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Abstract
In this paper, we define a new concept of left and right coordinate affine of a directed
graph and then employ it to introduce a new accelerated common fixed point
algorithm for a countable family of G-nonexpansive mappings in a real Hilbert space
with a graph. We prove, under certain conditions, weak convergence theorems for
the proposed algorithm. As applications, we also apply our results to solve convex
minimization and image restoration problems. Moreover, we show that our algorithm
provides better convergence behavior than other methods in the literature.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H with norm ‖ · ‖.
A mapping T of C into itself is said to be

(i) Lipschitzian if there exists γ ≥ 0 such that

‖Tx – Ty‖ ≤ γ ‖x – y‖

for all x, y ∈ C, where γ is called the coefficient of T ;
(ii) nonexpansive if T is Lipschitzian with γ = 1.
The element x ∈ C is a fixed point of T if Tx = x, and F(T) := {x ∈ C : x = Tx} denotes the

set of all fixed points of T .
For the past seven decades, several iterative methods were proposed to find approximat-

ing fixed point theorems of nonexpansive mappings; see, for instance, [1, 2].
One of the famous and well-known iterative methods, the Picard iteration process, is

defined by

xn+1 = Txn
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for n ≥ 1, and the initial point x1 is chosen arbitrarily. Furthermore, the Picard iteration
process was improved and studied extensively by many mathematicians such as follows.

The Mann iteration process [3] is defined by

xn+1 = (1 – ρn)xn + ρnTxn (1.1)

for n ≥ 1, the initial point x1 is chosen arbitrarily, and {ρn} is a sequence in [0, 1].
The Ishikawa iteration process [4] is defined by

⎧
⎨

⎩

yn = (1 – βn)xn + βnTxn,

xn+1 = (1 – ρn)xn + ρnTyn
(1.2)

for n ≥ 1, the initial point x1 is chosen arbitrarily, and {βn} and {ρn} are sequences in [0, 1].
The S-iteration process [5] is defined by

⎧
⎨

⎩

yn = (1 – βn)xn + βnTxn,

xn+1 = (1 – ρn)Txn + ρnTyn
(1.3)

for n ≥ 1, the initial point x1 is chosen arbitrarily, and {βn} and {ρn} are sequences in [0, 1].
In 2017, Agarwal, O’Regan, and Sahu [5] proved that the iteration process (1.3) is in-

dependent of the Mann and Ishikawa iteration processes and converges faster. In 2012,
Aleomraninejad et al. [6] used the idea of combination of fixed point and graph theories in
proving a convergence theorem for G-nonexpansive mappings in a Banach space. In 2015,
Tiammee et al. [7] proved the Browder convergence theorem and a strong convergence
theorem of the Halpern iterative scheme for G-nonexpansive mappings in a Hilbert space
endowed with a graph. Later, Tripak [8], by using the Ishikawa iteration, proved weak and
strong convergence theorems for finding a common fixed point for two G-nonexpansive
mappings in a Banach space. In 2019, Sridarat et al. [9], using the SP-iteration, proved
weak and strong convergence theorems for finding a common fixed point of three G-
nonexpansive mappings in a uniformly convex Banach space with a graph. In 2020, Yam-
bangwai et al. [10], using a modified three-step iteration method, proved weak and strong
convergence theorems for three G-nonexpansive mappings in a uniformly convex Banach
space with a graph. They also applied their results to find solutions of constrained min-
imization problems and split feasibility problems. Recently, Suantai et al. [11] modified
the shrinking projection method with the parallel monotone hybrid method for approxi-
mating common fixed points of a finite family of G-nonexpansive mappings. They proved
a strong convergence theorem under suitable conditions in Hilbert spaces endowed with
graphs and applied it to signal recovery.

The main objectives of this paper are introducing an iterative method for finding a com-
mon fixed point of a countable family of G-nonexpansive mappings, analyzing the conver-
gence behavior of the recommended algorithm in comparison with the others, and giving
some applications to solve the image restoration problem.

