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1 Introduction
Stancu [1] introduced for each # € N the following sequence of beta-type operators in-

cluding improper integral:

nx—1

u
nx+n+1 g(u) du.

1 o0
Lu(g,x) =
(%) B(nx,n + 1)_/0 1+u

Here, g is a real-valued bounded function defined on [0, 00), which is measurable on
[a,b] C [0,00), and L, is linear and positive for each n € N. Abel and Gupta estimated
the rate of convergence of the sequence of these beta-type operators for the functions of
bounded variations [2]. Besides, Gupta et al. obtained some results for the functions with
derivatives of bounded variation in [3]. The quantum generalization of the sequence of
the operators L, was defined by Aral and Gupta in [4]. They gave some direct results and
an asymptotic formula.
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We initially commence by recalling certain notations of quantum calculus. For nonneg-
ative integers k = 0,1,2,..., the quantum integer denoted by [k], is defined by

k, g=1.

It is obvious that the quantum integer [k], is reduced to the classical nonnegative integer
k as ¢ — 1. The quantum factorial of nonnegative integer k denoted by [k],! is defined
as follows:

Kl k=11, k=1,2,...,

(k]! =
o, k=0.

Let i, k be nonnegative integers such that 0 < k < n. The quantum binomial coefficients
denoted by [Z]q are defined by

nl [n],!
k q‘ [K]g!ln — K1t

For A > 0, the quantum improper integral depending on A is defined by

]0 Af(bt)%bt:%f(%)%(l—q),

provided that the series to the right-hand side of the equality is convergent. The quantum
beta function including quantum improper integral depending on A is defined as follows:

ua—l

%
B,(a,b) = K(A, ——d,u,
b =K [ du

where the quantum Pochhammer symbol is denoted by

n-1

(a+b)s=]](a+qb).

Jj=0

Furthermore, K(y, u) (see [5]) denotes the following notation:
1 1\*
K(y,u) = —y”<1 + —) L+9),7"
y+1 /4
which satisfies the following recurrence formula:

KA,u+1)=q"K(A,u).

For u,v > 0, another definition of quantum beta function is given as follows:

1
B, (u,v) = / Y1 - qy);_1 dgy.
0
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The relation between quantum beta function and quantum gamma function is known with

the following equality:
L ()T, (v)
By(u,v) = +—L—=.
a1, v) Ty +v)

Extensive details about the quantum calculus can be found in references [5, 6].

Aral ve Gupta [4] defined the following sequence of quantum beta-type operators:

K(A, [n]4x) 00/A ulMqx-1

=7 A —  o(d"u)d,u. (1.1)
Bq([}’l]qx, [Vl]q +1) Jo 1+ u)é”]qﬂ[”]q*lg(q ) g

Si(g(r),x)

Here g is a quantum improper integrable function defined on [0,00), g € (0,1). Aral and

Gupta calculated the following equalities:

Si(1,x) =1, (1.2)
Si(t,x) =x, (1.3)
([n] % + 1)x
5122, ) = W+ D (14)
(=52) q([n]q - 1)
and they also obtained the mth-order moment as follows:
SZ(tm,x) _ Cy([nlgx + m)Ty([n]y; —m + 1) (15)

B Fq([”l]q-?C)Fq([n]q + 1)qm(m—1)/2 :

Recently, it has been studied on approximation properties of varied bivariate operators.
For instance, readers can see references [7—10].

In this study, we define tensor product kind bivariate quantum beta-type operators. We
investigate inequalities estimating the error of approximations and present numerical re-
sults. In Sect. 2, we construct tensor product kind bivariate quantum beta-type operators,
and we give some auxiliary results. In Sect. 3, we give inequalities estimating the error of
approximation on rectangular regions. In Sect. 4, we give an inequality in weighted mean.
In Sect. 5, we construct generalized Boolean sum operators of tensor product kind bi-
variate quantum beta-type operators and give inequalities estimating the error of approx-
imation by means of the mixed modulus of continuity for Bogel continuous and Bogel

differentiable functions. In Sect. 6, we present numerical results.

2 Tensor product kind bivariate operators and auxiliary results
In this section, we introduce tensor product kind bivariate quantum beta-type operators

and give some auxiliary results.

Definition 1 LetR, = [0,00),A1,45 >0, q1,92 € (0,1) and /4 be a bivariate continuous and
bounded function defined on R, x R,. For all (x,y) € R, x R, and n;, ny€ N, we define
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tensor product kind bivariate quantum beta-type operators by

]<(A17 [nl]qlx) 1<(A2r [n2]q2y)

Bql([nl]qlx: [nl]ql + 1) qu([”Z]qzy: [n2]q2 + 1)
/% f% [Vlﬂqlx—l V[ﬂz]qzy—l
X
0 0 (1+u );m g %+lnlg +1 1+ V)E;;Z]qz}’*[”ﬂ@*l

X h(q1 iy, qz[”Z]qzyv) dg,vdg u.

SIL (h(z,0);%,y) =

ni.ny

It is obvious that the tensor product kind bivariate quantum beta-type operators are
linear positive operators.

