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1 Preliminaries
The concept of classical convexity has been generalized in various ways. Among numerous
generalizations, we pay attention to the MϕMψ -convexity described in [11].

Let ϕ and ψ be two continuous, strictly monotone functions defined on intervals I and
J respectively. By Mϕ we denote a quasi-arithmetic mean:

Mϕ(x, y; t) := ϕ–1(tϕ(x) + (1 – t)ϕ(y)
)
, x, y ∈ I, t ∈ [0, 1].

It is obvious that the power mean Mp corresponds to ϕ(x) = xp if p �= 0 and to ϕ(x) = log x
if p = 0. If it is clear from the text that the weight next to ϕ(x) equals t, then we omit
parameter t and simply write Mϕ(x, y).

We say that a function f : I → J is MϕMψ -convex if

f
(
Mϕ(x, y)

) ≤ Mψ

(
f (x), f (y)

)

for all x, y ∈ I and t ∈ [0, 1]. The MϕMψ -concavity and MϕMψ -affinity are defined in a
natural way. If ψ is strictly increasing (strictly decreasing), then f is MϕMψ -convex if and
only if ψ ◦ f ◦ ϕ–1 is convex (concave) in the usual sense [11, p. 68].

The most known examples are classes of MϕMψ -convex functions where Mϕ and Mψ

belong to {A, G, H}, where A, G, and H are weighted arithmetic, geometric, and har-
monic mean, respectively. Some of them are known under specific names. For exam-
ple, AG-convex function is usually known as log-convex function, GG-convex function is
called multiplicatively convex function, HA-convex function is named harmonically con-
vex function. Of course, AA-convex function is the usual convex function.
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A lot of examples of AG-convex or log-convex functions connected with various func-
tionals, which have appeared in the investigation of n-convexity, are given in [5] and [6,
pp. 105, 155-160, 177]. Every polynomial with nonnegative coefficients is GG-convex or
multiplicatively convex function, every real analytic function f (x) =

∑
anxn with an ≥ 0

is GG-convex on [0, R〉 where R is the radius of convergence [11, Chap. 2]. Particularly,
functions exp, sinh, cosh on 〈0,∞〉, arcsin on 〈0, 1] are GG-convex. Examples of special
functions which are GG-convex are the following: the gamma function, the Lobacevski
function, and the integral sine. In [3], an example of HG-convex function is given. Namely,
the function V –1

n (p) = 2–n �(1+n/p)
�(1+1/p)n which is connected with the volume of the ellipsoid

{x ∈R
n : ‖x‖Lp ≤ 1} is HG-convex on (0,∞). Also, it is AG-convex.

The aim of this paper is to give a separation (sandwich) theorem in this settings. A char-
acterization of pairs of functions that can be separated by a convex function is given in [2],
and it is stated as follows.

Theorem 1.1 Let f , g : I →R be two functions. The following statements are equivalent:
(i) For all x, y ∈ I and t ∈ [0, 1],

f
(
tx + (1 – t)y

) ≤ tg(x) + (1 – t)g(y).

(ii) There exists a convex function h : I →R such that

f ≤ h ≤ g.

As a consequence of the above-mentioned theorem, the Hyers–Ulam stability result for
convex functions is obtained also in [2]. Namely, if ε > 0 and f : I → R is a function such
that

f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y) + ε, x, y ∈ I, t ∈ [0, 1],

then there exists a convex function h : I →R such that

∣∣f (x) – h(x)
∣∣ ≤ ε

2
, x ∈ I.

Finally, we mention a sandwich theorem involving affine functions which are considered
in [12].

Theorem 1.2 Let I ⊆ R be an interval and f and g be real functions defined on I . The
following conditions are equivalent:

(i) There exists an affine function h : I →R such that f ≤ h ≤ g on I .
(ii) There exist a convex function h1 : I →R and a concave function h2 : I →R such

that f ≤ h1 ≤ g and f ≤ h2 ≤ g on I .
(iii) The following inequalities hold:

f
(
tx + (1 – t)y

) ≤ tg(x) + (1 – t)g(y),

g
(
tx + (1 – t)y

) ≥ tf (x) + (1 – t)f (y)

for all x, y ∈ I and t ∈ [0, 1].
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In this paper we show that the above-mentioned theorems have their counterparts in
the setting of MϕMψ -convex functions. We prove that two functions f , g can be separated
by an MϕMψ -convex function h if and only if

f
(
Mϕ(x, y)

) ≤ Mψ

(
g(x), g(y)

)

for all x, y ∈ I and t ∈ [0, 1]. In the same section we give a result for an MϕMψ -affine func-
tion which is a generalization of Theorem 1.2. The last section is devoted to the counter-
part of the Hyers–Ulam stability theorem.

