

)
+

1
2

(
0,

3y
2

)
.

Example 3.6 Let V = R
2 and W = {(x, y) ∈R

2; y ≥ 0}, and let

(x1, y1)R(x2, y2) ⇐⇒ x1 ≤ x2 and y1 < y2.

It is well known that W is a convex set and also an R-convex set, and ext(W ) = ∅ but
R – ext(W ) = {(x, 0); x ∈R} because for every x ∈R and 0 < λ < 1, if

(x, 0) = λ(z, w) + (1 – λ)(t, v); (z, w), (t, v) ∈ W , (z, w)R(t, v),

then 0 = λw + (1 – λ)v and 0 ≤ w < v, which is a contradiction, and hence (x, 0) cannot be
written as an R-convex combination of elements of W .

Note that if we replace ‘<’ with ‘≤’ in the relation R, then

R – ext(W ) = ext(W ) = ∅.

Example 3.7 Assume V = R
2, W = {(x, y) ∈ R

2; x2 + y2 ≤ 1}, and A = {(x, y) ∈ R
2; x < 0},

and set R = A × A. Clearly, W is a convex set, and so is R-convex. We know that ext(W ) =
{(x, y) ∈ W ; x2 + y2 = 1}, but R – ext(W ) is different because

R – ext(W ) =
{

(x, y) ∈ W ; x2 + y2 = 1
} ∪ {

(x, y) ∈ W ; x ≥ 0
}

.

If the relation is replaced with the following relation:

(x1, y1)R(x2, y2) ⇐⇒ (x1 ≤ x2, y1 < y2),

then R – ext(W ) = ext(W ) = {(x, y) ∈ W ; x2 + y2 = 1}.

Now, we define the concept of R-convex hull of a set, and then we appoint some limi-
tations on the relation R, to obtain a necessary and sufficient condition for a set to be an
R-convex set.
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Definition 3.8 Let W be a subset of an R-vector space V . The R-convex hull of W is
denoted by R – co(W ) and is defined as follows:

{ n∑

i=1

αiwi; 0 < αi ≤ 1,
n∑

i=1

αi = 1, wi ∈ W , wiR wi+k , 0 ≤ k ≤ n – i, n ∈N

}

.

Moreover, every element of R – co(W ) is said to be an R-convex combination of elements
of W .

Proposition 3.9 Let V be an R-vector space such that the relation R has the following
properties:

i. vR v for all v ∈ V .
ii. If vR v1 and vRv2, then vRλv1 + (1 – λ)v2 for v, v1, v2 ∈ V and every 0 < λ < 1.

Then every subset W of V is R-convex if and only if W = R – co(W ).

Proof Firstly, assume that W = R – co(W ), and v1, v2 ∈ W such that v1R v2. Then,

λv1 + (1 – λ)v2 ∈ R – co(W ) = W , ∀λ; 0 < λ < 1.

Therefore, W is R-convex. Now, suppose that W is R-convex and v ∈ W . By the properties
of R, for v ∈ W , by i, vR v, and for λ = 1

2 ,

v =
1
2

v +
1
2

v ∈ R – co(W ).

This shows that W ⊆ R – co(W ). Now, R – co(W ) ⊆ W is obtained by induction.
For n = 2, let {v1, v2} ⊆ W such that v1R v2. Then R – co({v1, v2}) ⊆ W by the R-convexity

of W .
Now, for n = 3, let {v1, v2, v3} ⊆ W such that v1R v2, v1R v3, and v2R v3, and αi ∈ (0, 1) such

that
∑3

i=1 αi = 1. Then we can write

3∑

i=1

αivi = α1v1 + (1 – α1)
(

α2

1 – α1
v2 +

α3

1 – α1
v3

)

such that α2
1–α1

v2 + α3
1–α1

v3 ∈ W , because α2
1–α1

+ α3
1–α1

= 1, and v2R v3 and by using R-convexity
of W . Similarly, for every n ∈ N, we obtain R – co{v1, . . . , vn} ⊆ W . Thus R – co(W ) ⊆ W
and the proof is complete. �

Note that in Proposition 3.9 the given condition for R is necessary, and if this condition
is omitted, then the result is not true. To see this, let V = R and R := ‘ <′. It is clear that
(x, x) /∈ R for every x ∈R. The set K = [1, 2] is R-convex but R – co(K) = (1, 2).