Lemma 1 Thefollowing equalities are valid for the tensor product kind quantum beta-type
operators:

@) St (h(r,0)xy) =S, (S, (h(r,0);02)s 71),

i) SUL (h(r,0)x,) =S}, (S5, (h(r,0)q01); 42),

where

K(Ay, [m1]4,%) ylmla -1
Sz, (h(x,0)q1) = At +1)/

Bq1 ([nl] % [1’11 q1 [nl]ql x+[mlgy +1

x h(q bnlgy >y, o)dgu

and

S, (h(z,0);q2) =

K(Ay, [13]4,9) / plmlgy-1
qu([nz]q2y’ n2 © + 1) [7l2]q23’+["2]q2+1

x h(t,q> [”2]‘12yv) dg,v.

Proof The proof of lemma is obvious by considering the definition of 5}, and Sy,; there-
fore, we omit the proof. O

Lemma 2 We have the following equalities for the tensor product kind bivariate quantum
beta-type operators:

i) Shh@Lxy) =1,
(ii) SZ}Z;(I x,9) = x,

(iii)  SPR(o5%,9) =,
q1([mly - 1)

( 2;96, ) _ ([”2]q2y+ 1))’

(iv) ST (t%x,y) =

ny,ny

71,02
(V) Sm ny QZ([Vlz]qz ~ 1) s
(vi) Sin (t%%,y) = (Imlgx + 2)([mlgx + D

¥ (Imlgy - D(Imlg, -2)

Page 4 of 20
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([12] gy + 2)([m2] g,y + D)y
723 ([n2)g, — 1)([m2lg, —2)°
([m1]gyx + 3)(Im] g% + 2)([m1] g + Dx
q1%([m1]g, — D([mlg —2)([m1lg —3)

. (1) gy + 3) ([l gy + 2) ([l gy + 1)y
9192 (4. - 92 92 92 )
) S (75%9) = S Gl = Di(imalgy = 22l —3)

(vii) SZ}:Z% (Gs;x,y) =

(viii) sggh%mﬁz

Proof Using Lemma 1, with a tiny calculation, (i)—(iii) can be obtained. Along with
Lemma 1, by using the formula for the mth order moment given in (1.5), (iv)—(ix) can

be simply proved; therefore, we omit the proof. d

Lemma 3 Let ny, ny € N be sufficiently large, for all (x,y) € R, x R,, we have

1
Sa142 ((‘L’ _ x)Z;x’y) _ O( [n1lqy

ny,ny 2 1
X O(m), 1<ux,

)y 0<x<],

1
O(m), 0<y=<l,
»?0(=1-), 1<y,

["2]1{2

St (@ =2)5%) =

O(+-), 0<x<1,

Sa192 ((.L. _ x)4;x’y) — lmlqy
e 20(—=—), 1<«
[”I]ql

1
O(m), 0<y=1,
y40([;), 1<y.

n2lgy

S8 (0 =) =

Proof By considering Lemma 1, since 1 — gq; < ﬁ, we can write
1— a1 y,2 1
SZlqu ((‘L’ _x)2.x y) _ ( q1 + [n1lqy )i + [mlg X
1’}’[2 ) ol _
- g

= L+ X%+ 1
[mlg, (m1lg,

=< ! (2x2 + x)

- [nl]ql

which implies

STL42 ((T _x)z;x,y) _ 0] [milgy

ny,ny

Similarly,

1
O(m), Ofyfl,

SiE (0 =9)%xy) =
v ) PO 1<y
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By considering Lemma 1, we get

S22 (v - %)% %,9)

ni,ny

12413-3041°+1841° . 3641°-33q:1° |, 1841°
1_4q13 +6q15—3q16+ g1 91" +15q1 91 91 g1

) [nﬂql mlgy® " bley® g
(1- [nl]q - [”1]q - [”1 )ql
6-12413+641° n 36413-3041° 3641°
[nl]ql [Wl]qlz [nl]QIS 3

+ X
_ 1 _ 2 _ 3 6
S TTYPRAS Sl LG Rl e L

11-84,3 24
7+ 3
[nl}ql [nl]ql 2

X
1
[Vll]ql)(l )1 - [Vll )q16

+
(1-

[nl]ql

Since 1 —46113 +6q1° =3q1°=(1-q)1+q1 + 1)1 -3q*) < 1-q1 <
; <
[n1]q1 [711]

[” ]q [” ] =

1 1 1 q1
we Obtall‘l

T 39

1
SZ%'Z;((T x)4;x,y)=0< >(x4+x +x%), x>0
[Vll]ql
That implies
O(7—), 0=<x<1,
SHn((z - a)hay) =

4 1
X O(—[nl]q1 ), 1<

Similarly, we get

O(+-), 0<y<l,
SZ} Z; ((0 —)’)4;96;)/) = 40[”(2]% - Y 5
<y.

