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Abstract
In this paper, we introduce a new generalized p-dimensional multifarious radical
reciprocal functional equation combining three classical means: arithmetic,
geometric, and harmonic. Mainly, we find its general solution and stability related to
the Ulam problem in modular spaces by using the fixed point method with suitable
counterexamples. Importantly, in this paper, we illustrate the geometrical
interpretation and applications of the introduced Pythagorean means multifarious
functional equation in connection with the parallel circuit. Furthermore, we provide a
formula for finding the equivalent resistance Req of parallel electrical circuit using
functional equations, which relates the electrical resistances and conductances with
suitable examples.
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1 Introduction and preliminaries
In the development of broad field functional equations, we come acrossing various types
like additive, quadratic, cubic and so on. In recent research many researchers modeled
functional equations from physical phenomena. In particular, by geometrical construc-
tion, many authors introduced remarkable reciprocal-type functional equations. In 2010,
Ravi and Senthil Kumar [1] introduced the reciprocal-type functional equation

s(z + w) =
s(z)s(w)

s(z) + s(w)
(1.1)

with solution s(z) = c
z .

In 2015, Narasimman, Ravi, and Pinelas [2] introduced the radical reciprocal quadratic
functional equation

s
( 2√z2 + w2

)
=

s(z)s(w)
s(z) + s(w)

, z, w ∈ (0,∞), (1.2)
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which is satisfied by s(z) = c
z2 . Also, they provided the solution and stability of (1.2) with

geometrical interpretation and application. Equation (1.2) was extended by Pinelas et al.
[3] as follows:

s
( 2
√

z2
1 + z2

2
)

+ s
( 2
√

z2
2 + z2

3
)

+ s
( 2
√

z2
1 + z2

3
)

(1.3)

=
s(z1)s(z2)

s(z1) + s(z2)
+

s(z2)s(z3)
s(z2) + s(z3)

+
s(z1)s(z3)

s(z1) + s(z3)
, z1, z2, z3 ∈ (0,∞),

which is satisfied by s(z) = c
z2 .

In 2014, Bodaghi and Kim [4] introduced the quadratic reciprocal functional equation,
which was generalized by Song and Song [5].

Definition 1.1 A reciprocal functional equation is a functional equation with solution of
the form 1

s(z) where s(z) = zm, m ∈ N. Such functional equations were studied in the recent
papers; we refer to [6–11].

Definition 1.2 ([12]) The three classical Pythagorean means are the arithmetic mean
(AM), the geometric mean (GM), and the harmonic mean (HM) defined by

AM(a1, a2, . . . , an) =
1
n

(a1 + · · · + an),

GM(a1, a2, . . . , an) = n√a1 + · · · + an,

HM(a1, a2, . . . , an) =
n

1
a1

+ · · · + 1
an

.

Definition 1.3 Functional equations that arise from the relations between three Pytha-
gorean means (arithmetic, geometric, and harmonic) are known as Pythagorean mean
functional equations.

Definition 1.4 A reciprocal Pythagorean mean functional equation is said to be multi-
farious if it has various nature like additive, quadratic, cubic, and so on with respect to its
dimensions.

For the necessary introduction on stability related to the Ulam problem and the notion
of modular spaces, we refer to [13–21].

Nakano [22] in 1959 introduced modular spaces with an abstract functional. This ab-
stract functional is called modular, and it forms the basis of the modular space theory.
Musielak and Orlicz [23] redefined and generalized the notion of a modular space.

Definition 1.5 Let Z be a vector space. A real function ξ on Z is said to be a modular if it
fulfills the following conditions:

(i) ξ (z1) = 0 if and only if z1 = � (the null vector),
(ii) ξ (z1) = ξ (–z1).

(iii) ξ (αz1 + βz2) ≤ ξ (z1) + ξ (z2) for all z1, z2 ∈ Z and α,β ≥ 0 with α + β = 1.
If

(iii)’ ξ (αz1 + βz2) ≤ αξ (z1) + βξ (z2) for all z1, z2 ∈ Z and α,β ≥ 0 with α + β = 1,
then ξ is called a convex modular.
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Note that ξ (t · z1) is an increasing function in t for each z1 ∈ Z. Suppose 0 < a < b. Put
z2 = 0 in property (iii) of Definition 1.5. Then ξ (az1) = ξ ( a

b bz1) ≤ ξ (bz1) for all z1 ∈ Z.
Moreover, if ξ is a convex modular on Z and |α| ≤ 1, then ξ (αz1) = αξ (z1) and also ξ (z1) ≤
1
2ξ (2z1) for all z1 ∈ Z.

Definition 1.6 A modular space Zξ is defined by a corresponding modular ξ , that is, Zξ =
{z1 ∈ Z : ξ (λz1) → 0 as λ → 0}.

Definition 1.7 A modular is said to satisfy the �2-condition if there exists κ > 0 such that
ξ (2z) ≤ κξ (z) for all z ∈ Zξ .

Definition 1.8 Let {zi} and z be in Zξ . Then the modular ξ has the Fatou property if
ξ (z) ≤ lim infi→∞ ξ (zi) whenever the sequence {zi} is ξ -convergent to z.

Definition 1.9 ([24]) Let A be a C∗-algebra, and let x ∈ A be a self-adjoint element, i.e.,
x∗ = x. Then x is said to be positive if it is of the form yy∗ for some y ∈ A. The set of positive
elements of A is denoted by A+.

Note that A+ is a closed convex cone (see [24]). It is well known that for a positive element
x and a positive integer n, there exists a unique positive element y ∈ A+ such that x = yn.
We denote y by x 1

n (see [25]).
In Sect. 1, we provide the necessary introduction and preliminaries. Also, we give the

geometrical construction and geometrical interpretation of p-dimensional multifarious
radical reciprocal functional equations. In Sect. 2, we find general solutions of (1.7) and
(1.8). In Sect. 3, we investigate the Hyers–Ulam stability of (1.7) and (1.8). We illustrate
applications of (1.7) in Sect. 4, and the conclusion is given in Sect. 5.

1.1 Main results
In this paper, using Pythagorean means, we introduce new generalized two-, three-, and
p-dimensional multifarious radical reciprocal functional equations.