2 Preliminaries
In what follows, X is a real normed space. Let C be a nonempty subset of X. Let G =
(V (G), E(G)) be a directed graph with V (G) = C and E(G) ⊇ �, where � = {(u, u) : u ∈ C}.
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Assume that G has no parallel edges. We denote by G–1 the graph obtained from G by
reversing the direction of edges. Then

E
(
G–1) =

{
(u, v) ∈ C × C : (v, u) ∈ E(G)

}
.

Recall that a graph G is said to be connected if there is a path between any two vertices of
the graph G. For more detail on some basic notions of the graphs, we refer the readers to
[12].

A mapping T : C → C is said to be
(i) G-contraction [13] if

(a) T is edge-preserving, i.e., (Tu, Tv) ∈ E(G) for all (u, v) ∈ E(G), and
(b) there exists ρ ∈ [0, 1) such that ‖Tu – Tv‖ ≤ ρ‖u – v‖ for all (u, v) ∈ E(G), where

ρ is called a contraction factor;
(ii) G-nonexpansive [7] if

(a) T is edge-preserving, and
(b) ‖Tu – Tv‖ ≤ ‖u – v‖ for all (u, v) ∈ E(G).

If {un} is a sequence in X, then un ⇀ u denotes weak convergence of the sequence {un}
to u. For v ∈ C, if there is a subsequence {unk } of {un} such that unk ⇀ v, then v is called a
weak cluster point of {un}. By ωw(un) we denote the set of all weak cluster points of {un}.

Let {Tn} and ψ be families of nonexpansive mappings of C into itself such that ∅ 	=
F(ψ) ⊂ � :=

⋂∞
n=1 F(Tn), where F(ψ) is the set of all common fixed points of all T ∈ ψ .

A sequence {Tn} satisfies the NST-condition (I) with ψ [14] if for any bounded sequence
{un} in C,

lim
n→∞‖Tnun – un‖ = 0 implies lim

n→∞‖Tun – un‖ = 0

for all T ∈ ψ . If ψ = {T}, then {Tn} satisfies the NST-condition (I) with T . In 2009, Nakajo
et al. [15] have given the definition of the NST∗-condition: a sequence {Tn} satisfies the
NST∗-condition if

lim
n→∞‖Tnun – un‖ = lim

n→∞‖un+1 – un‖ = 0 implies ωw(un) ⊂ �

for every bounded sequence {un} in C.
We recall the definition of forward–backward operator of lower semicontinuous and

convex functions of f , g : Rn → (–∞, +∞] as follows: A forward–backward operator T is
defined by T := proxλg(I – λ∇f ) for λ > 0, where ∇f is the gradient operator of function f
and proxλgx := arg miny∈H{g(y)+ 1

2λ
‖y–x‖2} (see [16, 17]). The operator proxλg was defined

by Moreau [18], who called it the proximity operator with respect to λ and function g .
We know that T is a nonexpansive mapping whenever λ ∈ (0, 2/L), where L is a Lipschitz
constant of ∇f .

Remark 2.1 ([19]) Let g : Rn →R be given by g(x) = λ‖x‖1. The proximity operator of g is
defined by the formula

proxλ‖·‖1 (x) =
(
sign(xi) max

(|xi| – λ, 0
))n

i=1,

where x = (x1, x2, . . . , xn) and ‖x‖1 =
∑n

i=1 |xi|.
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Lemma 2.2 ([20]) Let g be a lower semicontinuous and proper convex function from a
Hilbert space H into R ∪ {∞}, and let f be a convex differentiable function from H into
R with L-Lipschitz gradient ∇f for some L > 0. Let T be the forward–backward operator
of g and f . A sequence {Tn} satisfies the NST-condition (I) with T if {Tn} is the forward–
backward operator of g and f such that an → a with a, an ∈ (0, 2/L).