[n2]g,

3 Inequalities on rectangular regions

In this part, we give some inequalities estimating the error of approximation in view of the
complete modulus of continuity, the partial modulus of continuity, and the Lipschitz class
for the bivariate continuous functions on rectangular regions. Firstly, we give an auxiliary

result possessing an important role in the proofs.

Lemma 4 Let p,r > 1 such that }7 + % = 1. Let f and g be any q-improper integrable func-
tions defined on [0, 00). Then we have the following inequality:

00/A 00/A 1/p 0o/A 1/r
If () |g(ue) dgue < ( If ()" g () dqu) < / g(u) dqu> .
0 0 0

Page 6 of 20
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Proof Let p,r > 1 satisfying }7 + % =1 and f, g be any g-improper integrable functions
defined on [0, 00). By the definition of the g-improper integral, we can write

g dgu=3 " p(%ﬂ))g(";")%"(l—m
S A TAT.
‘%P(A)‘g(A)A” ?

1 n n n
EHHDG

By rearranging the second series in (3.1) for n = —k, we obtain

i S (5)(5) 500

folgt)d, 20: A A)A
HKE)S
+ — gl &5 ) 51 -9 (3.2)
;P<A A)A

By applying the Holder inequality to (3.2), we get

oo n\ |P n n Up
(1) g00) g - 12}/(%) g(%)%u—q)}
00 . . 1/r
| 2e(5)5a-0)
n=0
o0 AN kN ok Up
ASh ) () T oo
k=1
00 k k 1/r
X:Zg(%)%u—q)} . 63)

By regulating (3.3) for k = —n, we have

o0/A

oo/A

o0/A

o0/A

0 n\ |P n n Up
e0]tu) dy = {2;0}/(%) o(%)%a —q)}
00 " " 1/r
R

Lastly, by considering the definition of g-improper integral, we reach that

oo/A oo/A 1/p oo/A 1/r
If ()| g(w) dqu < ( / I () g ) dqu) ( / 2(u) dqu> ) 0
0 0 0
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Let A be a compact subset of R2. For # € C(A), the complete modulus of continuity for
the bivariate function /4 is defined as follows:

w(h;81,82) = sup{ | h(x1,1) — h(x2,32)| ¢ |21 — %2 < 81, |31 — 32| < 82},

where 8; > 0, 8; > 0 and (x1,¥1), (%2, y2) € A, which possesses the following property:

[ 30) — )| < w(h;al,az)(l , "‘18"”')(1 s ”'). (3.)
1 2

It is clear that

lim w(k;81,82) =0.
81,80—0*
Let rectangular regions be denoted by I such that I := I; x I, where I; = [0,r;] for
ri,ry>0andi=1,2.
Let {g1,,, } and {g2 ,, } be any sequences such that g1 ,,, 42,4, € (0,1) satisfying the follow-
ing condition:

lim g, = hm | Qo = 1. (3.5)

np— 00

Theorem 1 Let {q1,,,} and {q2,,,} be any sequences such that qi,,,q2, € (0,1) satisfying
the condition given in (3.5). If any h € C(Iy), then the following inequality holds:

|Smy 2 (h(r, 0);,y) = ho,y)| < oo (B ™o 1y ).

Here

2
’uflvlql,nl _ ((1 _ql,l’ll)[nl]ql,rll + QLnl)x +x’ (36)

i (mlgy,, = 1)

1- + 2+
Mi/lvqurq _ (( qz,nz)[WZ]qz,rlz 42,;12 ))’ J" (37)
612,n2([”12]q2,n2 - 1)

A1,n1 92,19

Proof By applying the operators S, to (3.4) and by considering the linearity and
epe e 41,192, .
positivity of the operators S, ",  ~, we can write

|5317112q2"2( (t,0);%,9) = h(x,y)|

< Spb ™" (|h(z,0) - hx,

5%,9)

1 I 1 M1 1
< w(h;él,éz){SZinlzqz' *(Lx,y) + 8—52’,;}2@’ (It - xlx,y)
1

N n 1 AR n
6—52 nlzqz 2(lo —ylx,y) + F e SZi,nlzqz (It —xllo —yl;x,y)}.
2 182

By applying Lemma 4 for p = r = 2, we obtain
[ Sty (h(T,0)52,9) = h(x,)]

< w(h;81,8,) {SZ;Z;"“'"Z (1;,9)
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1 M M M 1
T Sy ((x = %)%2,9)y Sayo ™" (152, )

\/SZi T (o —y)Z;x,y)\/SZi T (15, )

1
s S (v = x)2(o —y)i’;x,y)\/SZi’leqz"Z(I;x,y)}.
1

In view of Lemmas 1 and 2, after simple calculation, by selecting §; =/ unlq " and §, =

uif "2 we get the desired result. O

For h € C(A), the partial modulus of continuity with respect to x and y is defined as
follows:

wi(h;81) = sup{ |h(x1,) — h(x2,9)| : 141 — 20| < 81},
wy(h;82) = sup{|h(x,y1) —h(x,yz)| tyr—yal = 52},
where 8; > 0, 8; >0, (x1,%), (x2,%), (x,y1) and (x,y,) € A.

