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1 Introduction
In 1931, Wilson [1] initiated the notion of quasimetric spaces, which was defined with-
out the symmetric condition comparing to the axioms of the standard metric. Later,
Matthews [2] defined the concept of partial metric space in 1994, in which the distance
of each object to itself is not necessarily zero. Additionally, he constructed quasimet-
ric q and weighted metric pm by partial metric p, where q(x, y) = p(x, y) – p(x, x) and
pm(x, y) = 2p(x, y) – p(x, x) – p(y, y), respectively. Over the past few decades, these methods
of construction have appeared in many papers on partial metric spaces, and the fixed-
pointed theory has been one of the most important topics in topology ([3–12]).

The object of this paper tries to give a generalized quasimetric p̂, i.e., dp [6] is its special
case, p̃ [13] and ps [9] are equivalent. Furthermore, we obtain some results on (strong)
complete partial metric spaces.

2 Preliminaries
Throughout this paper, X is always a nonempty set, the letters R, R+, N+ always denote the
set of real numbers, of all positive real numbers and of all positive integers, respectively.

Definition 2.1 ([1]) A quasimetric is a function d : X × X → [0, +∞) satisfying the fol-
lowing conditions: ∀x, y, z ∈ X,

(M1) x = y ⇔ d(x, y) = d(y, x) = 0;
(M2) d(x, z) ≤ d(x, y) + d(y, z).

A quasimetric d is called a metric if it also satisfies
(M3) d(x, y) = d(y, x).
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A (quasi)metric space is a pair (X, d) such that d is a (quasi)metric on X.

Definition 2.2 ([2]) A partial metric is a function p : X × X → [0, +∞) satisfying the
following conditions: ∀x, y, z ∈ X,

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(P2) p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).

A partial metric space is a pair (X, p) such that p is a partial metric on X.

Apparently, each metric is precisely a partial metric on X, and a partial metric p is a met-
ric if and only if p(x, x) = 0 for all x ∈ X. Similar to the definition of open balls in metric
spaces, that is Bd

ε (x) = {y ∈ X : d(x, y) < ε}, Matthews used Bp
ε (x) = {y ∈ X : p(x, y) < ε} to de-

note open p-balls for all x ∈ X and ε > 0, we can see that some open p-balls may be empty
(see more details in [2]).

Lemma 2.3 For each partial metric p: X × X → [0, +∞), set p̂(x, y) = p(x, y) – [αp(x, x) +
βp(y, y)], where 0 ≤ α,β ≤ 1, α + β = 1. Then, the following statements hold:

(1) p̂ is a quasimetric.
(2) p̃ is a metric if and only if α = β = 1

2 , where we denote

p̃(x, y) = p(x, y) –
p(x, x) + p(y, y)

2
.

(3) q̂ is a metric, where q̂(x, y) = max{p̂(x, y), p̂(y, x)}.

Proof (1) We verify the conditions (M1) and (M2) one by one.
(M1): (⇒) Suppose that x = y. It is clear that p̂(x, y) = p̂(y, x) = 0.

(⇐) Suppose that p̂(x, y) = p̂(y, x) = 0. Then, p(x, y) = αp(x, x) + βp(y, y), and p(y, x) =
αp(y, y) + βp(x, x), which implies p(x, y) + p(y, x) = p(x, x) + p(y, y). Since p(x, x) ≤ p(x, y) by
(P2), we have p(x, x) + p(y, x) ≤ p(x, x) + p(y, y), namely p(y, x) ≤ p(y, y). By (P2) and (P3), we
have p(y, x) = p(y, y). Analogously, we can deduce p(x, y) = p(x, x). Hence, p(x, y) = p(x, x) =
p(y, y), which implies x = y by (P1).

(M2): By (P4), we have

p̂(x, y) + p̂(y, z) = p(x, y) –
[
αp(x, x) + βp(y, y)

]
+ p(y, z) –

[
αp(y, y) + βp(z, z)

]

= p(x, y) + p(y, z) – p(y, y) –
[
αp(x, x) + βp(z, z)

]

≥ p(x, z) –
[
αp(x, x) + βp(z, z)

]
= p̂(x, z),

for all x, y, z ∈ X. Therefore, p̂ is a quasimetric.
(2) and (3) are trivial in that p̃ and q̂ satisfy (M1)–(M3). �

Remark 2.4
(1) If α = 1 and β = 0, then p̂ is q (see [2]).
(2) If α = β = 1

2 , then p̃ and ps are equivalent (see [4]).