Lemma 2.3 ([21]) For a real Hilbert space H , we have:
(i) For all u, v ∈ H and γ ∈ [0, 1],

∥
∥γ u + (1 – γ )v

∥
∥2 = γ ‖u‖2 + (1 – γ )‖v‖2 – γ (1 – γ )‖u – v‖2;

(ii) For any u, v ∈ H ,

‖u ± v‖2 = ‖u‖2 ± 2〈u, v〉 + ‖v‖2.

Lemma 2.4 ([22]) Let {un}, {vn}, and {ϑn} be sequences of nonnegative real numbers such
that

un+1 ≤ (1 + ϑn)un + vn

for n ∈N. If
∑∞

n=1 ϑn < ∞ and
∑∞

n=1 vn < ∞, then limn→∞ un exists.

Lemma 2.5 ([23]) Let H be a real Hilbert space, and let {un} be a sequence in H such that
there exists a nonempty set � ⊂ H satisfying the following conditions:

(i) For any p ∈ �, limn→∞ ‖un – p‖ exists;
(ii) Any weak cluster point of {un} ∈ �.
Then there exists q∗ ∈ � such that un ⇀ q∗.

Lemma 2.6 ([24]) Let {un} and {μn} be sequences of nonnegative real numbers such that

un+1 ≤ (1 + μn)un + μnun–1

for n ∈N. Then

un+1 ≤ M ·
n∏

j=1

(1 + 2μj),

where M = max{u1, u2}. Moreover, if
∑∞

n=1 μn < ∞, then {un} is bounded.

3 Main results
In this section, by using the inertial technique we prove a weak convergence theorem for
a new accelerated algorithm for a countable family of G-nonexpansive mappings in a real
Hilbert space with a directed graph.

Let C be a nonempty closed and convex subset of a real Hilbert space H with a directed
graph G = (V (G), E(G)) such that V (G) = C. Let {Tn} be a family of G-nonexpansive map-
pings of C into itself such that ∅ 	= � :=

⋂∞
n=1 F(Tn).
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Algorithm 3.1 An Inertial Mann Algorithm
1: Initial. Take arbitrary x0, x1 ∈ C and n = 1, ρn ∈ [a, b] ⊂ (0, 1), and μn ≥ 0 such that

∑∞
n=1 μn < ∞.

2: Step 1. Compute yn and xn+1 by using

⎧
⎨

⎩

yn = xn + μn(xn – xn–1),

xn+1 = (1 – ρn)yn + ρnTnyn.

Then update n := n + 1 and go to Step 1.

The sequence μn is called an inertial step size. Before giving a weak convergence theo-
rem for Algorithm 3.1 for a family of G-nonexpansive mappings, we need to introduce a
concept of coordinate affine of the graph G = (V (G), E(G)).

Definition 3.1 Assume that � :=
⋂∞

n=1 F(Tn) 	= ∅ and � × � ⊆ E(G). Then E(G) is said to
be

(i) left coordinate affine if α(x, y) + β(u, y) ∈ E(G) for all (x, y), (u, y) ∈ E(G) and all α,
β ∈R such that α + β = 1.

(ii) right coordinate affine if α(x, y) + β(x, z) ∈ E(G) for all (x, y), (x, z) ∈ E(G) and all α,
β ∈R such that α + β = 1.

We say that E(G) is coordinate affine if E(G) is both left and right coordinate affine.

We start with some properties of the sequences {xn} and {yn} generated by Algorithm 3.1
related to E(G).