It is clear that w;(%;81), wa(h;8,) possess similar properties as to the usual modulus of
continuity; therefore, we have the following inequalities:

Ry
1,9) — h )] < wl(h;al)(l ; %) 5150,
1

RY)
e, 1) — e, 32)| < a)z(h;&z)(l . Uaiy’) 5 0.
2

Theorem 2 Let {q,,,} and {q,,.,} be any sequences such that q1 ,,q2,., € (0,1) satisfying
the condition given in (3.5). If any h € C(Ir), then the following inequality holds:

|531;:112q2ﬂ2( (r,0)%,9) - hix,y)| < 2a)1(h;uﬁ'1 ) + 20 (B anz)’

V242,12

where ;""" and 1 *"™ are as in (3.6) and (3.7), respectively.

Proof By the definition of partial modulus of continuity, by considering the linearity and

e q1,n1 92, .
positivity of the operators Sn1 'f}z "2 , We can write

[Sa ™2 (h(r, 0 );%,9) = hx,9)| < S ™" (|h(z,0) = h(x,9)]%,9)
< S (|h(z,0) - hix, 0)|;%,9)
+ Sun 2 (|h(x, o) = h(x,9) |2, )

1
< wl(h;al)(l + 8—531:2;’”’”2 (r- xﬂm))
1

1
+ wz(h;51)<1 + 5—531’3'412'(12'"2 (o —y)Q;x,y)).
2

In view of Lemmas 1 and 2, after simple calculation, by selecting &; = ;L,,lq "I and &, =

,uj,’,zq "2, we complete the proof of the theorem. d
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Now, we consider the following functions of Lipschitz class of & € C(A) denoted by
Lip,, (40, A) satisfying

A1, 91), —h(x2,32)| < Milxy = %21 Iy1 = al”, My >0,

where (x1,%1), (%2,72) € A and 0 < 0 < 1. Here is the aim of selecting this Lipschitz class to
being convenient that Lemma 4 is applicable.

Theorem 3 Let {q1,,,} and {q>,,} be any sequences such that qi,,,q2, € (0,1) satisfy the
condition given in (3.5). If any h € Lip,,(h; 0, Iz), then the following inequality holds:

S (B, 0);2,9) — h(x,9)| < My o g2 ), My, > 0.
%:q1,n1 Y42,nn . .
Here, (,,, "' and py, * are as in (3.6) and (3.7), respectively.

Proof Since h € Lip,,(h;0,Iz), by Lemma 1 and considering the linearity and positivity of

ALy 12, .
the operators Sy, 2, we can write

IS (h(T, 0)52,y) = hix, )| < S ™" (|h(z, o) - hx,

$%,5)

T1ny 02,
< MpSujy 2 (|7,' x| —y|9;x,y).

In the last inequality, by applying Lemma 4 for p = 2, r = 32;, we obtain

ISn 2 (B, 0);%,y) — hix, )|

< My {SIILP" (v = x)2(0 - 3)%2,9) ) {Shm P2 (15, y)}H/2

_Mh{ / qunlu;}:quZ,nz }9’

which completes the proof of the theorem. O

4 Aninequality in weighted mean
Let p(x,7) = 1 +x* +y* be a weight function and R, = [0, 00). Let us denote by B, the space
of all functions / defined on R, x R, satisfying

!h(x,y)| <Mupx,y), My>0.

Let C, denote the subspace of all continuous functions % of B, with the norm

|7 (x, )]

IAll, = .
P (xy)eRy xR, P(x:y)

Let C) denote the subspace of all functions in C,, such that

, h(x,y)
lim
N x2+y2—00 p(x,y)

exists finitely.
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Ispir and Atakut [11] introduced the following weighted modulus of continuity for each
he Cg and 43,8, > 0 by

|h(x + &,y + 1)]
Q,(1;81,82) = sup sup —————,
? e (xy)eRy xRy 05/;581 ,O(x»y)p(lﬂ l)
0<I<dy

which has the following property:
(151181, 2287) < 41+ A1)(L +A2)(1 +8:2) (1 + 85%) (11581, 82) (4.1)
for A1, 12 > 0. From the definition of 2, we have

\h(t,0) = h(x,y)| < (L+x* +9*) (L + (r =2)*) (1 + (0 —9)*)
x Q, (k17 =%, |0 = yl). (4.2)

Now, we estimate the error of approximation by means of the weighted modulus of con-
tinuity.