2 Separation theorems
Theorem 2.1 Let ϕ and ψ be two continuous, strictly monotone functions defined on in-
tervals I and J respectively. Let f , g : I → J be real functions.

The following statements are equivalent:
(i) There exists an MϕMψ -convex function h : I → J such that

f ≤ h ≤ g.

(ii) The following inequality holds:

f
(
Mϕ(x, y; t)

) ≤ Mψ

(
g(x), g(y); t

)
(1)

for all x, y ∈ I , t ∈ [0, 1].

Proof Assume that ψ is an increasing function. Then ψ–1 is also increasing.
First we prove that (i) implies (ii).
Since h ≤ g ,

tψ
(
h(x)

)
+ (1 – t)ψ

(
h(y)

) ≤ tψ
(
g(x)

)
+ (1 – t)ψ

(
g(y)

)

and then

ψ–1(tψ
(
h(x)

)
+ (1 – t)ψ

(
h(y)

)) ≤ ψ–1(tψ
(
g(x)

)
+ (1 – t)ψ

(
g(y)

))
,

i.e.,

Mψ

(
h(x), h(y)

) ≤ Mψ

(
g(x), g(y)

)
. (2)

Using the fact that f ≤ h, h is MϕMψ -convex and inequality (2)

f
(
Mϕ(x, y)

) ≤ h
(
Mϕ(x, y)

)

≤ Mψ

(
h(x), h(y)

) ≤ Mψ

(
g(x), g(y)

)
.

Now assume that (ii) holds. For any u, v ∈ Imϕ, there exist x, y ∈ I such that u = ϕ(x),
v = ϕ(y). From (1) it follows

ψ
(
f
(
ϕ–1(tu + (1 – t)v

))) ≤ tψ
(
g
(
ϕ–1(u)

))
+ (1 – t)ψ

(
g
(
ϕ–1(v)

))
.
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This can be written as

F
(
tu + (1 – t)v

) ≤ tG(u) + (1 – t)G(v), (3)

where F = ψ ◦ f ◦ ϕ–1 and G = ψ ◦ g ◦ ϕ–1, F , G : Imϕ → R. Inequality (3) holds for all
u, v ∈ Imϕ and for all t ∈ [0, 1].

Now we may apply Theorem 1.1 to conclude that there exists a convex function H :
Imϕ →R such that

F ≤ H ≤ G. (4)

Then H ◦ ϕ is well defined.
Since F(u) ≤ H(u) ≤ G(u), i.e., ψ(f (x)) ≤ (H ◦ ϕ)(x) ≤ ψ(g(x)), and since ψ is a contin-

uous, strictly increasing function defined on the interval J , the value (H ◦ ϕ)(x) is in the
domain of ψ . This allows us to define h = ψ–1 ◦ H ◦ ϕ, h : I → J . As H is convex, it follows
that h is MϕMψ -convex, and from (4) it follows that f ≤ h ≤ g , i.e., (i) holds.

If ψ is decreasing, the proof is analogous. �

Theorem 2.2 Let ϕ and ψ be two continuous, strictly monotone functions defined on in-
tervals I and J respectively. Let f , g : I → J be real functions.

The following statements are equivalent:
(i) There exists an MϕMψ -affine function h such that

f ≤ h ≤ g.

(ii) The following inequalities:

f
(
Mϕ(x, y; t)

) ≤ Mψ

(
g(x), g(y); t

)
, (5)

g
(
Mϕ(x, y; t)

) ≥ Mψ

(
f (x), f (y); t

)

hold for all x, y ∈ I and t ∈ [0, 1].

Proof Let h be an MϕMψ -affine function such that f ≤ h ≤ g . This means that

h
(
Mϕ(x, y)

)
= Mψ

(
h(x), h(y)

)
, ∀x, y ∈ I.

Let F = ψ ◦ f ◦ ϕ–1, G = ψ ◦ g ◦ ϕ–1, H = ψ ◦ h ◦ ϕ–1. It is easy to show that H is an affine
function.

Let ψ be an increasing function. Then F ≤ H ≤ G on Imϕ. (If ψ is decreasing, then
G ≤ H ≤ F , and the proof is similar.)