The following two- and three-dimensional multifarious radical reciprocal functional
equations are obtained by (1.1) and (1.2):

s
( m√zm + wm

)
=

s(z)s(w)
s(z) + s(w)

, (1.4)

s
(

m
√

zm
1 + zm

2 + zm
3
)

=
s(z1)s(z2)s(z3)

s(z1)s(z2) + s(z2)s(z3) + s(z1)s(z3)
, (1.5)

which are satisfied by s(z) = c
zm for all z, w, z1, z2, z3 ∈ (0,∞), m ∈ N. Observe that if m = 1

and m = 2 in (1.4), then we get (1.1) and (1.2), respectively. Hence the functional equation
(1.4) is known as a two-dimensional multifarious radical reciprocal functional equation.
By a similar argument (1.5) is known as a three-dimensional multifarious radical reciprocal
functional equation.

Moreover, by (1.4) we have

s
( m
√

zm
1 + zm

2
)

+ s
(

m
√

zm
2 + zm

3
)

+ s
(

m
√

zm
1 + zm

3
)

(1.6)

=
s(z1)s(z2)

s(z1) + s(z2)
+

s(z2)s(z3)
s(z2) + s(z3)

+
s(z1)s(z3)

s(z1) + s(z3)
,
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which is satisfied by s(z1) = c
zm

1
, z1, z2, z3 ∈ (0,∞), m ∈ N, and the denominators are not

equal to zero. We may observe that if m = 2, then we get (1.3).
Importantly, we generalize the above two- and three-dimensional multifarious radical

reciprocal functional equations (1.4), (1.5), and (1.6) into p-dimensional multifarious rad-
ical reciprocal functional equations, as follows:

s

(
m

√√
√√

p∑

i=1

zm
i

)

=
∏p

i=1 s(zi)
1

s(z1)
∏p

i=1 s(zi) + 1
s(z2)

∏p
i=1 s(zi) + · · · + 1

s(zp)
∏p

i=1 s(zi)
, (1.7)

p∑

i=1

(
s
(

m
√

zm
i + zm

j
))

+ s
(

m
√

zm
1 + zm

p+1
)

=
p∑

i=1

(
s(zi)s(zj)

s(zi) + s(zj)

)
+

s(z1)s(zp+1)
s(z1) + s(zp+1)

,

(1.8)

which are satisfied by s(z) = c
zm , j = i + 1, for all m, p ∈N, and the denominators of (1.7) and

(1.8) are not equal to zero. We may observe that if p = 2 in (1.7), then we get (1.4). Also, if
p = 1 and p = 2 in (1.8), then we get (1.4) and (1.6), respectively.

1.2 Geometrical construction of p-dimensional multifarious radical reciprocal
functional equations

Geometric construction of three Pythagorean means of two variables can be constructed
geometrically as shown in Fig. 1. Geometric construction of geometric mean of three vari-
ables are not possible, but the other Pythagorean means can be constructed for any num-
ber of variables; we refer to [26–28].

The relations between three Pythagorean means of p-objects z1, z2, . . . , zp are repre-
sented by the equation

H(z1, z2, . . . , zp) =
G(z1, z2, . . . , zp)p

A( 1
z1

∏p
i=1 zi, 1

z2

∏p
i=1 zi, . . . , 1

zp

∏p
i=1 zi)

. (1.9)

Consider two spheres S1 and S2 of radii r1 > r2 located along the x-axis and centered at
C1(0, 0, 0) and C2(d, 0, 0), respectively.

Figure 1 Pythagorean means of a and b: A is the arithmetic mean, H is the harmonic mean, and G is the
geometric mean
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Figure 2 Two intersecting spheres S1 and S2

We can show the length of C2C1 is z1+z2
2 , which is the arithmetic mean of z1 and z2. Using

Pythagoras’ theorem, we can find that the length of AC1 is the geometric mean √z1z2 of
z1 and z2. Also, we can obtain that the length of HC1 is 2z1z2

z1+z2
, which the harmonic mean

of z1 and z2, since C2AC1 and AHC1 are similar.
From Fig. 2, we have the equality HC1 = AC2

1
C2C1

, that is,

H(z1, z2) =
G(z1, z2)2

A( 1
z1

∏2
i=1 zi, 1

z2

∏2
i=1 zi)

,

which is a particular case of (1.9) for p = 2, which implies

1
1
z1

+ 1
z2

=
z1z2

z1 + z2
. (1.10)

Letting z1 = 1
z and z2 = 1

w in (1.10), we get

1
z + w

=
1
z

1
w

1
z + 1

w
. (1.11)

In that case, (1.1) is valid by (1.11), which is satisfied by s(z) = c
z .

Letting z1 = 1
z2 and z2 = 1

w2 in (1.10), we get

1
z2 + w2 =

1
z2

1
w2

1
z2 + 1

w2
. (1.12)

In that case, (1.2) is valid by (1.12), which is satisfied by s(z) = c
z2 . In general, letting z1 = 1

zm

and z2 = 1
wm in (1.10), we get

1
zm + wm =

1
zm

1
wm

1
zm + 1

wm
. (1.13)

In that case, (1.4) is valid by (1.13), which is satisfied by s(z) = c
zm .
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In Fig. 2, AB is the diameter of the common circle. The common circle is the solution of
the system

z2
1 + z2

2 + z2
3 = r2

1,

(z1 – d)2 + z2
2 + z2

3 = r2
2,

which imply

1
z2

1 + z2
2 + z2

3
=

1
r2

1
, (1.14)

1
(z1 – d)2 + z2

2 + z2
3

=
1
r2

2
.