Theorem 4 Let {q1,,,} and {q2,.,} be any sequences such that qi,,,,q2, € (0,1) satisfying
the condition given in (3.5) and ny, ny € N be sufficiently large. If any h € Cg, then we have
the following inequality:

Sql,nl:q2,n2 hT, " —h ) y .
sup [Snyms (h(r,0) y) (% )’)| EKQp(h; /M;vlllh,]’ /Mgz,z)’

(x,y)€Ry xR, p‘”(x,y)

where K is a certain constant, ¢ > 2, uf,fl " and pci'g *"2 are as in (3.6) and (3.7), respec-

tively.
Proof By considering inequalities (4.1) and (4.2), we can write
|h(t,0) - h(x,y)|
<aftex s )1 ()1 o -0) (10 ) (14 1222)
x (1+81%) (1 +8,%)Q, (1581, 82)

|t — x|

=4(1+x+y°)(1+8:%)(1+68?) (1 + +(t—-%)2+ haj(t —x)2>

1 1

w (141922 oy 192 Q, (1181, 8,).
5 5

By applying the operators SZ;’,';}Z'@’@ to the above inequality, taking the linearity and posi-

PR 4d1,n1 92, . .
tivity of S, % into account, we obtain

[Sh ™ (h(z,0);%,9) ~ h(x,9)|

= S ™ (e, ) = i)

$%,Y)
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<4(1+x*+5°)(1+8%)(1+68?)

) T—x%
X SZi‘,’leqz'”z (1 + | 5 | +(t-x)2+

h(S;x'(f - x)z;x,y)

X Syt A2 <1 + 7 =1 +(0—9)*+ lo =yl (o —)’)Z;x,y)
2
Qp(h; 81; 82)
= 4(1 +x +y2)(1 + 812)(1 + 822)

L aim, 1y 12,
x {1 + S—Sm;é 2 (|t =xl5%,9) + Sy 2 (T = %)% %,9)
1

8—551’:}2"“2 (It —#l(r —x)z;x,y)}

1

x {1 S—SZiZEqZ"Z(IU —Yx,9) + Sy 2 (0 = 9)%%,y)
2

8_5’2 P2 (1o = yl(o = )% %,y) } Q,(h;81,8,).
2

By using Lemma 4 for p = g = 2, we calculate that

[t ™" (h(z,0);%,9) = h(x,9)|

1 11 1 n 1
<4(1+x*+y%) {1 + 5—\/52',,}2(]2' 2((r = %)% %) St 2 (1 ., y)
1

q1,n1 92,
+Sumy 2 (T = %)% %,9)

q1,n1 q2n2 41,n1 an2
\/S,,1 1y r x)%x,y Sn1 1y r x)z;x,y)

q1,n71 92, n2 41,11 92,19
{1 + Sn1 1y 0 _)’)2 x; \/Sn1 1y 1 x;y)

+ S P (0 = 9)%%,9)

1 n 1 n 1
L S (0 = )% x,9)1/ S " (0 —y)z;x,y)}
2

x (1+8:%) (1 +8,°) €2, (581, 82).

By considering Lemmas 1, 2, and 3 and choosing 8; = \/ iy " and 8, = /sy ", we have

four cases:
For 0 <x <1,0 <y <1, there exists K; > 0 such that

Sql,nl’qZ,nz (h(f,a);xry) _ h(x,y)| < I(l(l + x2 +y2)

ni,ny
X () o™ A ing ™). (4.3)
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For 0 <x <1, y> 1, there exists K; > 0 such that

Syt A2z (h(z,0)%,y) = h(x,9)| < K> (1 +2° +y*)(1 +5%)

X Q, (5  ton™ A ong ™). (4.4)

For x> 1,0 <y <1, there exists K3 > 0 such that

St (h(t,0);,9) = h(x,9)| < Ka(1+22 +57) (1 + &)

x Qp (B o™ A ing ™). (4.5)

For x > 1, y > 1, there exists K4 > 0 such that

[Sast, 2 (1, 0)5,) = h, )| < Ka(1+2% + %) (1+2%) (1 +57)

x Q, (h; v/ /L;,C’lql'”l A/ ;LJ,,,'ZZ”Z). (4.6)

By (4.3)—(4.6), for all (x,y) € R, x R, and ¢ > 2, we have

|Sql,n1 42,9

ni,ny (h(T:U);x:J’) —h(x»)’)| <
p?(x,) B

1+2+1+92+ (1 +a2)(1 +9?)
(1 +x%+y2)e-t

Xq1,n Y:92,n
x (B 1y " oy )

Ks

which implies

Szl,r}l’ll]qz’nz h ) 3% _h ) %q1,n "q2,n:
sup |y (h(z,0);%,9) (%, 9)| SKQp(h; /Mnqu L /MZZZ' 2)' .

(xy)eRy xRy P‘p(x,)’)

5 GBS variant and inequalities
Bogel introduced Bogel continuous and Bogel bounded functions. We recall the basic no-
tations given by Bogel. Details can be found in [12-14].

Let A be a compact subset of R2. Any function #: A — R is called Bogel continuous
function at (a,b) € A if

lim Aqg)h(a,b) =0,
a,b)

(T,0)—>(

where A, h(x,y) denotes the mixed difference defined by
Aw,oyh(x,9) = hx,y) — h(x,0) — h(t,y) + h(z,0).