Wu Journal of Inequalities and Applications         (2022) 2022:61 Page 3 of 11

Proposition 2.5 Let X be a nonempty set, p be a partial metric, and (X, p̂) be the corre-
sponding quasimetric space defined in Lemma 2.3, i.e., p̂(x, y) = p(x, y) – [αp(x, x) +βp(y, y)]
for any x, y ∈ X. Then, the following statements hold.

(1) The set of all open p-balls Bp
ε (x) is the basis of a topology T (p) on X , where

Bp
ε (x) = {y ∈ X : p(x, y) < ε} for any ε > 0. We call T (p) the topology generated by the

partial metric p on X .
(2) The set of all open p̂-balls Bp̂

ε (x) is the basis of a topology T (p̂) on X , where
Bp̂

ε (x) = {y ∈ X : p̂(x, y) < ε} for any ε > 0. We call T (p̂) the topology generated by the
quasimetric p̂ on X .

Proof (1) It is trivial by Theorem 3.1 in [2].
(2) It is not difficult to prove that X =

⋃
x∈X Bp̂

ε (x), where ε > 0.
Moreover, we have Bp̂

ε (x) ∩ Bp̂
δ (y) =

⋃{Bp̂
η(z) : z ∈ Bp̂

ε (x) ∩ Bp̂
δ (y)}, where η = βp(z, z) +

min{ε – p(x, z) + αp(x, x), δ – p(y, z) + αp(y, y)}. �

Theorem 2.6 Let X be a nonempty set, p be a partial metric and p̂(x, y) = p(x, y) –
[αp(x, x) + βp(y, y)], where 0 ≤ α,β ≤ 1, α + β = 1 and α �= 1/2, β �= 1/2, for any x, y ∈ X.
The following statements hold:

(1) Each partial metric p on X generates a T0 topology T (p) on X .
(2) Each quasimetric p̂ on X generates a T0 topology T (p̂) on X .
(3) T (p) = T (p̂).
(4) (X,T (p)) and (X,T (p̂)) are first countable.

Proof (1) It is trivial by Theorem 3.3 in [2].
(2) By Lemma 2.3(1), we know that p̂ is a quasimetric. Suppose that x �= y. By (P2) and

(P3), we have αp(x, x) + βp(y, y) ≤ αp(x, y) + βp(x, y) = p(x, y). Set ε = p(x,y)–[αp(x,x)+βp(y,y)]
2 .

Then, x ∈ Bp̂
ε (x) and y /∈ Bp̂

ε (x). Therefore, (X,T (p̂)) is a T0 topology space.
(3) For any x ∈ X and ε > 0, suppose y ∈ Bp

ε (x), namely, p(x, y) < ε. Since αp(x, x) +
βp(y, y) ≤ p(x, y), we have αp(x, x) + βp(y, y) < ε. Set δ = ε – [αp(x, x) + βp(y, y)]. We can
deduce p(x, y) < δ + [αp(x, x) + βp(y, y)], which implies y ∈ Bp̂

δ (x). Therefore, Bp
ε (x) ⊆ Bp̂

δ (x).
On the other hand, for any x ∈ X and ε > 0, suppose y ∈ Bp̂

ε (x). We have p(x, y)–[αp(x, x)+
βp(y, y)] < ε. Set η = ε + [αp(x, x) +βp(y, y)]. Then, we can deduce p(x, y) < η, which implies
y ∈ Bp

η(x), thus Bp̂
ε (x) ⊆ Bp

η(x). Hence, T (p) = T (p̂).
(4) Set ε ∈ Q

+, where Q
+ denotes the set of all positive rational numbers. For any

x ∈ X, Bp
ε (x) and Bp̂

ε (x) are countable neighborhoods at x in (X,T (p)) and (X,T (p̂)), re-
spectively. �

3 Some results on (strong) complete partial metric spaces
Definition 3.1 Let (X, p) be a partial metric space and {xn} be a sequence in X.