In the last theorem of this section, some equivalent conditions for an element to be an
R-extreme point are given.

Theorem 3.10 Let V be an R-vector space such that R is reflexive and for v, v1, v2 ∈ V , if
vR v1 and vR v2, then vRλv1 + (1 – λ)v2 for all 0 < λ < 1. Then the following statements are
equivalent for every R-convex subset W of V :
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i. v ∈ R – ext(W ).
ii. If v = 1

2 v1 + 1
2 v2, where v1, v2 ∈ W and v1R v2, then v = v1 = v2.

iii. If v = λv1 + (1 – λ)v2, where 0 < λ < 1, v1, v2 ∈ W , and v1R v2, then v = v1 = v2.
iv. v ∈ R – co({v1, . . . vn}), where vi ∈ W for i = 1, . . . , n and n ∈N, then there exists

j ∈ {1, . . . n} such that v = vj.
v. W \ {v} is an R-convex set.

Proof i −→ ii. By definition of R-extreme point, it is clear.
ii −→ iii. If λ �= 1

2 , without loss of generality, we assume that 1
2 < λ < 1. Then the following

equality is obtained:

v = λv1 + (1 – λ)v2 =
1
2

v1 +
1
2

y; y = (2λ – 1)v1 + (2 – 2λ)v2 ∈ W ,

and v1Ry by the assumption. Therefore, the part iii is valid.
iii −→ iv. If v =

∑n
i=1 αivi is an R-convex combination of vi ∈ W , then we can write v =

α1v1 + (1 – α1)
∑n

i=2
αi

1–α1
vi. By induction, the properties of R, and Proposition 3.9, we have

∑n
i=2

αi
1–α1

vi ∈ W . The statement iii concludes that v = v1 =
∑n

i=2
αi

1–α1
vi. Then v = v1 and

also v = vk for k = 2, . . . , n, similarly.
Now, we consider iv −→ v. Let v1, v2 ∈ W \ {v} such that v1R v2, and 0 < λ < 1. We must

show that λv1 + (1 –λ)v2 ∈ W \ {v}. Since W is R-convex, the combination λv1 + (1 –λ)v2 ∈
W . Now, if v = λv1 + (1 – λ)v2, then v ∈ R – co({v1, v2}) and v = v1 or v = v2 by part iv. This
is a contradiction, and so λv1 + (1 – λ)v2 ∈ W \ {v}. Therefore, W \ {v} is R-convex.

v −→ i. Let T = {λv1 + (1 – λ)v2; 0 < λ < 1} ⊆ W be a proper R-open line segment con-
taining v. Then v = λv1 + (1 – λ)v2 for some 0 < λ < 1. It is known that v1 �= v2, then v �= v1

and v �= v2. Also, W \ {v} is R-convex, and v1, v2 ∈ W \ {v}, and so v ∈ W \ {v}. But it is a
contradiction, and hence v is an R-extreme point for W . �

One of the most important subjects is considering Krein–Milman theorem for R-vector
spaces. In the following example, we see that this theorem is not valid for an R-compact
R-convex set in R-vector spaces generally.

Example 3.1 Let M = R with the standard topology, R =′≤′ and K = (0, 1]. Clearly, K is an
R-compact and R-convex set, and R – ext(K) = {1} and so K �= coR(R – ext(K)).

At the end of this section, the question that remains is, “under what conditions dose the
Krein-Milman Theorem for R-vector spaces hold?”.

4 R-convex functions
An important part of subjections in mathematics is studying the properties of a type of
map between two spaces. One type of the map is a convex map. This section introduces
R-convex maps and relative concepts and considers their properties with respect to rela-
tion R.