The system of equations (1.14) can be expressed by radical reciprocal quadratic functional
equations of the form

s
(
r2

1
)

=
s(z1)s(z2)s(z3)

s(z1)s(z2) + s(z2)s(z3) + s(z1)s(z3)
, (1.15)

s
(
r2

2
)

=
s(z1 – d)s(z2)s(z3)

s(z1 – d)s(z2) + s(z2)s(z3) + s(z1 – d)s(z3)

for z1, z2, z3, r1, r2 ∈ (0,∞), which are satisfied by s(z1) = c
z2

1
, and the denominators are not

equal to zero. Also, we observe that equation (1.15) is a particular case of (1.5) for m = 2.
Letting p = 3 in (1.9), we get

H(z1, z2, z3) =
G(z1, z2, z3)3

A( 1
z1

∏3
i=1 zi, 1

z2

∏3
i=1 zi, 1

z3

∏3
i=1 zi)

,

which gives

1
1
z1

+ 1
z2

+ 1
z3

=
z1z2z3

z2z3 + z1z3 + z1z2
. (1.16)

Letting z1 = 1
zm

1
, z2 = 1

zm
2

and z3 = 1
zm

3
in (1.16), we get

1
zm

1 + zm
2 + zm

3
=

1
zm

1

1
zm

2

1
zm

3
1

zm
1

+ 1
zm

2
+ 1

zm
3

. (1.17)

In that case, (1.5) is valid by (1.17), which is satisfied by s(z1) = c
zm

1
. By the same process for

p-objects, (1.9) becomes

1
1
z1

+ 1
z2

+ · · · + 1
zp

=
z1z2z3 · · · zp

z2z3 · · · zp + z1z3 · · · zp + · · · + z1z2 · · · zp–1
. (1.18)

Letting z1 = 1
zm

1
, z2 = 1

zm
2

, . . . , zp–1 = 1
zm

p–1
in (1.18), we get

1
zm

1 + zm
2 + · · · + zm

p
=

1
zm

1

1
zm

2
· · · 1

zm
p

1
zm

2

1
zm

3
· · · 1

zm
p

+ 1
zm

1

1
zm

3
· · · 1

zm
p

+ · · · + 1
zm

1

1
zm

2
· · · 1

zm
p–1

. (1.19)
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Clearly, equation (1.7) holds by (1.19) with solution s(z1) = c
zm

1
. By a similar process and

by (1.9), if we choose pairwise from p-objects z1, z2, . . . , zp as (zi, zj), end with (z1, zp+1) for
j = i + 1, i = 1, 2, . . . , p, and sum all the resultants, then we obtain (1.8).

2 General solutions of p-dimensional multifarious radical reciprocal functional
equations

The following theorems give the solutions of (1.7) and (1.8), which are motivated by the
work of Ger [26].

Theorem 2.1 A general solution of (1.7) is s(z) = c
zm , z ∈ (0,∞), with s(z)

1
zm

a quotient at
zero.

Proof Letting z1 = z2 = · · · = zp = z in (1.7), we obtain

s
(

m√pz
)

=
1
p

s(z). (2.1)

Assuming that

g(z) =
s(z)

1
z

m
2

, (2.2)

we have

lim
z→0+

g(z)
1

z
m
2

=: c ∈R.

Dividing (2.1) by 1
z

m
2

, we have

s( m√pz)
√p

√pz
m
2

=
1
p s(z)

1
z

m
2

. (2.3)

By (2.2) and (2.3) we have

g
(

m√pz
)

=
1√p

g(z). (2.4)

Replacing z by z
m√p in (2.4), we get

√
pg(z) = g

(
z

m√p

)
. (2.5)

Again, replacing z by z
m√p in (2.5), we obtain

(
√

p)2g(z) = g
(

z
( m√p)2

)
.
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Continuing the same process k times, we have

(
√

p)kg(z) = g
(

z
( m√p)k

)
.

Now

g(z)
1

z
m
2

=
(√p)kg(z)
(√p)k 1

z
m
2

=
g( 1

( m√p)k z)
(√p)k

z
m
2

→ c as k → ∞,

and (2.2) implies that

s(z) =
1

z m
2

g(z) =
1

z m
2

1
z m

2
c =

c
zm .

This completes the proof. �

Theorem 2.2 A general solution of (1.8) is s(z) = c
zm , z ∈ (0,∞), with s(z)

1
zm

a quotient at
zero.

Proof Letting z1 = z2 = · · · = zp+1 = z in (1.8), we get

s
( m√2z

)
=

1
2

s(z), (2.6)

and assuming that

h(z) =
s(z)

1
z

m
2

, (2.7)

we obtain

lim
z→0+

h(z)
1

z
m
2

=: c ∈R.

Dividing (2.6) by 1
z

m
2

, we get

s( m√2z)
√

2√
2z

m
2

=
1
2 s(z)

1
z

m
2

, (2.8)

and by (2.7) and (2.8) we have

h
( m√2z

)
=

1√
2

h(z). (2.9)

Replacing z by z
m√2 in (2.9) and (2.10), we get

√
2h(z) = h

(
z

m√2

)
(2.10)
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and

(
√

2)2h(z) = h
(

z
( m√2)2

)
.

respectively. Continuing the same process k times, we get

(
√

2)kh(z) = h
(

z
( m√2)k

)
. (2.11)

Since

h(z)
1

z
m
2

=
(
√

2)kh(z)
(
√

2)k 1
z

m
2

=
h( 1

( m√2)k z)
(
√

2)k

z
m
2

→ c as k → ∞,

equations (2.7) and (2.11) imply that

s(z) =
1

z m
2

h(z) =
1

z m
2

1
z m

2
c =

c
zm .

This completes the proof. �

In the following theorem, we obtain general solutions of (1.7) and (1.8) by the derivative
method.

Theorem 2.3 Let s : (0,∞) → R be a continuously differentiable function with nowhere
vanishing derivative s′. Then s has a solution of the functional equation (1.7) if and only if
there exists a nonzero real constant c such that s(z) = c

zm , z ∈ (0,∞).

Proof Differentiating (1.7) with respect to z1 on both sides, we have

s′( m
√

zm
1 + zm

2 + · · · + zm
p
) (z1)m–1

( m
√

zm
1 + zm

2 · · · + zm
p )m–1

(2.12)

=
(s′(z1)s(z2)···s(zp))[s(z2)s(z3)···s(zp)+···+s(z1)s(z2)···s(zp–1)]

–(s(z1)s(z2)···s(zp))[s′(z1)s(z3)···s(zp)+···+s′(z1)s(z2)···s(zp–1)]

(s(z2)s(z3) · · · s(zp) + · · · + s(z1)s(z2) · · · s(zp–1))2 .