Let A be a subset of R2. A function % : A — R is Bégel bounded function on A if there
exists M > 0 such that

|A(r,a)h(x;y)| =< M

for each (z,0), (x,y) € A. If A is a compact subset of R?, then each Bégel continuous func-
tion is a Bogel bounded function.
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Let C,(A) denote the space of all real-valued Bogel continuous functions defined on A
endowed with the norm

I1]15 = sup{| Ar.) i, 9)| : (x,9), (T, 0) € A}

Let us denote by C(A) and B(A) the space of all real valued, continuous and bounded
functions defined on A C R?, respectively. C(A) and B(A) are Banach spaces endowed
with the norm

l72]] = sup{|h(x,p)| : (x,7) € A}.

It is obvious that C(4) C C,(A).
The mixed modulus of continuity of # € C,(A) is defined by

wmixed(h; 81: 52) = Ssup sup |A(x+k,y+l)h(xyy)
(ry)€A 0<|k|<é;
0=|/|<éy

’

where (k,[) e R, x R, such that (x+k,y+/) € Aand é; >0, 8, > 0. For (7,0), (x,y) € A and
81 >0, 82 > 0, the mixed difference A(; 4)/(x,y) produces the following inequality:

| A oyh(,9)] < (1 L - x|)<1 . '“(;y ')wmixed(h;al,sz). (5.1)
1 2

Now, we define generalized Boolean sum (GBS) operators of the tensor product kind
bivariate quantum beta-type operators as follows:

B2 (h(z,0);%,y) = ST (h(z,y) + h(x,0) = h(1,0); %, y)

ni,ny ni,ny

for all (z,0),(x,y) € I and h € C(Ig), where Iz := I; x I, is rectangular regions such that
I;=[0,r;] fori=1,2 and ry,7r5 > 0.
We present the following inequalities estimating the rate of convergence of GBS variant.

Theorem 5 Let {q1,,,} and {q2,.,} be any sequences such that qi,,,,q2, € (0,1) satisfying
the condition given in (3.5). Ifany h € Cy(Ir), then for all (x,y) € Iy, the following inequality
holds:

Bty (h(1,0);%,9) = 5, )| < dmisea (B sy ™ 10",

where Mﬁlq " and /L{,’f > are as in (3.6) and (3.7).

Proof By considering the definition of A )k(x,y) and (5.1), by applying Lemma 4 for
p =r =2, we can write

|BZ§’,’1}2'q2‘"2 (h(r,0);%,y) - h(x,)|

41,n192,n
< Sni,nlz 2 (‘A(r,a)h(x:y)

5%,5)

A1,n1 92,19 q1,n1 92,19

1 1
< wmixed(h;81:82){1 + (S—Snl,nz (17 —xl%,y) + 8_5;11,;12 (lo = ylx,y)
1 2
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S (e =l 1)

1 11 1 WM N
= a)mixed(h;lslj(SZ){ 1+ 8_\/531’”12@ ) x) Y \/SZi n12q2 2 1 x,y)
1

1

82 el (2 —y)z;x,y)\/SZi o (14, y)

S S (0P P S i)

X Wmixed (h: 1, 82)

By considering Lemmas 1 and 2 and by choosing §; = 4/ uf,'lql’"l and 8§, = ,u{,j "2 we com-
plete the proof. d

A function / is Bogel differentiable at the point (a, b) € A C R? if the limit

) A pyh(a, b)
lim ——————
(t,0)=(ab) (T —a)(o —b)

exists, which is denoted by Dgh(a, b).
Let us denote by Dy(A) the set of all Bégel differentiable functions defined on A C R2.

Theorem 6 Let {q,,,} and {qa,.,} be any sequences such that q1 ,,,q2,., € (0,1) satisfying
the condition given in (3.5). If any h € Dy(Ig) such that Dgh € B(Iy), then for all (x,y) € I,
the following inequality holds:

|BZi:;l12qu,n2 (h('z:, G);x,y) - h(x,y)|

- 1 X1 Y2
<K (mixed (53 tny "/ 1y %) + IIDgh])),
[nl]ql n [n2]q2 1

V92,19

where unq " and iy, " are as in (3.6) and (3.7), K is certain constant.

Proof Let h € Dy(Ig). From the definition of Bogel differentiability, we have
woyh(x,y) = (r —x)(0 - y)Dgh(n,§) (5.2)
forallx < n <7,y <& <o. Therefore, we can write
Dgh(1,§) = Ar.0)Dsh(n,§) + Dgh(n, y) + Dgh(x,§) — Dgh(x, ). (5.3)

Since Dgh € B(Ir), we have |Dgh(x,y)| < ||Dgh|| for (x,y) € Iz. By considering (5.2) and
(5.3), we obtain

|Ss ™2 (A ey h(, )i %,9)|
= [SIm P2 (2 — x)(o — y)Dh(n, £);%,9)|

$%,9)

< Spb ™" (17 - xllo - y||Dph(n, &)

Page 15 of 20
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< Suoh ™" (17 = xllo = 31| A0\ Dah(n,)];%,9)

q1,n1 92,1y
Snl,nz (|

t —x||o - y|{|Dsh(n,y)| + |Deh(x,£)| + | Dh(x,)