Definition 4.1 Let V be an R-vector space, and f : V → V be a map.
i. Assume that R1 is another relation on V . The map f is called to be R-convex with

respect to R1 if, for each 0 < λ < 1 and v1, v2 ∈ V such that v1R v2, the following
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relation holds:

f
(
λv1 + (1 – λ)v2

)
R1

(
λf (v1) + (1 – λ)f (v2)

)
.

ii. The map f : V → R is called to be R-convex if, for each 0 < λ < 1 and v1, v2 ∈ V such
that v1R v2, the following relation holds:

f
(
λv1 + (1 – λ)v2

) ≤ λf (v1) + (1 – λ)f (v2).

iii. The map f : V → V (also the function f : V →R) is called to be R-affine if, for each
0 < λ < 1 and v1, v2 ∈ V such that v1R v2, the following equation holds:

f
(
λv1 + (1 – λ)v2

)
= λf (v1) + (1 – λ)f (v2).

iv. The R-epigraph of a map f : V → V , which is denoted by R – epi(f ), is the set
{(v, w); f (v)R w}.

Remark 4.2 Assume that V is a vector space.
i. Every convex map f on an R-vector space V is R-convex, however, the reverse of the

result is not true.
ii. Let R = V × V be a relation on V . Then the notions of R-convexity and convexity for

every map f : V −→R are equivalent.

The following example illustrates that every R-convex map is not necessarily a convex
map.

Example 4.3 Let V = R and

xR y ⇐⇒ (x, y ≤ 0 or x, y > 0).

Then the map f : R −→R defined by

f (x) =

⎧
⎨

⎩
x2 x ≤ 0,

x2 – 3 x > 0,

is an R-convex map on R, but it is not a convex map. Because for α = 1
2 , v1 = –1, and v2 = 1,

f
(

1
2

× (–1) +
1
2

× 1
)

= f (0) = 0 �
1
2

f (–1) +
1
2

f (1) = –
1
2

.

In the classical convexity, there is a straight relation between the convex functions and
their epigraphs. In the following theorem and its corollaries, by giving some conditions,
we obtain similar results for R-convex maps.

Theorem 4.4 Let R1 and R2 be two relations on a vector space V , and let f : V −→ V
be a map. Also, assume that R2 is transitive and reflexive with the following property: For
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0 < λ < 1 and v1, v2, w1, w2 ∈ V ,

(
f (v1)R2w1, and f (v2)R2w2

) �⇒ (
λf (v1) + (1 – λ)f (v2)

)
R2

(
λw1 + (1 – λ)w2

)
.

Moreover, suppose that S is a relation on V × V with two properties as follows:
i. If v1R1v2, then (v1, f (v1))S(v2, f (v2)).

ii. For v1, v2, w1, w2 ∈ V such that f (v1)R2w1 and f (v2)R2w2, if (v1, w1)S(v2, w2), then
v1R1v2.

Then f is an R1-convex map on V with respect to R2 if and only if R2 – epi(f ) is an S-convex
set.

Proof Suppose that f is an R1-convex map on V with respect to R2. For (v1, w1) and (v2, w2)
of R2 – epi(f ), where (v1, w1)S(v2, w2), the definition of R2 – epi(f ) implies that

f (v1)R2w1 and f (v2)R2w2.

Hence, by the property of R2, for each 0 < λ < 1, we conclude that

(
λf (v1) + (1 – λ)f (v2)

)
R2

(
λw1 + (1 – λ)w2

)
.

By ii, we have v1R1v2, and by the R1-convexity of f ,

f
(
λv1 + (1 – λ)v2

)
R2

(
λf (v1) + (1 – λ)f (v2)

)
.

Now, since R2 is transitive, we deduce f (λv1 + (1 – λ)v2)R2(λw1 + (1 – λ)w2). Therefore,

λ(v1, w1) + (1 – λ)(v2, w2) =
(
λv1 + (1 – λ)v2,λw1 + (1 – λ)w2

) ∈ R2 – epi(f ),

which shows that R2 – epi(f ) is S-convex.
Conversely, let R2 – epi(f ) be an S-convex set. Suppose that 0 < λ < 1 and v1 and v2 in V

such that v1R1v2. By the reflexivity of R2 and the property i, the following statements hold:

(
v1, f (v1)

)
,
(
v2, f (v2)

) ∈ R2 – epi(f ) and
(
v1, f (v1)

)
S
(
v2, f (v2)

)
.