Letting z1 = z2 = · · · = zp = z in (2.12), we have

s′( m√pz
)

=
1

p m√p
s′(z), (2.13)

and setting z1 = m√2z and z2 = z3 = · · · = zp = z in (2.12) and using (2.1) and (2.13), we
obtain

s′( m
√

p + 1z
)

=
1

(p + 1) m√p + 1
s′(z). (2.14)

By (2.13) and (2.14) we get

s′(( m√p
)k( m

√
p + 1

)lz
)

=
1

pk( m√p)k
1

(p + 1)l( m√p + 1)l s′(z)
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for all integers k, l. We derive its linearity by assuming λ = ( m√p)k( m√p + 1)l and z = 1:

s′(λ) = s′(1)
1

(λ)m+1

for λ ∈ (0,∞). Therefore there exist real numbers c 
= 0 and d such that s(z) = c
zm + d for

z ∈ (0,∞). Note that we have d = 0, since the equality s( m√pz) = 1
p s(z) is valid for all positive

real numbers z. This completes the proof. �

Theorem 2.4 Let s : (0,∞) → R be a continuously differentiable function with nowhere
vanishing derivative s′. Then s is a solution of the functional equation (1.8) if and only if
there exists a nonzero real constant c such that s(z) = c

zm , z ∈ (0,∞).

Proof Differentiating (1.8) with respect to z1 on both sides, we obtain

s′( m
√

zm
1 + zm

2
) (z1)m–1

( m
√

zm
1 + zm

2 )m–1
+ s′( m

√
zm

1 + zm
p+1

) (z1)m–1

( m
√

zm
1 + zm

p+1)m–1
(2.15)

=
s′(z1)(s(z2))2

(s(z1) + s(z2))2 +
s′(z1)(s(zp+1))2

(s(z1) + s(zp+1))2 ,

and by (2.6) we have

s′( m√2z
)

=
1

2 m√2
s′(z). (2.16)

Letting z1 = z and z2 = zp+1 = m√2z in (2.15) and using (2.6) and (2.16), we get

s′( m√3z
)

=
1

3 m√3
s′(z), (2.17)

and from (2.16) and (2.17) we get

s′(( m√2
)k( m√3

)lz
)

=
1

2k( m√2)k

1
3l( m√3)l

s′(z),

for all integers k, l. We derive its linearity by assuming λ = ( m√2)k( m√3)l and z = 1,

s′(λ) = s′(1)
1

(λ)m+1

for λ ∈ (0,∞). Therefore, there exist real numbers c 
= 0 and d such that s(z) = c
zm + d for

z ∈ (0,∞). Note that we have d = 0, since the equality s( m√2z) = 1
2 s(z) is valid for all positive

real numbers z. This completes the proof. �

Consider M = A+, the positive cone of a C∗-algebra A, and let Z be the real field R.
Let Zξ be the ξ -complete modular space where ξ is a convex modular on Z. For conve-
nience, let us define the difference operators D1s(z1, z2, . . . , zp) : M × · · · × M︸ ︷︷ ︸

p times

→ Zξ and
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D2s(z1, z2, . . . , zp+1) : M × · · · × M︸ ︷︷ ︸
p+1 times

→ Zξ as follows:

D1s(z1, z2, . . . , zp)

= s

(
m

√√√
√

p∑

i=1

zm
i

)

–
∏p

i=1 s(zi)
1

s(z1)
∏p

i=1 s(zi) + 1
s(z2)

∏p
i=1 s(zi) + · · · + 1

s(zp)
∏p

i=1 s(zi)
,

D2s(z1, z2, . . . , zp, zp+1) =
p∑

i=1

(
s
(

m
√

zm
i + zm

j
))

+ s
(

m
√

zm
1 + zm

p+1
)

–
p∑

i=1

(
s(zi)s(zj)

s(zi) + s(zj)

)
–

s(z1)s(zp+1)
s(z1) + s(zp+1)

for z1, z2, . . . , zp, zp+1 ∈ M.

3 Hyers–Ulam stability of p-dimensional multifarious radical reciprocal
functional equations

In this section, we prove the Hyers–Ulam stability of (1.7) and (1.8) in modular spaces by
the fixed point method.

Theorem 3.1 Let η : Mp → [0, +∞) be a function satisfying

η
(
(p)

1
m z1, (p)

1
m z2, . . . , (p)

1
m zp

) ≤ 1
p
ψη(z1, z2, . . . , zp) (3.1)

for all z1, z2, . . . , zn ∈ M and ψ < 1. Assume that s : M → Zξ fulfills

ξ
(
D1s(z1, z2, . . . zp)

) ≤ η(z1, z2, . . . , zp) (3.2)

for all z1, z2, . . . , zp ∈ M. Then there exists a unique multifarious radical reciprocal mapping
R : M → Zξ such that

ξ
(
R(z) – s(z)

) ≤ 1
1
p (1 – ψ)

η(z, z, . . . , z) ∀z ∈ M. (3.3)

Proof Let N = {h : M → Zξ } and define ξ ′ on N as

ξ ′(h) =: inf
{

(p)
1
m > 0 : ξ

(
h(z)

) ≤ (p)
1
m η(z, z, . . . , z)

}
.

We can easily prove that ξ ′ is a convex modular with Fatou property on N . Let {hi} be a
ξ ′-Cauchy sequence in Nξ ′ , and let ε > 0. There exists a positive integer i0 ∈ N such that
ξ ′(hi – hj) ≤ ε for all i, j ≥ i0, and we can easily prove that {hi} is a ξ ′-convergent sequence
in Nξ ′ . Therefore Nξ ′ is ξ ′-complete; see [29, 30]. Consider the function σ : Nξ ′ → Nξ ′

defined by

σh(z) =
1
p

h
(
p

1
m z

)
(3.4)
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for h ∈ Nξ ′ . Let h, r ∈ Nξ ′ and (p) 1
m ∈ [0, 1] with ξ ′(h – r) < (p) 1

m . By the definition of ξ ′ we
get

ξ
(
h(z) – r(z)

) ≤ (p)
1
m η(z1, z2, . . . , zp) ∀z1, z2, . . . , zp ∈ M. (3.5)

By (3.1) and (3.5) we obtain

ξ

(
h((p) 1

m z)
1
p

–
r((p) 1

m z)
1
p

)
≤ 1

1
p
ξ
(
h
(
(p)

1
m z

)
– r

(
(p)

1
m z

))

≤ 1
1
p

(p)
1
m η

(
(p)

1
m z1, (p)

1
m z2, . . . , (p)

1
m zp

)

≤ (p)
1
m ψη(z1, z2, . . . , zp)

for all z1, z2, . . . , zp ∈ M. In that case, σ is a ξ ′-contraction, and (3.2) implies

ξ

(
s((p) 1

m z)
1
p

– s(z)
)

≤ 1
1
p
η(z, z, . . . , z) ∀z ∈ M, (3.6)

and replacing z by (p) 1
m z in (3.6), we get

ξ

(
s((p) 2

m z)
1
p

– s
(
(p)

1
m z

)) ≤ η((p) 1
m z, (p) 1

m z, . . . , (p) 1
m z)

1
p

, (3.7)

and by (3.6) and (3.7) we get

ξ

(
s((p) 2

m z)
1

p2
– s(z)

)
≤ 1

1
p2

η
(
(p)

1
m z, (p)

1
m z, . . . , (p)

1
m z

)
+

1
1
p
η(z, z, . . . , z).