(1) A sequence {xn} converges to a point x ∈ X if p(x, x) = limn→+∞ p(x, xn);
(2) A sequence {xn} is called a Cauchy sequence if limn,m→+∞ p(xn, xm) exists and is

finite;
(3) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with

respect to T (p), to a point x ∈ X such that
p(x, x) = limn,m→+∞ p(xn, xm) = limn→+∞ p(xn, x).
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Lemma 3.2 Let (X, p) be a partial metric space and (X, p̃) be the corresponding metric
space defined in Lemma 2.3(2), i.e., p̃(x, y) = p(x, y) – p(x,x)+p(y,y)

2 , for all x, y ∈ X. Let (X, q̂) be
the corresponding metric space, where q̂(x, y) = max{p̂(x, y), p̂(y, x)}, and p̂(x, y) = p(x, y) –
[αp(x, x) + βp(y, y)], 0 ≤ α,β ≤ 1, α + β = 1 and α �= 1

2 , β �= 1
2 , for all x, y ∈ X. The following

statements hold:
(1) A sequence is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in

(X, q̂).
(2) (X, p) is complete if and only if (X, q̂) is complete.
(3) (X, p) is complete if and only if (X, p̃) is complete.
(4) limn→+∞ p̃(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞ p(xn, x) = lim

n,m→+∞ p(xn, xm).

Proof (1) (⇒) Let {xn} be a Cauchy sequence in (X, p). There exists η ∈ [0, +∞) such that
limn,m→+∞ p(xn, xm) = η. Then, for any ε > 0, there exists nε ∈N

+ such that

∣∣p(xn, xm) – η
∣∣ <

ε

2
, ∀n, m > nε .

Then, we have that

∣∣p̂(xn, xm)
∣∣ =

∣∣p(xn, xm) –
[
αp(xn, xn) + βp(xm, xm)

]∣∣

≤ ∣∣p(xn, xm) – η
∣∣ + α

∣∣p(xn, xn) – η
∣∣ + β

∣∣p(xm, xm) – η
∣∣

<
ε

2
+ α · ε

2
+ β · ε

2
= ε.

This implies that {xn} is a Cauchy sequence in (X, q̂).
(⇐) Suppose {xn} is a Cauchy sequence in (X, q̂) and let ε > 0. Then, there exists nε ∈N

+,
such that

q̂(xn, xm) <
|α – β|ε

2
, ∀n, m > nε .

Set ε = 1. Then, there exists n0 ∈N
+ such that

q̂(xn, xm) <
|α – β|

2
, ∀n, m > n0.

We prove that {xn} is a Cauchy sequence in (X, p) in the following steps.
Step 1: Since p(xn, xn0 ) = p(xn0 , xn) by (P3) for all n ≥ n0, we have

p̂(xn, xn0 ) +
[
αp(xn, xn) + βp(xn0 , xn0 )

]
= p̂(xn0 , xn) +

[
αp(xn0 , xn0 ) + βp(xn, xn)

]
.

Thus, we have (α – β)p(xn, xn) = p̂(xn0 , xn) + (α – β)p(xn0 , xn0 ) – p̂(xn, xn0 ), which implies
that

p(xn, xn) =
1

α – β

[
p̂(xn0 , xn) – p̂(xn, xn0 )

]
+ p(xn0 , xn0 ).
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Then, we have

∣∣p(xn, xn)
∣∣ ≤ 1

|α – β|
[∣∣p̂(xn0 , xn)

∣∣ +
∣∣p̂(xn, xn0 )

∣∣] + p(xn0 , xn0 )

≤ 2
|α – β|

∣∣q̂(xn, xn0 )
∣∣ + p(xn0 , xn0 )

< 1 + p(xn0 , xn0 ),

for all n ≥ n0, which implies that the sequence {p(xn, xn)} is bounded in R. Hence, the se-
quence {p(xn, xn)} exists with a subsequence {p(xnk , xnk )} that is convergent and we denote
limnk→+∞ p(xnk , xnk ) = a.