}ix.)
< Spb ™" (17 = x1|0 = Ylwmixed (Dah; [0 - %1, 16 = y1);%,)

+ 3|1Dghl S P (17 - xllo = yl;x,). (5.4)

Additionally, we have

wmixed(DBh; It —nl,lo - S|) = wmixed(DBh; It — x|, |o —}’|)

< (1+ —Ir—xl)(1+ —Ia—yl)
&1 8o

X Wmixed (Dh; 81, 82). (5.5)

From (5.4) and (5.5), we can write

| Bl (h(z,0)%,9) — h(x,9))|

q1,n1 92,1

2’5”1‘,’12 ) (A(T,g)h(x,y);x,y)‘

n1492,n 1 1042,
< {sZiznz” (17 =l =) + £-Swn ™ (7 =5l = yli )
1

91,1192,
_Sl'll nnlg " (|
82

1 SHh n
T -x|(0 —y)%xy) + ﬁsZi w7 (v = %)% o - y)5a, y)}

X Wmixed (DBh; 81; 62)

+ 31DshlIShym ™" (1T - xllo = yl;x,).
By applying Lemma 4 for p = r = 2, we get

B (1t 0)%,5) ~ h, )|

{\/sZi 1 (= 020 — )%, SIE (1, )

JsZi'::;””z (¢ = 2200 = 3)53)y S ™ (0 — %)

\/ SILT2 (1 620 - 325, )y Sk ™ (0 = )% ,3)
1 91,11 92,19 2 2
+ Wsnl ny ((T _x) (0 _y) )xry)

X Wmixed (Dph; 81,82)

q1my 42, Ty A2
+3||DBh||\/Sn1,’:112 "2 ((r = %)2(0 = 9)%%9) Sy 2 (15%,).

By Lemma 3, we have

1 92,1 1
S ((r - x)%a,9) = 0 . xell,
[nl]‘hnl
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11 ' 1
S (0 =3)%5%,9) = O(7>, yeb.
[HZ]Q2 1y
Also, we have

q1,n1 92, ql g2,
S (=20 = p)5%,9) = St ((r = %)% %,9)

d1,n1 92,
X Sy "2 ((0 = 9)%%,).

Therefore, by Lemmas 1 and 2, and by choosing §; = 4/ /Lﬁ'lq "1 and 8, = Mf,’f > we esti-
mate that

|lel’,7}2'q2‘”2 (h(z,0)%,5) - h(x,y)|

C1Cy %41, 92, C1C2
<4 [ mied (Dl oy " Mo ) + 31 Dgh|

o [nl]ql,nl [”2]&12,”2

’

[nl]qml [n2]q2,y,2
which implies

| B P (h(z,0);%,9) - h(x, )]

7 1 N 1
<K wmlxed \/ //Lfthl ! A /’Ljnlzqz ? + ||DBh||
[nl]ql My [n2]q2 )
where K = 4. /ci¢;. Thus, the proof of theorem is completed. d

6 Some applications and numerical results

In this part, we present the approximation errors of the tensor product kind bivariate
quantum beta-type operators and the GBS variant for certain functions on the certain
rectangular regions.

Let us denote by E(4, g) the approximation error of the function / to the function g.

Example 1 Let I} = I, = [0,4], then Iz = I} x I = [0,4] x [0,4] and K (x,y) = xy for each
(x,y) € Ir. Let n; = ny = n € N and let us choose q1,,, = ¢u> 92,1, = gn such thatg, =1 - -

then 81 := 81, = 82, := 82. hp is continuous on Ir. Since C(Iz) C Cy(I), ho is also Bogel
continuous on I;. Then the following numerical results of the approximation error of
St (hy) to hy are presented in Tables 1—4, while those of B2 (h) to h in Table 5.

Table 1 The approximation error of Sﬂﬂ;q” (ho) to ho by means of the complete modulus of continuity

n=1x10° n=1x10° n=1x 10*
8 =6, 0.6902146233 x 1072 0.2182668528 x 107! 0.6902780895 x 107
(ho;81,82) 0.5516953024 x 10” 0.1741370781 0.5474576332
E1 (S (ho), ho) 0.2206781210 06965483124 2.189830533

Table 2 The approximation error of Sq” 7 (ho) to hg by means of the partial modulus of continuities

n=1x10° n=1x10 n=1x10*
=6 04763962262 x 107 04764041901 x 1073 04764838409 x 1072
1 (ho;81) = w2 (ho; 8>) 0.1905584905 x 1073 0.1905616760 x 1072 0.1905935364 x 107!