By generalization we get

ξ

(
s((p) k

m z)
1

pk

– s(z)
)

≤
k∑

i=1

1
1
pi

η
((

(p)
1
m

)i–1z,
(
(p)

1
m

)i–1z, . . . ,
(
(p)

1
m
)i–1z

)

≤ 1
ψ 1

p
η(z, z, . . . , z)

k∑

i=1

ψ i

≤ 1
1
p (1 – ψ)

η(z, z, . . . , z) ∀z ∈ M. (3.8)

We obtain from (3.8) that

ξ

(
s((p) k

m z)
1

pk

–
s((p) u

m z)
1

pu

)
≤ 1

2
ξ

(
2

s((p) k
m z)

1
pk

– 2s(z)
)

+
1
2
ξ

(
2

s((p) u
m z)

1
pu

– 2s(z)
)

≤ κ

2
ξ

(
s((p) k

m z)
1

pk

– s(z)
)

+
κ

2
ξ

(
s((p) u

m z)
1

pu
– s(z)

)

≤ κ
1
p (1 – ψ)

η(z, z, . . . z) ∀z ∈ M,
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where k, u ∈N. Thus

ξ ′(σ ks – σ us
) ≤ κ

1
p (1 – ψ)

,

and hence the boundedness of an orbit of σ at s implies that {τ ks} is ξ ′-convergent to
R ∈ Nξ ′ by [29, Theorem 1.5]. By the ξ ′-contractivity of σ we get

ξ ′(σ ks – σR
) ≤ ψξ ′(σ k–1s – R

)
.

Taking the limit as k → ∞, by the Fatou property of ξ ′ we get

ξ ′(σR – R) ≤ lim
p→∞ inf ξ ′(σR – σ ks

) ≤ ψ lim
k→∞

inf ξ ′(R – σ k–1s
)

= 0.

Hence R is a fixed point of σ . In (3.2), replacing (z1, z2, . . . , zp) by ((p) k
m z1, (p) k

m z2, . . . ,
(p) k

m zp), we get

ξ

(
1
1

pk

M1s
(
(p)

k
m z1, (p)

k
m z2, . . . , (p)

k
m zp

)) ≤ 1
1

pk

η
(
(p)

k
m z1, (p)

k
m z2, . . . , (p)

k
m zp

)
.

By Theorems 2.1 and 2.3, taking the limit as k → ∞, R is a multifarious radical reciprocal
mapping, and using (3.8), we obtain (3.3). For the uniqueness of R, consider another mul-
tifarious radical reciprocal mapping T : M → Zξ satisfying (3.3). Then T is a fixed point
of σ . So

ξ ′(R – T) = ξ ′(σR – σT) ≤ ψξ ′(R – T). (3.9)

From (3.9) we get R = T . Hence the proof is complete. �

Since each normed space is a modular space with modular ξ (z) = ‖z‖, we can obtain the
following corollaries.

Corollary 3.2 Let η be a function from Mp to [0, +∞) satisfying

η
{(

p
1
m

)
z1,

(
p

1
m

)
z2, . . . ,

(
p

1
m

)
zp

} ≤ 1
p
ψη(z1, z2, . . . , zp)

for all z1, z2, . . . , zn ∈ M and ψ < 1. Assume that s : M → Z satisfies the condition

∥
∥D1s(z1, z2, . . . , zp)

∥
∥ ≤ η(z1, z2, . . . , zp)

for all z1, z2, . . . , zp ∈ M. Then there is a unique multifarious radical reciprocal mapping
R : M → Z such that

∥
∥R(z) – s(z)

∥
∥ ≤ η(z, z, . . . , z)

1
p (1 – ψ)

for all z ∈ M.
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Theorem 3.3 Let η be a function from Mp to [0, +∞) satisfying

η

(
z1

(p) 1
m

,
z2

(p) 1
m

, . . . ,
zp

(p) 1
m

)
≤ ψ

1
p

ρ(z1, z2, . . . , zp)

for all z1, z2, . . . , zp ∈ M and ψ < 1. Assume that s : M → Zξ fulfills

ξ
(
D1s(z1, z2, . . . , zp)

) ≤ η(z1, z2, . . . , zp)

for all z1, z2, . . . , zp ∈ M. Then there is a unique multifarious radical reciprocal mapping
R : M → Zξ such that

ξ
(
R(z) – s(z)

) ≤ pψ

1 – ψ
η(z, z, . . . , z) ∀z ∈ M.

Proof Replacing z by z
(p)

1
m

in (3.4) of Theorem 3.1 and proceeding similarly, we complete

the proof. �

Corollary 3.4 Let η be a function from Mp to [0, +∞) satisfying

η

(
z1

(p) 1
m

,
z2

(p) 1
m

, . . . ,
zp

(p) 1
m

)
≤ ψ

1
p

η(z1, z2, . . . , zp)

for all z1, z2, . . . , zp ∈ M and ψ < 1. Assume that s : M → Z fulfills the inequality
∥∥D1s(z1, z2, . . . , zp)

∥∥ ≤ η(z1, z2, . . . , zp)

for all z1, z2, . . . , zp ∈ M. Then there is a unique multifarious radical reciprocal mapping
R : M → Z such that

∥
∥R(z) – s(z)

∥
∥ ≤ pψ

1 – ψ
η(z, z, . . . , z)

for all z ∈ M.

Using Corollaries 3.2 and 3.4, we prove the Hyers–Ulam stability of (1.7).