Example 3.2 Let X = R
2 and C = R×{1}. Let G = (V (G), E(G)) be a directed graph defined

by V (G) = C and (x, y) ∈ E(G) if x, y ∈ R × {1}. We will show that E(G) is left coordinate
affine. To see this, let (x, y), (z, y) ∈ C be such that x = (x1, 1), y = (y1, 1), and z = (z1, 1). For
all α, β ∈R with α + β = 1,

α(x, y) + β(z, y) = α
(
(x1, 1), (y1, 1)

)
+ β

(
(z1, 1), (y1, 1)

)

=
(
(αx1,α), (αy1,α)

)
+

(
(βz1,β), (βy1,β)

)

=
(
(αx1 + βz1,α + β), (αy1 + βy1,α + β)

)

=
(
(αx1 + βz1, 1), (y1, 1)

)
.

Then α(x, y) + β(z, y) ∈ E(G), and hence E(G) is left coordinate affine.

Proposition 3.3 Let q̆ ∈ � and x0, x1 ∈ C be such that (x0, q̆), (x1, q̆) ∈ E(G). Let {xn} be
a sequence generated by Algorithm 3.1. Suppose E(G) is left coordinate affine. Then (xn, q̆)
and (yn, q̆) ∈ E(G) for all n ∈ N.

Proof We will prove the results by using mathematical induction. From Algorithm 3.1 we
obtain

(y1, q̆) =
(
x1 + μ1(x1 – x0), q̆

)
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=
(
(1 + μ1)x1 – μ1x0, q̆

)

= (1 + μ1)(x1, q̆) – μ1(x0, q̆).

Since (x0, q̆), (x1, q̆) ∈ E(G) and E(G) is left coordinate affine, we get (y1, q̆) ∈ E(G). Next,
suppose that (xk , q̆), (yk , q̆) ∈ E(G). Notice that

(xk+1, q̆) =
(
(1 – ρk)yk + ρkTkyk , q̆

)

= (1 – ρk)(yk , q̆) + ρk(Tkyk , q̆).

Since (yk , q̆) ∈ E(G) and Tk is edge-preserving, we obtain (xk+1, q̆) ∈ E(G). Then

(yk+1, q̆) =
(
xk+1 + μk+1(xk+1 – xk), q̆

)

= (1 + μk+1)(xk+1, q̆) – μk+1(xk , q̆).

Since (xk+1, q̆), (xk , q̆) ∈ E(G) and E(G) is left coordinate affine, we have that (yk+1, q̆) ∈ E(G).
By mathematical induction we obtain (xn, q̆), (yn, q̆) ∈ E(G) for all n ∈ N. �

Theorem 3.4 Let C be a nonempty closed and convex subset of a real Hilbert space H
with a directed graph G = (V (G), E(G)) with V (G) = C and left coordinate affine E(G). Let
x0, x1 ∈ C, and let {xn} be the sequence in H defined by Algorithm 3.1. Suppose {Tn} satisfies
the NST∗-condition with � 	= ∅ and (x0, q̆), (x1, q̆) ∈ E(G) for all q̆ ∈ �. Then {xn} converges
weakly to a common fixed point of �.

Proof Let q̆ ∈ �. By Algorithm 3.1 we obtain

‖yn – q̆‖ =
∥
∥xn + μn(xn – xn–1) – q̆

∥
∥

≤ ‖xn – q̆‖ + μn‖xn – xn–1‖ (3.1)

and

‖xn+1 – q̆‖ =
∥
∥(1 – ρn)yn – q̆ + ρnq̆ + ρnTnyn – ρnq̆

∥
∥

=
∥
∥(1 – ρn)(yn – q̆) + ρn(Tnyn – q̆)

∥
∥

≤ (1 – ρn)‖yn – q̆‖ + ρn‖Tnyn – q̆‖
= (1 – ρn)‖yn – q̆‖ + ρn‖Tnyn – Tnq̆‖
≤ (1 – ρn)‖yn – q̆‖ + ρn‖yn – q̆‖
= ‖yn – q̆‖. (3.2)

From (3.1) and (3.2) we get

‖xn+1 – q̆‖ ≤ ‖xn – q̆‖ + μn‖xn – xn–1‖. (3.3)