Step 2: By Step 1, we have

∣∣p(xn, xn) – p(xm, xm)
∣∣ =

1
|α – β|

∣∣p̂(xm, xn) – p̂(xn, xm)
∣∣

≤ 1
|α – β|

[∣∣p̂(xm, xn)
∣
∣ +

∣
∣p̂(xn, xm)

∣
∣]

<
2

|α – β|
∣
∣q̂(xm, xn)

∣
∣ < ε,

for all n, m > nε . In addition, since

p(xn, xn) =
1

α – β

[
p̂(xm, xn) – p̂(xn, xm)

]
+ p(xm, xm),

we have

lim
n→+∞ p(xn, xn) = lim

m→+∞ p(xm, xm) = a,

for all n, m > n1, where n1 = max{nε , n0}.
Furthermore,

∣
∣p(xn, xm) – a

∣
∣

=
∣
∣p(xn, xm) –

[
αp(xn, xn) + βp(xm, xm)

]
+

[
αp(xn, xn) + βp(xm, xm)

]
– a

∣
∣

≤ ∣
∣p(xn, xm) –

[
αp(xn, xn) + βp(xm, xm)

]∣∣ +
∣
∣αp(xn, xn) + βp(xm, xm) – a

∣
∣

= p̂(xn, xm) + α
∣∣p(xn, xn) – a

∣∣ + β
∣∣p(xm, xm) – a

∣∣

<
|α – β|

2
· ε + α · ε + β · ε =

|α – β| + 2
2

· ε,

for all n, m > n1. This implies that {xn} is a Cauchy sequence in (X, p).
(2) (⇐) First, without loss of generality, we claim that 0 ≤ β < 1

2 (in fact, by 0 ≤ α,β ≤ 1,
α + β = 1 and α �= 1

2 , β �= 1
2 , then, we have α < 1

2 or β < 1
2 ).

Step 1: Let {xn} be a Cauchy sequence in (X, p). It is clear that {xn} is a Cauchy se-
quence in (X, q̂) by Lemma 3.2(1). Since (X, q̂) is complete, there exists x ∈ X such that
limn→+∞ q̂(x, xn) = 0, i.e., for any ε > 0, there exists n0 ∈N

+ such that

∣∣q̂(x, xn)
∣∣ <

1 – 2β

2
· ε
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for all n > n0. Since q̂(x, y) = max{p̂(x, y), p̂(y, x)}, we have limn→+∞ p̂(x, xn) = 0. This shows
that {xn} is a convergent sequence in (X, p̂).

On the other hand, we have

∣∣p(xn, xn) – p(x, x)
∣∣

=
∣∣(α + β)p(x, x) – (α + β)p(xn, xn)

∣∣

=
∣∣[αp(x, x) + βp(xn, xn) – p(x, xn)

]
+

[
p(x, xn) – αp(xn, xn) – βp(x, x)

]

– 2β
[
p(xn, xn) – p(x, x)

]∣∣

≤ ∣
∣p(x, xn) – αp(x, x) – βp(xn, xn)

∣
∣ +

∣
∣p(x, xn) – αp(xn, xn) – βp(x, x)

∣
∣

+ 2β
∣
∣p(xn, xn) – p(x, x)

∣
∣.

Then,

(1 – 2β)
∣
∣p(xn, xn) – p(x, x)

∣
∣

≤ ∣
∣p(x, xn) –

[
αp(x, x) + βp(xn, xn)

]∣∣ +
∣
∣p(xn, x) –

[
αp(xn, xn) + βp(x, x)

]∣∣

= p̂(x, xn) + p̂(xn, x)

< 2q̂(x, xn) < (1 – 2β) · ε,

for all n > n0. Therefore, we can deduce |p(xn, xn)–p(x, x)| < ε, which implies limn→+∞ p(xn,
xn) = p(x, x).

Step 2: Since p̂(x, y) = p(x, y) – [αp(x, x) + βp(y, y)], by Step 1, we have limn→+∞ p̂(x, xn) =
limn→+∞ p(x, xn) – αp(x, x) – β limn→+∞ p(xn, xn). Then, we can deduce limn→+∞ p(x, xn) =
limn→+∞ p(xn, x) = p(x, x).

In addition, by (P4) we have p(xn, xm) ≤ p(xn, x) + p(x, xm) – p(x, x). Hence,
limn,m→+∞ p(xn, xm) ≤ p(x, x). Moreover, by (P2), we have p(xn, xm) ≥ p(xn, xn), which im-
plies limn,m→+∞ p(xn, xm) ≥ p(x, x). Then, we have

lim
n,m→+∞ p(xn, xm) = p(x, x).