Then the S-convexity of R2 – epi(f ) concludes

λ
(
v1, f (v1)

)
+ (1 – λ)

(
v2, f (v2)

) ∈ R2 – epi(f ),

and hence,

(
λv1 + (1 – λ)v2,λf (v1) + (1 – λ)f (v2)

) ∈ R2 – epi(f ).

So,

f
(
λv1 + (1 – λ)v2

)
R2

(
λf (v1) + (1 – λ)f (v2)

)
,

and f is R1-convex on V with respect to R2. �
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The special cases of the above theorem for a real vector space with different relations are
concluded in the following corollaries. It is well known that for f : R −→ R, the epigraph
of f is {(x, y); f (x) ≤ y}.

Corollary 4.5 Let R be a relation on vector space R, f be a map on R, and S be a relation
on R×R such that

i. If x1R x2, then (x1, f (x1))S(x2, f (x2)).
ii. For x1, x2, y1, y2 ∈R such that f (x1) ≤ y1 and f (x2) ≤ y2, if (x1, y1)S(x2, y2), then x1Rx2.

Then f is R-convex with respect to the relation ‘ ≤′ if and only if epi(f ) is S-convex.

Proof Since the relation ‘ ≤′ is reflexive and transitive on R, so it is a straightforward
conclusion of Theorem 4.4. �

Corollary 4.6 Assume that R is a relation on the vector space R, and f is a map on R. Let
S be the induced relation of R on R×R as follows:

(x1, y1)S(x2, y2) ⇐⇒ x1R x2, for x1, x2, y1, y2 ∈R.

Then the function f : R −→ R is R-convex with respect to ‘ ≤′ on R if and only if epi(f ) is
S-convex.

Proof It is concluded by Corollary 4.5. �

Corollary 4.7 Let V be an R-vector space and f : V −→R be a function. Also, S is a relation
on V × V with the following properties:

i. If v1R v2, then (v1, f (v1))S(v2, f (v2)).
ii. For v1, v2, w1, w2 ∈ V such that f (v1) ≤ w1 and f (v2) ≤ w2, if (v1, w1)S(v2, w2), then

v1R v2.
Then f is R-convex if and only if epi(f ) is an S-convex set.

Proof It is a consequence of Theorem 4.4, since the relation ‘ ≤′ is reflexive and transi-
tive. �

In the classical convexity, every convex function is a continuous function. But there exist
some R-convex functions which are not R-continuous.

Example 4.8 Let V = R, a > 1, and

xR y ⇐⇒ (x, y ≤ 0 or x, y > 0), ∀x, y ∈R.

Then the function

f (x) =

⎧
⎨

⎩
x2 x ≤ 0,

x2 – a x > 0,

is an R-convex function on the R-convex set R, and it is not R-continuous. This is because
by setting xn = 1

n for all n ∈N, {xn}n∈N is an R-sequence converging to zero, and

f (xn) = x2
n – a �

R f (0) = 0.
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It is known that every continuous map preserves compact sets. In the following propo-
sition, we show that every R-continuous map, by an additional condition, preserves R-
compact sets.

Proposition 4.1 Let M be an R-metric space, K be an R-compact subset of M, and f :
M → M be an R-continuous function such that, for x, y ∈ M, f (x)R f (y) implies that xR y,
then f (K) is an R-compact set. That is, every R-continuous map preserves R-compact sets
if f (x)R f (y) implies that xR y.

Proof Let {f (xn)}n∈N be an R-sequence in f (K). By the properties of f , {xn}n∈N is an R-
sequence in R-compact set K , so there is a convergent R-subsequence {xnk }k∈N of it. Sup-
pose that

xnk
R−→ x0 for some x0 ∈ K .

f is R-continuous, so f (xnk ) R−→ f (x0), and f (K) is R-compact. �

The goal of the following proposition is to show the preservation of R-convex sets under
the special R-affine maps.

Proposition 4.2 Every R-affine function preserves R-convex sets if the following condition
holds:

f (x)R f (y) �⇒ xR y.