Then we have

‖xn+1 – q̆‖ ≤ (1 + μn)‖xn – q̆‖ + μn‖xn–1 – q̆‖. (3.4)
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Applying Lemma 2.6, we get ‖xn+1 – q̆‖ ≤ M · ∏n
j=1(1 + 2μj), where M = max{‖x1 – q̆‖,

‖x2 – q̆‖}. Since
∑∞

n=1 μn ≤ ∞, we obtain that {xn} is bounded. Thus

∞∑

n=1

μn‖xn – xn–1‖ ≤ ∞. (3.5)

By Lemma 2.5 and (3.3) we get that limn→∞ ‖xn – q̆‖ exists. By Algorithm 3.1 and
Lemma 2.3(i) we obtain

‖xn+1 – q̆‖2 =
∥
∥(1 – ρn)(yn – q̆) + ρn(Tnyn – q̆)

∥
∥2

= (1 – ρn)‖yn – q̆‖2 + ρn‖Tnyn – q̆‖2 – (1 – ρn)ρn‖yn – Tnyn‖2

≤ (1 – ρn)‖yn – q̆‖2 + ρn‖yn – q̆‖2 – (1 – ρn)ρn‖yn – Tnyn‖2

= ‖yn – q̆‖2 – (1 – ρn)ρn‖yn – Tnyn‖2

≤ (‖xn – q̆‖ + μn‖xn – xn–1‖
)2 – (1 – ρn)ρn‖yn – Tnyn‖2

= ‖xn – q̆‖2 + 2μn‖xn – q̆‖‖xn – xn–1‖ + μ2
n‖xn – xn–1‖2

– (1 – ρn)ρn‖yn – Tnyn‖2. (3.6)

From (3.5) and (3.6) we obtain

‖yn – Tnyn‖ → 0. (3.7)

Since

‖xn – yn‖ = μn‖xn – xn–1‖,

it follows that

‖xn – yn‖ → 0. (3.8)

By (3.7) and (3.8) from

‖xn+1 – xn‖ ≤ ‖yn – xn‖ + ρn‖Tnyn – yn‖ → 0 (3.9)

we obtain

‖xn+1 – xn‖ → 0. (3.10)

Next, we will show that ‖yn – yn+1‖ → 0. By Algorithm 3.1 we obtain

‖yn – yn+1‖ =
∥
∥xn + μn(xn – xn–1) – xn+1 – μn+1(xn+1 – xn)

∥
∥

≤ ‖xn – xn+1‖ + μn‖xn – xn–1‖ + μn+1‖xn – xn+1‖.

From (3.5) and (3.10) we get

‖yn – yn+1‖ → 0. (3.11)
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Since {Tn} satisfies the NST∗-condition, by (3.7) and (3.11) we obtain

ωw(yn) ⊂ �.

Finally, we will show that ωw(xn) ⊂ �. To see this, let x ∈ ωw(xn). By the definition of
ωw(xn) there exists a subsequence {xnk } of {xn} such that xnk ⇀ x. From (3.8) we obtain
that ynk ⇀ x. Then x ∈ ωw(yn). It follows that ωw(xn) ⊂ ωw(yn) ⊂ �. Thus ωw(xn) ⊂ �. By
Lemma 2.5 we get xn ⇀ q̆ in �. The proof is now complete. �

4 Application on convex minimization problems
In this section, we are interested in applying our proposed method for solving a con-
vex minimization problem of the sum of two convex and lower semicontinuous func-
tions f , g : Rn → (–∞, +∞]. So we consider the following convex minimization problem:
min(f (x) + g(x))x ∈ R

n. Combettes and Wajs [17] proved that q̆ is a minimizer of (4.1) if
and only if q̆ = Tq̆, where T = proxρg(I – ρ∇f ); see [17, Prop. 3.1(iii)]. It is also known
that T is nonexpansive if ρ ∈ (0, 2/L) where L is a Lipschitz constant of ∇f . For the past
two decades, several algorithms were introduced for solving problem (4.1). A simple and
classical algorithm is the forward–backward algorithm (FBA) introduced by Lions and
Mercier [25].