Applying Theorem 1.2 ((i) implies (iii)), we obtain

F
(
tu + (1 – t)v

) ≤ tG(u) + (1 – t)G(v), (6)

G
(
tu + (1 – t)v

) ≥ tF(u) + (1 – t)F(v) (7)

for all u, v ∈ Imϕ and t ∈ [0, 1].
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From (6), for all x, y ∈ I and t ∈ [0, 1], it follows

(
ψ ◦ f ◦ ϕ–1)(tϕ(x) + (1 – t)ϕ(y)

) ≤ t(ψ ◦ g)(x) + (1 – t)(ψ ◦ g)(y),

f
(
ϕ–1(tϕ(x) + (1 – t)ϕ(y)

)) ≤ ψ–1(tψ
(
g(x)

)
+ (1 – t)ψ

(
g(y)

))
,

i.e., f (Mϕ(x, y; t)) ≤ Mψ (g(x), g(y); t).
In the same way, g(Mϕ(x, y; t)) ≥ Mψ (f (x), f (y); t).
Now assume (ii).
From (5) it follows

F
(
tu + (1 – t)v

) ≤ tG(u) + (1 – t)G(v),

G
(
tu + (1 – t)v

) ≥ tF(u) + (1 – t)F(v), ∀u, v ∈ Imϕ,∀t ∈ [0, 1],

where F = ψ ◦ f ◦ ϕ–1 and G = ψ ◦ g ◦ ϕ–1, F , G : Imϕ →R.
From Theorem 1.2 ((iii) implies (i)) we conclude that there exists an affine function H :

Imϕ →R such that F(w) ≤ H(w) ≤ G(w) for all w ∈ Imϕ.
Then, as in the proof of the previous theorem, h = ψ–1 ◦ H ◦ϕ, h : I →R is well defined,

and f ≤ h ≤ g . It is easy to verify that h is an MϕMψ -affine function. �

3 Hyers–Ulam stability
Theorem 3.1 Let ϕ be a continuous strictly monotone function on an interval I . Let ε > 0
be a fixed number. A function f : I →R satisfies

f
(
Mϕ(x, y)

) ≤ tf (x) + (1 – t)f (y) + ε (8)

for all x, y ∈ I , t ∈ [0, 1], if and only if there exists an MϕA-convex function h : I → R such
that

∣∣f (x) – h(x)
∣∣ ≤ 1

2
ε, ∀x ∈ I. (9)

Proof Assume that f satisfies (8). For g = f + ε, we have

A
(
f (x), f (y)

)
+ ε = A

(
g(x), g(y)

)
.

Therefore, from (8) it follows

f
(
Mϕ(x, y)

) ≤ A
(
g(x), g(y)

)
,

which is a form of condition (ii) from Theorem 2.1.
We conclude that there exists an MϕA-convex function h1 : I →R such that f ≤ h1 ≤ g ,

i.e., f ≤ h1 ≤ f + ε.
Let h = h1 – 1

2ε. Then – 1
2ε ≤ f (x) – h(x) ≤ 1

2ε for all x ∈ I , so (9) holds.



Bombardelli and Varošanec Journal of Inequalities and Applications         (2022) 2022:65 Page 6 of 7

Since

h(Mϕ(x, y) = h1(Mϕ(x, y) –
1
2
ε ≤ A

(
h1(x), h1(y)

)
–

1
2
ε = A

(
h(x), h(y)

)
,

h is also MϕA-convex, which completes the proof.
Now let h : I → R be an MϕA-convex function such that (9) holds. This condition can

be written in the form

f (x) –
1
2
ε ≤ h(x) ≤ f (x) +

1
2
ε.

Using Theorem 2.1 we can conclude that functions f1 = f – 1
2ε and f2 = f + 1

2ε satisfy

f1
(
Mϕ(x, y)

) ≤ A
(
f2(x), f2(y)

)
.

This is equivalent to

f
(
Mϕ(x, y)

)
–

1
2
ε ≤ A

(
f (x), f (y)

)
+

1
2
ε,

which proves (8). �

As we mentioned in the first section, the corresponding results for convex functions, i.e.,
for AA-convex functions, are given in [2] and [12]. A special case of Theorem 2.2, where
ψ = ϕ, is given in [8]. Particular cases of Theorem 2.1 and Theorem 3.1 for HA-convex
functions are given in [4].

Results about the separation problem for some other classes of functions which are not
particular cases of the class of MϕMψ -convex functions, i.e., for strongly convex func-
tions, m-convex and h-convex functions, set-valued functions, and convex functions with
control function, are given in [7, 9, 10, 13], and [1] respectively.
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