EZ(SZ%Q” (ho), ho) 0.7622339620 x 1073 0.7622467040 x 1072 0.7623741456 x 107
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Table 3 The approximation error of Sq” 7 (ho) to hg by means of the Lipschitz functions on I for

0=01x10"
n=1x10° n=1x10° n=1x10*
8 =6, 06902146233 x 1072 0.2182668528 x 107" 0.6902780895 x 107!
M, 0.5517007928 x 10” 0.1741384101 0.5474605603
(5“” I (ho), ho) 0.5516953024 x 107" 0.1741370781 0.5474576333

Table 4 The approximation error of Sﬁf};q” (ho) to hg by means of the Lipschitz functions on /5 for

n=1x10°

6=01x10" 6=0.1x10"* 6=01x107
8 =6, 0.6902146233 x 1072 06902146233 x 1072 0.6902146233 x 1072
Mg 0.5517007928 x 107! 0.5517502090 x 107" 0.5522446144 x 107!

(SQ” I (ho), ho) 0.5516953024 x 107! 0.5516953024 x 107" 0.5516953025 x 107!

Table 5 The approximation error of Bﬁfn’q” (ho) to ho by means of the mixed modulus of continuity

n=1x10*

0.6902780895 x 107
04764838408 x 1072
0.1905935363 x 107!

n=1x10°

02182668528 x 107
04764041903 x 1073
0.1905616761 x 1072

n=1x10°

81 =6 06902146233 x 1072
Wmixed(ho; 81,62) 04763962262 x 107
Es(BI™" (ho), ho) 0.1905584905 x 1073

Table 6 The approximation error of Sq1 "‘ 2 (h1) to hy by means of the complete modulus of
continuity
n=1x10 n=1x10* n=1x10°
& 0.1182874529 x 107" 0.3740651406 x 107 0.1183130922
8 0.2182679440 x 107! 06903126124 x 107! 02185772687
w(hy;61,87) 08826171210 x 1072 0.2765639169 x 107" 0.8463458139 x 107"
a1,n192,n)

0.3530468484 x 107

0.1106255668

0.3385383256

a1,n1.92,ny

Table 7 The approximation error of S/,

continuities

(h1) to hy by means of the partial modulus of

n=1x10°

n=1x10*

n=1x103

hi;61)
h1;62)

q q
Er(Spy b2 (), )

0.1399192151 x 1073
04764089543 x 1073
03787201321 x 1074
0.1934252196 x 1073

04625944656 x 107

0.1399247294 x 1072
04765315029 x 1072
03787350577 x 1073
0.1934738320 x 1072

04626946755 x 1072

0.1399798779 x 107"
04777602239 x 107!
03788843285 x 1072
0.1939013872 x 107!

04635796401 x 107!

Example?2 Letl =

1-

nl’

[2,3]and I, = [2,4], then g =1} x I; = [2,3] X [2,4] and /1 (x,y) = xye™
for each (x,y) € I.Letuschoosen; =2n+1,ny=n—1foreachn e N, q; ,

— 1 —
=l-gq@m =

81 := 81, and 8y, := 82. Jy is continuous on Ir. Since C(Iz) C Cy(Iz), 1 is also

Bogel continuous on I;. Then we have the numerical results of the error of SZi f;}z’qz "2 (hy)

to /; in Tables 6 and 7, while those of B

41,11 92,ny

(h1) to hy in Table 8. Since there does

not exist My, > 0 such that |/ (x1,y1), —h1 (%2, y2)| < My, |1 — x2/%|y1 — 321%, that is, hy ¢

Lip,,(%; 0, Iz); therefore, the approximation error of S, s,

by means of Lipschitz functions.

41,11 92,19

(h1) to h; can not be obtained
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Table 8 The approximation error of Bﬁl’ﬂz’qz'ﬂz (h1) to hy by means of the mixed modulus of
continuity

n=1x10 n=1x10* n=1x10°
8 0.1182874529 x 107" 0.3740651406 x 107 0.1183130922
8 0.2182679440 x 107! 0.6903126124 x 107! 0.2185772687
Ormixed(h1;81,8) 0.3493860331 x 107* 0.3491971504 x 1073 0.3474832397 x 1072
Eg(si}j””;qz'”z (h1),h1) 0.1397544132 x 1073 0.1396788602 x 1072 0.1389932959 x 107!

7 Conclusions and discussion
Let (q1,,,) and (g2,1,) be sequences satisfying condition (3.5). Under condition (3.5), we
have

and

lim ——— =0,
11— 00 [nl]lh,nl

1

lim ——— =0.
ny— o0 [n2]q2,n2

Consequently, all the results in this study demonstrate the error of approximation for
the new defined tensor product kind bivariate quantum beta-type operators and the asso-
ciated GBS variant in different respects. Numerical results of Examples 1 and 2 concretely
illustrate that the approximation of S, "2 and Bjy7 ™" becomes better for increasing
value of # under condition (3.5) and show that the associated GBS variant possesses at
least better numerical results than the tensor product kind bivariate quantum beta-type
operator.

Lastly, this study can be extended to the following future problems. By considering the
reference [15], A-statistical convergence of the bivariate beta-type operators can be inves-
tigated; by using the definition of post-quantum beta function and post-quantum gamma
function in [16], a post-quantum analogue of the bivariate quantum beta-type operators
can be defined and its approximation properties can be investigated; and by considering
the reference [17], a bivariate exponential beta-type operator can be defined and its ap-
proximation properties can be investigated.
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