Corollary 3.5 Let η be a function from Mp to [0, +∞) such that

η
(
(p)

1
m z1, (p)

1
m z2, . . . , (p)

1
m zp

) ≤ 1
p
ψη(z1, z2, . . . , zp)

for all z1, z2, . . . , zp ∈ M and ψ < 1. Suppose that for some ε ≥ 0, s : M → Z fulfills
∥
∥D1s(z1, z2, . . . , zn)

∥
∥ ≤ ε

for all z1, z2, . . . , zp ∈ M. Then there is a unique multifarious radical reciprocal mapping

R : M → Z, defined by R(z) = limk→∞ s((p)
k
m z)

1
pk

, such that

∥∥R(z) – s(z)
∥∥ ≤ pε

|1 – p|
for all z ∈ M and p 
= 0,±1.
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Proof Assume that η(z1, z2, . . . , zp) = ε for all z1, z2, . . . , zp ∈ M. Then Corollary 3.2 implies
that

∥
∥R(z) – s(z)

∥
∥ ≤ pε

1 – p

for all z ∈ M and p 
= 0,±1, and by Corollary 3.4 we get

∥∥R(z) – s(z)
∥∥ ≤ pε

p – 1

for all z ∈ M and p 
= 0,±1. �

Corollary 3.6 Suppose that for some ε ≥ 0, s : M → Z fulfills the inequality

∥
∥D1s(z1, z2, . . . , zp)

∥
∥ ≤ ε

(‖z1‖u + ‖z2‖u + · · · + ‖zp‖u) (3.10)

for all z1, z2, . . . , zp ∈ M with 0 ≤ u < –m or u > –m. Then there is a multifarious radical

reciprocal mapping R : M → Z, defined by R(z) = limk→∞ s((p)
k
m z)

1
pk

, such that

∥∥R(z) – s(z)
∥∥ ≤ p2ε

|1 – p m+u
m | ‖z‖u ∀z ∈ M, p 
= 0,±1.

Proof If we choose η(z1, z2, . . . , zp) = ε(‖z1‖u + ‖z2‖u + · · · + ‖zp‖u), then by Corollary 3.2

∥
∥R(z) – s(z)

∥
∥ ≤ p2ε

1 – p m+u
m

‖z‖u

for all z ∈ M and u < –m. Using Corollary 3.4, we have

∥
∥R(z) – s(z)

∥
∥ ≤ p2ε

p m+u
m – 1

‖z‖u

for all z ∈ M and u > –m. �

The following is an example to elucidate that (1.7) is not stable for u = –m in Corol-
lary 3.6 using the method introduced by Gajda [31].

Example 3.7 Ffor some a > 0, define φ : M → Z by

φ(z) =

⎧
⎨

⎩

a
zm if z ∈ (1,∞),

a otherwise,

and s : M → Z by s(z) =
∑∞

k=0
φ(p–k z)

pmk . Then s fulfills

∥
∥D1s(z1, z2, . . . , zp)

∥
∥ ≤ ap2m(p + 1)

p(pm – 1)
×

(∣∣
∣∣

1
zm

1

∣∣
∣∣ +

∣∣
∣∣

1
zm

2

∣∣
∣∣ + · · · +

∣∣
∣∣

1
zm

p

∣∣
∣∣

)
(3.11)
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for all z1, z2, . . . , zp ∈ M. In that case, there does not exist a multifarious radical reciprocal
mapping R : M → Z such that

∣
∣s(z) – R(z)

∣
∣ ≤ β

∣∣
∣∣

1
zm

∣∣
∣∣, β > 0,∀z ∈R. (3.12)

Proof We have

∣∣s(z)
∣∣ ≤

∞∑

k=0

|φ(p–kz)|
|pmk| =

∞∑

k=0

a
pmk =

apm

pm – 1
.

Therefore we see that s is bounded. We are going to prove that s satisfies (3.11).
If | 1

zm
1

| + | 1
zm

2
| + · · · + | 1

zm
p

| ≥ 1, then the left-hand side of (3.11) is less than apm(p+1)
p(pm–1) . Now

suppose that 0 < | 1
zm

1
| + | 1

zm
2

| + · · · + | 1
zm

p
| < 1. Then there exists a positive integer r such that

1
pm(r+1) ≤

∣
∣∣
∣

1
zm

1

∣
∣∣
∣ +

∣
∣∣
∣

1
zm

2

∣
∣∣
∣ + · · · +

∣
∣∣
∣

1
zm

p

∣
∣∣
∣ <

1
pmr , (3.13)

and so

pmr 1
zm

1
< 1, pmr 1

zm
2

< 1, . . . , pmr 1
zm

p
< 1, (3.14)

or
zm

1
pmr > 1,

zm
2

zmr > 1, . . . ,
zm

p

pmr > 1,

or
z1

pr > 1,
z2

pr > 1, . . . ,
zp

pr > 1.

Consequently, z1
pr–1 > p > 1, z2

pr–1 > p > 1, . . . , zp
pr–1 > p > 1. Again from (3.14) we get

zm
1

pm(r–1) > pm > 1,
zm

2
pm(r–1) > pm > 1, . . . ,

zm
p

pm(r–1) > pm > 1.

Consequently, 1
pm(r–1) (zm

1 + zm
2 + · · · + zm

p ) > 1, 1
pr–1

m
√

zm
1 + zm

2 + · · · + zm
p > 1. Hence

z1

pr–1 > 1,
z2

pr–1 > 1, . . . ,
zp

pr–1 > 1,
1

pr–1
m
√

zm
1 + zm

2 + · · · + zm
p > 1.

Therefore, for each k = 0, 1, . . . , r – 1, we have

z1

pk > 1,
z2

pk > 1, . . . ,
zp

pk > 1,
1
pk

m
√

zm
1 + zm

2 + · · · + zm
p > 1

and

φ

(
1
pk

(
m
√

zm
1 + zm

2 + · · · + zm
p
)
)

–
φ( z1

pk )φ( z2
pk ) · · ·φ( zp

pk )

φ( z2
pk )φ( z3

pk ) · · ·φ( zp
pk ) + · · · + φ( z1

pk )φ( z2
pk ) · · ·φ( zp–1

pk )
= 0
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for k = 0, 1, . . . , r – 1. From the definition of s and (3.13) we obtain that
∣
∣∣
∣s

(
m
√

zm
1 + zm

2 + · · · + zm
p
)

–
s(z1)s(z2) · · · s(zp)

s(z2)s(z3) · · · s(zp) + · · · + s(z1)s(z2) · · · s(zp–1)