Therefore, (X, p) is complete.
(⇒) Let {xn} be a Cauchy sequence in (X, q̂). Then, {xn} is a Cauchy sequence in

(X, p) by Lemma 3.2(2). There exists a point x ∈ X, such that limn,m→+∞ p(xn, xm) =
limn→+∞ p(x, xn) = p(x, x). Therefore, for any ε > 0, there exists n0 ∈N

+ such that

∣
∣p(x, xn) – p(x, x)

∣
∣ < ε

and

∣∣p(xn, xn) – p(x, x)
∣∣ < ε,

for all n ≥ n0. Then, we have

∣∣p̂(x, xn)
∣∣ =

∣∣p(x, xn) –
[
αp(x, x) + βp(xn, xn)

]∣∣
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= α
∣∣[p(x, xn) – p(x, x)

]∣∣ + β
∣∣[p(x, xn) – p(xn, xn)

]∣∣

< α · ε + β
∣∣p(x, xn) – p(x, x)

∣∣ + β
∣∣p(xn, xn) – p(x, x)

∣∣

< α · ε + 2β · ε = β · ε.

Therefore, we have limn→+∞ p̂(x, xn) = 0.
Analogously, we have

∣∣p̂(xn, x)
∣∣ =

∣∣p(xn, x) –
[
αp(xn, xn) + βp(x, x)

]∣∣

< β · ε + α
∣∣p(x, xn) – p(x, x)

∣∣ + α
∣∣p(xn, xn) – p(x, x)

∣∣

< β · ε + 2α · ε = α · ε.

This implies limn→+∞ p̂(xn, x) = 0.
Furthermore, by (M2), we have p̂(xn, xm) ≤ p̂(xn, x)+ p̂(x, xm). Therefore, limn,m→+∞ p̂(xn,

xm) = 0, which implies (X, p̂) is complete. It is not difficult to show (X, q̂) is complete.
(3) It is trivial by Lemma 3.2 in [14].
(4) It is trivial by Lemma 2.1 in [4]. �

Corollary 3.3 Let (X, p) be a partial metric space. Then, limn→+∞ q̂(x, xn) = 0 if and only
if limn,m→+∞ p(xn, xm) = limn→+∞ p(x, xn) = p(x, x).

Lemma 3.4 ([4]) Let (X, d) be a complete metric space, ϕ : X → [0, +∞) be a lower semi-
continuous function, and T : X → X be a given mapping. The following statements hold:

(1) Suppose that for any 0 < a < b < +∞, there exists 0 < γ (a, b) < 1 such that for all
x, y ∈ X , a ≤ d(x, y) + ϕ(x)+ϕ(y)

2 ≤ b implies
d(Tx, Ty) + ϕ(Tx)+ϕ(Ty)

2 ≤ γ (a, b)[d(x, y) + ϕ(x)+ϕ(y)
2 ]. Then, T has a unique fixed point

x∗ ∈ X . Moreover, we have ϕ(x∗) = 0.
(2) Suppose that for all x, y ∈ X , there exist a, b, c ∈ [0, +∞) with a + b + c < 1 such that

d(Tx, Ty) + ϕTx + ϕTy) ≤
a[d(x, y) + ϕ(x) + ϕ(y)] + b[d(x, Tx) + ϕ(x) + ϕ(Tx)] + c[d(y, Ty) + ϕ(y) + ϕ(Ty)]. Then,
T has a unique fixed point x∗ ∈ X . Moreover, we have ϕ(x∗) = 0.

Theorem 3.5 Let (X, p) be a complete partial metric space and T : X → X be a given
mapping. The following statements hold:

(1) Suppose for any a, b ∈ (0, +∞), there exists 0 < γ (a, b) < 1 such that for all x, y ∈ X ,
a ≤ p(x, y) ≤ b implies p(Tx, Ty) ≤ γ (a, b)p(x, y). Then, T has a unique fixed point
x∗ ∈ X . Moreover, we have p(x∗, x∗) = 0.

(2) Suppose for all x, y ∈ X , there exist a, b, c ∈ (0, +∞) and a + b + c < 1 such that
p(Tx, Ty) ≤ ap(x, y) + bp(x, Tx) + cp(y, Ty). Then, T has a unique fixed point x∗ ∈ X .
Moreover, we have p(x∗, x∗) = 0.