Proof Let K be an R-convex subset of an R-vector space V , and f : V → V be an R-affine
function. Now assume that f (ν1), f (ν2) ∈ f (K) for some ν1,ν2 ∈ K such that f (ν1)R f (ν2)
and 0 < α < 1. By the assumption, f (ν1)R f (ν2) implies that ν1Rν2, and by the R-convexity
of K , we have (αν1 + (1 – α)ν2) ∈ K . Also, f is an R-affine function, thus

αf (ν1) + (1 – α)f (ν2) = f
(
αν1 + (1 – α)ν2

) ∈ f (K).

So, f (K) is an R-convex set. �

Proposition 4.3 In an R-metric vector space, the following statements are valid:
i. Summation, subtraction, and scalar multiplication of R-affine maps are also R-affine.

ii. If f and g are R-affine maps and g is an R-preserving map, then fog is also R-affine.

Proposition 4.4 Let f be an increasing R-convex function on the R-metric vector space M,
and let g be an R-preserving R-convex map on M. Then fog is also an R-convex map.

Proof Let x, y ∈ M such that xR y. Then g(x)R g(y). For 0 < α < 1,

fog
(
αx + (1 – α)y

)
= f

(
g
(
αx + (1 – α)y

))

≤ f
(
αg(x) + (1 – α)g(y)

)

≤ αf
(
g(x)

)
+ (1 – α)f

(
g(y)

)
.

This shows that fog is R-convex. �
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5 Some applications in optimization
An optimization problem considers minimizing or maximizing a given real function on
a subset of its domain. In other words, in an optimization problem, one obtains the best
available values for some functions that have different types corresponding to objective
functions and types of their domains. The optimization theory and its techniques are use-
ful and very important in a large area of applied mathematics. In this section, we study
some results in optimization theory. More precisely, we study important results about the
extreme values of some R-convex maps on R-convex sets. In the first theorem, we show
that every R-continuous R-affine function attains its extrema at R-extreme points.

Theorem 5.1 Suppose that (M, R) is an R-metric vector space, K is a subset of M where
R – ext(K) is R-closed and R – ext(K) × R – ext(K) ⊂ R, and B is an R-compact subset of
coR(R – ext(K)) such that R – ext(K) ⊂ B. Then every R-affine and R-continuous map f :
M −→R attains its maximum and minimum on B at R-extreme points of K . Moreover, the
maximum and minimum of f on B is equal with its maximum and minimum on R –ext(K),
respectively.

Proof Let f take its maximum on B at x0 ∈ B. Then there exists an R-sequence {xn}n∈N ⊂
R – co(R – ext(K)) such that xn

R−→ x0. Notice that xn =
∑Nn

i=1 λn,iyn,i where Nn ∈N and yn,i ∈
R – ext(K), (1 ≤ i ≤ Nn) and λn,i ∈ (0, 1] such that

∑Nn
i=1 λn,i = 1. Thus,

f (xn) = f

( Nn∑

i=1

λn,iyn,i

)

=
Nn∑

i=1

λn,if (yn,i)

≤ max
1≤i≤Nn

f (yn,i)
Nn∑

i=1

λn,i

= max
1≤i≤Nn

f (yn,i),

so

f (xn) ≤ max
1≤i≤Nn

f (yn,i) = f (yn,in ). (5.1)

Now, {yn,in}n∈N is an R-sequence in R – ext(K) ⊂ B. Note that B is R-compact, which en-
sures the existence of a convergent R-subsequence {ynk ,ink

}k∈N. Suppose that ynk ,ink

R−→ y0

as k → ∞. Assuming R – ext(K) is R-closed, then y0 ∈ R – ext(K). Using relation (5.1) and
the R-continuity of f , we conclude that

f (x0) = f
(

R – lim
n→∞ xn

)

= f
(

R – lim
k→∞

xnk

)

= R – lim
k→∞

f (xnk )

≤ R – lim
k→∞

f (ynk ,ink
)
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= f
(

R – lim
k→∞

ynk ,ink

)
= f (y0).