∣
∣∣
∣

≤
∞∑

k=0

1
pmk

∣∣
∣∣φ

(
1
pk

(
m
√

zm
1 + zm

2 + · · · + zm
p
))

+
φ( z1

pk )φ( z2
pk ) · · ·φ( zp

pk )

φ( z2
pk )φ( z3

pk ) · · ·φ( zp
pk ) + · · · + φ( z1

pk )φ( z2
pk ) · · ·φ( zp–1

pk )

∣∣
∣∣

≤
∞∑

k=r

1
pmk

(
a +

ap

pap–1

)

≤
∞∑

k=r

1
pmk

(
a +

ap

pap–1

)
=

apm

pm – 1

(
p + 1

p

)
× 1

pmr

=
apm

pm – 1

(
p + 1

p

)
× pm

(∣
∣∣
∣

1
zm

1

∣
∣∣
∣ +

∣
∣∣
∣

1
zm

2

∣
∣∣
∣ + · · · +

∣
∣∣
∣

1
zm

p

∣
∣∣
∣

)

=
ap2m

pm – 1

(
p + 1

p

)
×

(∣
∣∣
∣

1
zm

1

∣
∣∣
∣ +

∣
∣∣
∣

1
zm

2

∣
∣∣
∣ + · · · +

∣
∣∣
∣

1
zm

p

∣
∣∣
∣

)
.

Thus s satisfies (3.11) for all z1, z1, . . . , zp ∈ M with 0 < | 1
zm

1
| + | 1

zm
2

| + · · · + | 1
zm

p
| < 1.

We claim that the multifarious radical reciprocal functional equation (1.7) is not stable
for u = –m in Corollary 3.6. Suppose on the contrary that there exist a multifarious radical
reciprocal mapping R : M → Z and a constant β > 0 satisfying (3.12). Then we have

∣
∣s(z)

∣
∣ ≤ (β + 1)

∣∣
∣∣

1
zm

∣∣
∣∣. (3.15)

However, we can choose a positive integer q such that qa > β + 1.
If z ∈ (1, pq–1), then p–kz ∈ (1,∞) for all k = 0, 1, . . . , q – 1. For this z, we get

s(z) =
∞∑

k=0

φ(p–kz)
pmk ≥

q–1∑

k=0

a
(p–k z)m

pmk = q
a

zm > (β + 1)
1

zm ,

which contradicts (3.15). Therefore the multifarious radical reciprocal functional equation
(1.7) is not stable in sense of Ulam, Hyers, and Rassias if p = –m in (3.10). �

Corollary 3.8 Let s : M → Z. Suppose that there exists ε ≥ 0 such that

∥∥D1s(z1, z2, . . . , zp)
∥∥ ≤ ε

(‖z1‖
u
p ‖z2‖

u
p · · · ‖zp‖

u
p
)

for all z1, z2, . . . , zp ∈ M. Then there exists a unique multifarious radical reciprocal mapping
R : M → Z satisfying (1.7) and

∥∥R(z) – s(z)
∥∥ ≤

⎧
⎪⎨

⎪⎩

pε

1–p
m+u

m
‖z‖u, u < –m,

pε

p
m+u

m –1
‖z‖u, u > –m,

for all z ∈ M.
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Proof Replacing η(z1, z2, . . . , zp) by ε(‖z1‖
u
p ‖z2‖

u
p · · · ‖zp‖

u
p ) in Corollary 3.2, we obtain

∥∥R(z) – s(z)
∥∥ ≤ pε

1 – p m+u
m

‖z‖p

for u < –m and all z ∈ M, and by Corollary 3.4 we get

∥∥R(z) – s(z)
∥∥ ≤ pε

p m+u
m – 1

‖z‖p

for u > –m and all z ∈ M. �

Corollary 3.9 Let ε > 0, and let α < – m
p or α > – m

p be real numbers, and let s : M → Z be
a mapping satisfying the functional inequality

∥
∥D1s(z1, z2, . . . , zp)

∥
∥ ≤ ε

{‖z1‖pα + ‖z2‖pα + · · · + ‖zp‖pα +
(‖z1‖α‖z2‖α · · · ‖zp‖α

)}
.

Then there exists a unique multifarious radical reciprocal mapping R : M → Z satisfying
(1.7) and

∥∥R(z) – s(z)
∥∥ ≤

⎧
⎪⎨

⎪⎩

p(p+1)ε

1–p
pα+m

m
‖z‖pα for α < – m

p ,
p(p+1)ε

p
pα+m

m –1
‖z‖pα for α > – m

p ,

for all z ∈ M.

Proof Replacing η(z1, z2, . . . , zp) by ε{‖z1‖pα +‖z2‖pα + · · ·+‖zp‖pα +(‖z1‖α‖z2‖α · · · ‖zp‖α)},
by Corollary 3.4 we have

∥∥R(z) – s(z)
∥∥ ≤ p(p + 1)ε

1 – p
pα+m

m
‖z‖pα

for α < – m
p and all z ∈ M, and by Corollary 3.4 we get

∥
∥R(z) – s(z)

∥
∥ ≤ p(p + 1)ε

p
pα+m

m – 1
‖z‖pα

for α > – m
p and all z ∈ M. �

The following example elucidates that (1.7) is not stable for α = – m
p in Corollary 3.9

using the method introduced by Gajda [31].

Example 3.10 Let the function φ : M → Z be defined as

φ(z) =

⎧
⎨

⎩

l
zm , z ∈ (1,∞),

l otherwise,
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with a constant l > 0, and let the function s : M → Z be defined as s(z) =
∑∞

k=0
φ(p–k z)

pmk . Then
s fulfills

∥∥D1s(z1, z2, . . . , zp)
∥∥ (3.16)

≤ ap2m(p + 1)
p(pm – 1)

×
(∣∣

∣∣
1

zm
1

∣∣
∣∣ +

∣∣
∣∣

1
zm

2

∣∣
∣∣ + · · · +

∣∣
∣∣

1
zm

p

∣∣
∣∣ +

∣∣
∣∣

1
zm

1

∣∣
∣∣

∣∣
∣∣

1
zm

2

∣∣
∣∣ · · ·

∣∣
∣∣

1
zm

p

∣∣
∣∣

)

for all z1, z2, . . . , zp ∈ M. In that case, there does not exist a multifarious radical reciprocal
mapping R : M → Z such that

∣
∣s(z) – R(z)

∣
∣ ≤ β

∣∣
∣∣

1
zm

∣∣
∣∣, β > 0,∀z ∈ M.