The forward–backward algorithm (FBA) is defined by

⎧
⎨

⎩

yn = xn – γ∇fxn,

xn+1 = xn + ρn(Jγ ∂gyn – xn),
(4.1)

where n ≥ 1, x0 ∈ H , L is a Lipschitz constant of ∇f , γ ∈ (0, 2/L), δ = 2 – (γ L/2), and {ρn} is
a sequence in [0, δ] such that

∑
n∈N ρn(δ – ρn) = +∞. The technique for improving speed

and giving a better convergence behavior of the algorithms was first introduced by Polyak
[26] by adding an inertial step. Since then, many authors employed the inertial technique
to accelerate their algorithms for using in various problems [20, 24, 27–31]. The following
iterative method with an inertial step can be used for improving performance of FBA.

A fast iterative shrinkage-thresholding algorithm (FISTA) [30] is defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn = Txn,

tn+1 = 1+
√

1+4t2
n

2 ,

μn = tn–1
tn+1

,

xn+1 = yn + μn(yn – yn–1),

(4.2)

where n ≥ 1, x1 = y0 ∈ R
n, t1 = 1, T := prox 1

L g(I – 1
L∇f ), and μn is a so-called inertial step

size. The FISTA was suggested by Beck and Teboulle [30]. They proved the convergence
rate of the FISTA and applied the FISTA to image restoration problem [30]. The inertial
step size μn of the FISTA was first introduced by Nesterov [32].

A new accelerated proximal gradient algorithm (nAGA) [31] is defined by

⎧
⎨

⎩

yn = xn + μn(xn – xn–1),

xn+1 = Tn[(1 – ρn)yn + ρnTnyn],
(4.3)
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where n ≥ 1, Tn is the forward–backward operator of f and g with respect to an ∈ (0, 2/L),
{μn} and {ρn} are sequences in (0, 1), and ‖xn–xn–1‖2

μn
→ 0. The nAGA was introduced for

proving a convergence theorem by Verma and Shukla [31]. They also applied this method
for solving the nonsmooth convex minimization problem with sparsity inducing regular-
izers for the multitask learning framework.

Theorem 4.1 Let f , g : Rn → (–∞,∞] be such that g is a convex function and f is a smooth
convex function with a gradient having a Lipschitz constant L. Let an ∈ (0, 2/L) be such that
{an} converges to a, let T := proxag(I – a∇f ) and Tn := proxang(I – an∇f ), and let {xn} be a
sequence generated by Algorithm 3.1. Then:

(i) ‖xn+1 – q̆‖ ≤ K · ∏n
j=1(1 + 2μj), where K = max{‖x1 – q̆‖,‖x2 – q̆‖} and

q̆ ∈ Argmin(f + g);
(ii) {xn} converges weakly to a point in Argmin(f + g).

Proof It is known that T and {Tn} are nonexpansive operators for all n and that F(T) =
⋂∞

n=1 F(Tn) = Argmin(f +g); see [16, Prop. 26.1]. By Lemma 2.2 we obtain that {Tn} satisfies
the NST∗-condition. From Theorem 3.4 we get the required result directly by putting G =
R

n ×R
n, the complete graph on R

n. �

5 Application on the image restoration problem
We can describe the image restoration problem as a simple linear model

Ax = c + u, (5.1)

where A ∈ R
m×n is the blurring operation, an image x ∈ R

n×1, c ∈ R
m×1 is the observed

image, and u is an additive noise. The image restoration problem is finding the original
image x∗ ∈R

n×1 that satisfies (5.1). To find the solution of problem (5.1), we minimize the
additive noise to approximate the original image by using the method knowing as the least
squares (LS) problem