On the other hand, f (x0) is maximum of f on B, so f (x0) = f (y0), and f attains its maximum
on B at y0. Similarly, we can prove the theorem for the minimum case. �

In the succeeding proposition, we show that the set of all elements on which an R-convex
function takes its minimum is an R-convex set.

Proposition 5.2 Let V be an R-vector space, K be an R-convex subset of V , and f : K −→R

be an R-convex function on K . Then, the set B = {x ∈ V ; f (x) = miny∈K f (y)} is R-convex.

Proof Suppose that x1, x2 ∈ B, and f attains its minimum m on x1 and x2, and x1Rx2. Then,
for each λ, (0 < λ < 1), we have

m ≤ f
(
λx1 + (1 – λ)x2

) ≤ λf (x1) + (1 – λ)f (x2) = λm + (1 – λ)m = m.

So, f (λx1 + (1 – λ)x2) = m, and λx1 + (1 – λ)x2 ∈ B. Thus, B is an R-convex set. �

The following theorem asserts that every local minimum is a global minimum for R-
convex functions.

Theorem 5.3 Let (M, R) be an R-vector metric space, K ⊂ M be an R-convex set, and
f : K −→ R be an R-convex function which has a local minimum at x0, then x0 is also a
global minimum of f on [x0]R ∩ K , where [x0]R = {x ∈ M; x0R x}. Specially, x0 is a global
minimum on K if x0R x for all x ∈ K .

Proof Suppose that f takes its minimum at x0 on the neighborhood N of x0, and x ∈
[x0]R ∩ K . Then, for sufficiently small λ > 0, we have

f (x0) ≤ f
(
(1 – λ)x0 + λx

) ≤ (1 – λ)f (x0) + λf (x),

and hence λ(f (x) – f (x0)) ≥ 0, which implies that f (x0) ≤ f (x), and the proof is completed.
In addition, if x0R x for all x ∈ K , then x0 is a global minimum of f on K since f (x0) ≤ f (x)
for all x ∈ K . �

Corollary 5.4 Let (M, R) be an R-vector metric space, K ⊂ M be an R-convex set, and
f : K −→ R be a strictly R-convex function which has a local minimum at x0. Then the
minimum point x0 is unique on [x0]R ∩ K .

Proof Since f is strictly R-convex on K , as the proof of the previous theorem, we obtain
f (x0) < f (x) for all x ∈ [x0]R ∩ K where x �= x0. �

Theorem 5.5 Let (V , R) be an R-vector space such that R is an equivalence relation on V
with the following property:

aRb �⇒ aR
(
λa + (1 – λ)b

)
, ∀λ ∈ (0, 1).

If K is an R-convex subset of V and f : K −→ R is an R-convex function which has a global
maximum at x0, then f is constant on [x0]R ∩ K .
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Proof Let y ∈ [x0]R ∩ K such that f (y) < f (x0). Then x0Ry, and so for α ∈ (0, 1), z = αx0 +
(1 – α)y ∈ K , and by the properties of R, we have yRz. On the other hand, x0 = 1

α
z + α–1

α
y,

and hence the R-convexity of f implies that

f (x0) = f
((

1 –
1
α

)
y +

1
α

z
)

≤
(

1 –
1
α

)
f (y) +

1
α

f (z)

<
(

1 –
1
α

)
f (x0) +

1
α

f (x0)

= f (x0).

This suggests f (x0) < f (x0), which is a contradiction. Therefore, f (y) = f (x0) for all y ∈
[x0]R ∩ K . �

6 Conclusions
Convex functions and extreme points are important objects in convex analysis and espe-
cially in optimization theory. In this paper, we tried to extend these notions to R-vector
spaces, where R is a relation on a vector space V , and then some results on this subject
have been obtained, and we compared these results with the reference cases by giving
some examples. Finally, some applications of R-convexity have been investigated in opti-
mization theory. More precisely, we have shown that the extrema of R-affine R-continuous
maps are reached on R-extreme points. Moreover, local and global minimum points of an
R-convex map f on R-convex set K have been considered. In the forthcoming works, we
will attempt to prove the Krein–Milman type theorems for R-compact R-convex subsets
of R-vector metric spaces and some other applications of this theory.
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