Proof (1) We have p̃(x, y) = p(x, y) – p(x,x)+p(y,y)
2 by Lemma 2.3(2). Then,

p(x, y) = p̃(x, y) +
p(x, x) + p(y, y)

2
,

for all x, y ∈ X. Since (X, p) is complete, we have that (X, p̃) is complete by Lemma 3.2(3).
Define a function ϕ : X → [0, +∞). Set ϕ(x) = p(x, x) for all x ∈ X. Since p(x, y) = p̃(x, y) +
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p(x,x)+p(y,y)
2 , there exists 0 < γ (a, b) < 1 for any a, b, c ∈ (0, +∞). From Lemma 3.4, we can

deduce that a ≤ p̃(x, y) + p(x,x)+p(y,y)
2 ≤ b implies p̃(Tx, Ty) + ϕ(Tx)+ϕ(Ty)

2 ≤ γ (a, b)[p̃(x, y) +
ϕ(x)+ϕ(y)

2 ].
On the other hand, let {xn} be a sequence in X such that limn→+∞ p̃(xn, x) = 0, where

x ∈ X. Then, we have limn→+∞ p(xn, x) = p(x, x) by Lemma 3.2(4), i.e., limn→+∞ ϕ(xn) =
ϕ(x), so ϕ is continuous. By Lemma 3.4(1), the result follows.

(2) It is not difficult to show that

2p̃(Tx, Ty) + p(Tx, Tx) + p(Ty, Ty)

≤ a
[
2p̃(x, y) + p(x, x) + p(y, y)

]
+ b

[
2p̃(x, Tx) + p(x, x) + p(Tx, Tx)

]

+ c
[
2p̃(y, Ty) + p(y, y) + p(Ty, Ty)

]
.

Set d = 2p̃ and ϕ(x) = p(x, x). By Lemma 3.4(2), then this statement holds. �

Example 3.6 Let X = [0, +∞). Define p : X × X× → [0, +∞) as follows: p(x, y) = max {x, y}
for all x, y ∈ X. It is clear that (X, p) is a partial metric space. Define a mapping T : X → X
by Tx = x

1+x for all x ∈ X, and taking γ (a, b) = a+b
1+a+b for all a, b ∈ (0, +∞). Thus, all the

conditions of Theorem 3.5(1) are satisfied and obviously x = 0 is a fixed point of T .

Definition 3.7 Let p be a partial metric and (X, p̂) be the corresponding quasimetric space
defined in Theorem 2.6, i.e., p̂(x, y) = p(x, y) – [αp(x, x) + βp(y, y)], 0 ≤ α,β ≤ 1,α + β = 1
and α �= 1

2 , β �= 1
2 , for all x, y ∈ X. (X, p) is said to be a strong complete partial metric space

if limm>n→+∞ p̂(xn, xm) = 0 can imply limn→+∞ xn = x for some x ∈ X.

Remark 3.8 A strong complete partial metric space is a complete partial metric space, but
the converse may not be true.

In fact, by (P4), we have

p(xn, xm) – p(x, x)

≤ p(xn, x) + p(x, xm) – 2p(x, x)

= p̂(xn, x) + p̂(x, xm) + αp(xn, xn) + βp(xm, xm) – p(x, x),

for all n, m ∈ N
+. Since (X, p) is a strong complete partial metric space, we have

limm>n→+∞ p̂(xn, xm) = 0 and limn→+∞ xn = x, which implies that limm,n→+∞[p(xn, xm) –
p(x, x)] = 0, namely, (X, p) is complete.

The following example shows that a complete partial metric space may not be a strong
complete partial metric space.

Example 3.9 Let A = {ai : ai = 2i, i ∈N
+} and B = {bi : bi = 2i + 1, i ∈ N

+} be two disjoint
infinitely countable sets, and X = A ∪ B. Define a function p : X × X → [0, +∞) by

P(x, y) =

⎧
⎨

⎩
1, x = y ∈ A or x = y ∈ B;

1 + 1
i + 1

j , x �= y and {x, y} ∈ {{ai, aj}, {ai, bj}, {bi, bj}}.
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It is not difficult to prove that (X, p) is a complete partial metric space. Set xn = 2n,
xm = 2m + 1 for all m > n, where n, m ∈ N

+. Then, we have p̂(xn, xm) = p(xn, xm) –
[αp(xn, xn) + βp(xm, xm)] = 1

n + 1
m , and we can deduce limm>n→+∞ p̂(xn, xm) = 0. However,

limn→+∞ xn does not exist.