min
x

‖Ax – c‖2
2, (5.2)

where ‖·‖2 is an l2-norm. The solution of (5.2) can be estimated by many iterations such as
the Richardson iteration; see [33] for details. However, the number of unknown variables
is much greater than that of observations, which causes (5.2) to be an ill-posed problem
because of a huge norm result, which is thus meaningless; see [34] and [35]. Therefore, to
improve the ill-conditioned least squares problem, several regularization methods were
introduced. One of the most popular regularization methods is the Tikhonov regulariza-
tion suggested by Tikhonov; see [36]. It is defined to solve the following minimization
problem:

min
x

{‖Ax – c‖2
2 + λ‖Lx‖2

2
}

, (5.3)

where λ > 0 is called a regularization parameter, and L ∈ R
m×n is called the Tikhonov

matrix. In the standard form, L is set to be the identity. In statistics, (5.3) is known as a
ridge regression.
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A new method for estimation a solution of (5.1) called the least absolute shrinkage and
selection operator (LASSO), was proposed by Tibshirani [37] as follows:

min
x

{‖Ax – c‖2
2 + λ‖x‖1

}
, (5.4)

where ‖ · ‖1 is the l1-norm defined as ‖x‖1 =
∑n

i=1 |xi|. This method improved the original
LS (5.2) and the classical regularization such as the subset selection and the ridge regres-
sion (5.3). Moreover, the LASSO can also be applied to image and regression problems
[30, 37], etc.

For solving image restoration problem, especially the true RGB images, the model (5.4)
is highly costly to compute the multiplication Ax and ‖x‖1 because of the size of matrix A
and x as well as their members. To overcome this problem, most of researchers in this area
employ the 2-D fast Fourier transform for transformation of the true RGB images, and the
model (5.4) is slightly modified by using the 2-D fast Fourier transform of the following
form:

min
x

{‖Ax – C‖2
2 + λ‖Wx‖1

}
, (5.5)

where A is the blurring operation, often chosen as A = RW , R is the blurring matrix, W is
the 2-D fast Fourier transform, C ∈ R

m×n is the observed blurred and noisy image of size
m × n, and λ is a positive regularization parameter.

In this section, we apply Algorithm 3.1 to solving the image restoration problem (5.5)
by using Theorem 4.1 when f (x) = ‖Ax –C‖2

2 and g(x) = λ‖Wx‖1 and compare the deblur-
ring efficiency of Algorithm 3.1 with FISTA and FBA. In this experiment the true RGB
images, Wat Chedi Luang and Wat Boonyawad of size 2562 are considered as the original
images. We blur the images with a Gaussian blur of size 92 and σ = 4, where σ is a stan-
dard deviation. After that, we use the peak signal-to-noise ratio (PSNR) [38] to measure
the performance of those three algorithms when PSNR(xn) is defined by

PSNR(xn) = 10 log10

(
2552

MSE

)

,

where 255 is the maximum gray level of an 8 bits/pixel monotonic image, and MSE =
1
N ‖xn – x∗‖2

2 = 1
N

∑N
i=1 |xn(i) – x∗(i)|2, xn(i) and x∗(i) are the ith samples in images xn and

x∗, respectively, N is the number of image samples, and x∗ is the original image. We note
that a higher PSNR shows a higher quality for deblurring image. For these experiments,
we set λ = 5 × 10–5, and the original image was the blurred image. Then we compute the
Lipschitz constant L by using the maximum eigenvalues of the matrix AT A.

The parameters for Algorithm 3.1, FISTA and FBA, are set as in Table 1.