Theorem 3.10 Let p be a partial metric and (X, p̂) be the corresponding metric space de-
fined in Theorem 2.6, i.e., p̂(x, y) = p(x, y) – [αp(x, x) + βp(y, y)], 0 ≤ α,β ≤ 1,α + β = 1 and
α �= 1

2 , β �= 1
2 , for all x, y ∈ X, and satisfies the following conditions:

(1) (X, p̂) is a strong complete partial metric space.
(2) f : X →R is a lower semicontinuous function bounded from below.
(3) Let ε > 0, there exists x0 ∈ X such that f (x0) ≤ infx∈X f (x) + ε for all x ∈ X .

Then, there exists a point x∗ such that p̂(x0, x∗) < 1.

Proof For any ε > 0, we denote T(x, y) = εp(x, y). Suppose

Sn =
{

t : f (t) + T(t, xn) ≤ f (xn) + αT(t, t) + βT(xn, xn)
}

.

It is easy to see that xn ∈ Sn, namely, Sn �= ∅. Take xn+1 ∈ Sn, such that

f (xn+1) – inf
Sn

f ≤ f (xn) – infSn f
2

.

We have that the sequence {f (xn)} is nonincreasing and bounded from below. Hence,
{f (xn)} is a Cauchy sequence. We prove in the following steps:

Step 1: By (P4), we can deduce that

f (t) + T(t, xn) = f (t) + εp(t, xn)

≤ f (t) + ε
[
p(t, xn+1) + p(xn+1, xn) – p(xn+1, xn+1)

]

= f (t) + T(t, xn+1) + T(xn+1, xn) – T(xn+1, xn+1).

For any t ∈ Sn+1, we have

f (t) + T(t, xn+1) ≤ f (xn+1) + αT(t, t) + βT(xn+1, xn+1).

Then,

f (t) + T(t, xn)

≤ f (xn+1) + αT(t, t) + βT(xn+1, xn+1) + T(xn+1, xn) – T(xn+1, xn+1).

Since xn+1 ∈ Sn, we have that

f (xn+1) + T(xn+1, xn) ≤ f (xn) + αT(xn+1, xn+1) + βT(xn, xn).
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Then,

f (t) + T(t, xn)

≤ f (xn) + αT(xn+1, xn+1) + βT(xn, xn) + αT(t, t) + βT(xn+1, xn+1)

– T(xn+1, xn+1)

= f (xn) + αT(t, t) + βT(xn, xn),

which implies that t ∈ Sn, then Sn+1 ⊂ Sn.
Hence, for any xm ∈ Sm, we have

f (xm) + T(xm, xn) ≤ f (xn) + αT(xm, xm) + βT(xn, xn),

for all m ≥ n.
Step 2: By step 1, we have

T(xm, xn) – αT(xm, xm) – βT(xn, xn) ≤ f (xn) – f (xm),

for all m ≥ n. Since {f (xn)} is a Cauchy sequence, we have

lim
m>n→+∞

[
T(xm, xn) – αT(xm, xm) – βT(xn, xn)

]
= 0,

which implies that limm>n→+∞[p(xm, xn) – αp(xm, xm) – βp(xn, xn)] = 0, namely,
limm>n→+∞ p̂(xm, xn) = 0. Since (X, p̂) is strong complete, there exists some point x∗, such
that limm→+∞ xm = x∗, and limm→+∞ f (xm) = f (x∗).

Furthermore, for any m ≥ n, we have

f (xm) + T(xm, xn) ≤ f (xn) + αT(xm, xm) + βT(xn, xn),

which implies that

f
(
x∗) + T

(
x∗, xn

) ≤ f (xn) + αT
(
x∗, x∗) + βT(xn, xn),

so x∗ ∈ Sn.
Step 3: From step 1 and step 2, we have

T
(
x∗, x0

)
– αT

(
x∗, x∗) – βT(x0, x0)

= lim
n→+∞

[
T(xn, x0) – αT(xn, xn) – βT(x0, x0)

]

= f (x0) – αf
(
x∗) – βf

(
x∗)

= f (x0) – f
(
x∗)

≤ f (x0) – inf
x∈X

f
(
x∗) < ε,

which implies p(x∗, x0) – αp(x∗, x∗) – βp(x0, x0) < 1, namely, p̂(x0, x∗) < 1. �
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