Table 1 Algorithms and their setting controls

Methods Setting

Algorithm 3.1 ρn = 0.9, c = 1/L, μn = n/(n + 1) if 1 ≤ n ≤ 300 and 1/2n otherwise
FISTA t1 = 1, tn+1 = (1 +

√
1 + 4t2n)/2, μn = (tn – 1)/tn+1

FBA ρn = 0.9, γ = 1/L
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Note that all parameters in Table 1 satisfy those convergence theorems for each algo-
rithm. Theorem 4.1 guarantees the convergence of the sequence {xn} generated by Al-
gorithm 3.1 to the original image x∗. However, convergence behavior of this sequence is
measured by the value of PSNR. It is known that PSNR is an appropriate measurement for
image restoration problems.

The following experiments show the performance of the proposed algorithm and com-
pare efficiency of deblurring images with FISTA and FBA by using PSNR as our measure-
ment.

The results of a deblurring image of Wat Chedi Luang and Wat Boonyawad with the
300th iteration of the proposed algorithm, FISTA, and FBA are shown in Figs. 1, 2, 3, 4
and Tables 2, 3, 4.

We observe from Figs. 1 and 2 that the graph of PSNR of our proposed algorithm (Algo-
rithm 3.1) is higher than that of FISTA and FBA, which shows that our proposed algorithm
gives a better performance than the others.

Figure 1 The graphs of PSNR of each algorithm for Wat Chedi Luang

Table 2 The values of PSNR at x1, x5, x10, x25, x50, x100, x175, x300 (Wat Chedi Luang)

No. Iterations Algorithm 3.1 FISTA FBA

1 19.5755 19.5902 19.5755
5 20.4385 20.3075 20.0509
10 21.5938 21.2134 20.4533
25 23.3781 23.0475 21.2725
50 24.7835 24.4344 22.0603
100 26.4226 26.0114 22.8598
175 27.7330 27.3716 23.4775
300 28.7993 28.6113 24.0577
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Figure 2 The graphs of PSNR of each algorithm for Wat Boonyawad

Table 3 The values of PSNR at x1, x5, x10, x25, x50, x100, x175, x300 (Wat Boonyawad)

No. Iterations Algorithm 3.1 FISTA FBA

1 22.5136 22.5376 22.5136
5 23.7544 23.5827 23.2316
10 25.1962 24.7313 23.7690
25 27.4028 27.0259 24.8007
50 28.9958 28.6856 25.7830
100 30.5940 30.3467 26.7844
175 31.7665 31.5387 27.5487
300 32.5920 32.5308 28.2435

Table 4 Comparison of image restorations at the 300th iteration of Algorithm 3.1, FISTA, and FBA

Algorithms Wat Chedi Luang Wat Boonyawad
PSNR PSNR

Algorithm 3.1 28.79933 32.5920
FISTA 28.6113 32.5308
FBA 24.0577 28.7993

Tables 2 and 3 show the efficiency for restoration images of each algorithm under differ-
ent number of iterations. We found that Algorithm 3.1 gives a higher PSNR than that of
FISTA and FBA. Thus our algorithm has a better convergence behavior than the others.

We observed from Table 4 that at the 300th iteration, the value of PSNR of our pro-
posed algorithm is higher than that of FISTA and FBA. This shows that the performance
of Algorithm 3.1 is better than the others.

In Figs. 3 and 4, we present the original images, blurred images, and deblurring images
by Algorithm 3.1, FISTA, and FBA.
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Figure 3 Results for Wat Chedi Luang’s deblurring image

Figure 4 Results for Wat Boonyawad’s deblurring image

6 Conclusion
In this study, we introduced a new concept of left and right coordinate affine of a di-
rected graph and used it to introduce a new accelerated common fixed point algorithm
for a countable family of G-nonexpansive mappings in a real Hilbert space with a directed
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graph. The weak convergence theorem of our suggested method, Theorem 3.4, has been
established and proven under certain reasonable conditions. Then we compared the con-
vergence behavior of our proposed algorithm with that of FISTA and FBA. We also gave an
application of our results to image restoration problems with FISTA and FBA. We found
that Algorithm 3.1 gives better results.
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