Proof We have |s(z)| ≤ ∑∞
k=0

|φ(p–k z)|
|pmk | =

∑∞
k=0

l
pmk = lpm

pm–1 . Therefore we see that s is
bounded. We are going to prove that s satisfies (3.16).

If | 1
zm

1
| + | 1

zm
2

| + · · · + | 1
zm

p
| + | 1

zm
1

|| 1
zm

2
| · · · | 1

zm
p

| ≥ 1, then the left-hand side of (3.16) is less

than apm(p+1)
p(pm–1) . Now suppose that 0 < | 1

zm
1

|+ | 1
zm

2
|+ · · ·+ | 1

zm
p

|+ | 1
zm

1
|| 1

zm
2

| · · · | 1
zm

p
| < 1. Then there

exists a positive integer r such that

1
pm(r+1) ≤

∣
∣∣∣

1
zm

1

∣
∣∣∣ +

∣
∣∣∣

1
zm

2

∣
∣∣∣ + · · · +

∣
∣∣∣

1
zm

p

∣
∣∣∣ +

∣
∣∣∣

1
zm

1

∣
∣∣∣

∣
∣∣∣

1
zm

2

∣
∣∣∣ · · ·

∣
∣∣∣

1
zm

p

∣
∣∣∣ <

1
pmr ,

and the rest of the proof is the same as in that of Example 3.7. �

Theorem 3.11 Let η : Mp+1 → [0, +∞) be a function such that

η
(
(2)

1
m z1, (2)

1
m z2, . . . , (2)

1
m zp+1

) ≤ 1
2
ψη(z1, z2, . . . , zp+1) (3.17)

for all z1, z2, . . . , zp+1 ∈ M and ψ < 1. Suppose that s : M → Zξ fulfills the inequality

ξ
(
D2s(z1, z2, . . . zp+1)

) ≤ η(z1, z2, . . . , zp+1) (3.18)

for all z1, z2, . . . , zp+1 ∈ M. Then there is a unique multifarious radical reciprocal mapping
R : M → Zξ such that

ξ
(
R(z) – s(z)

) ≤ 1
1
2 (p + 1)(1 – ψ)

η(z, z, . . . , z) ∀z ∈ M. (3.19)

Proof Consider N = {h : M → Zξ } and define ξ ′ on N as

ξ ′(h) =: inf
{

(2)
1
m > 0 : ξ

(
h(z)

) ≤ (2)
1
m η(z, z, . . . , z)

}
.

We can easily prove that ξ ′ is a convex modular with Fatou property on N . Let {hi} be a
ξ ′-Cauchy sequence in Nξ ′ . For any ε > 0, there exists a positive integer i0 ∈ N such that
ξ ′(hi – hj) ≤ ε for all i, j ≥ i0, and we can easily prove that {hi} is a ξ ′-convergent sequence
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in Nξ ′ . Therefore Nξ ′ is ξ ′-complete; see [29, 30]. Consider the function σ : Nξ ′ → Nξ ′

defined by

σh(z) =
1
2

h
(
2

1
m z

)
(3.20)

for h ∈ Nξ ′ . Let h, r ∈ Nξ ′ and (2) 1
m ∈ [0, 1] with ξ ′(h – r) < (2) 1

m . By the definition of ξ ′ we
get

ξ
(
h(z) – r(z)

) ≤ (2)
1
m η(z1, z2, . . . , zp) (3.21)

for all z1, z2, . . . , zp+1 ∈ M. By (3.17) and (3.21) we obtain

ξ

(
h((2) 1

m z)
1
2

–
r((2) 1

m z)
1
2

)
≤ 1

1
2
ξ
(
h
(
(2)

1
m z

)
– r

(
(2)

1
m z

))

≤ 1
1
2

(2)
1
m η

(
(2)

1
m z1, (2)

1
m z2, . . . , (2)

1
m zp+1

)

≤ (2)
1
m ψη(z1, z2, . . . , zp+1)

for all z1, z2, . . . , zp+1 ∈ M. Hence σ is a ξ ′-contraction. From (3.18) we obtain

ξ

(
s((2) 1

m z)
1
2

– s(z)
)

≤ 1
1
2 (p + 1)

η(z, z, . . . , z). (3.22)

Replacing z by (2) 1
m z in (3.22), we get

ξ

(
s((2) 2

m z)
1
2

– s
(
(2)

1
m z

)) ≤ η((2) 1
m z, (2) 1

m z, . . . , (2) 1
m z)

1
2 (p + 1)

. (3.23)

It follows from (3.22) and (3.23) that

ξ

(
s((2) 2

m z)
1

22
– s(z)

)
≤ ξ

(
s((2) 2

m z)
1

22
–

s((2) 1
m z)

1
2

)
+ ξ

(
s((2) 1

m z)
1
2

– s(z)
)

≤ 1
1

22 (p + 1)
η
(
(2)

1
m z, (2)

1
m z, . . . , (2)

1
m z

)
+

1
1
2 (p + 1)

η(z, z, . . . , z).

By induction we get

ξ

(
s((2) k

m z)
1

2k

– s(z)
)

≤ 1
p + 1

k∑

i=1

1
1
2i

η
((

(2)
1
m
)i–1z,

(
(2)

1
m

)i–1z, . . . ,
(
(2)

1
m

)i–1z
)

≤ 1
ψ 1

2 (p + 1)
η(z, z, . . . , z)

k∑

i=1

ψ i (3.24)

≤ 1
1
2 (p + 1)(1 – ψ)

η(z, z, . . . , z).
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It follows from (3.24) that

ξ

(
s((2) k

m z)
1

2k

–
s((2) u

m z)
1

2u

)
≤ 1

2
ξ

(
2

s((2) k
m z)

1
2k

– 2s(z)
)

+
1
2
ξ

(
2

s((2) u
m z)

1
2u

– 2s(z)
)

≤ κ

2
ξ

(
s((2) k

m z)
1

2k
– s(z)

)
+

κ

2
ξ

(
s((2) u

m z)
1

2u
– s(z)

)

≤ κ
1
2 (p + 1)(1 – ψ)

η(z, z, . . . z),

where k, u ∈N. Thus

ξ ′(σ ks – σ us
) ≤ κ

1
2 (p + 1)(1 – ψ)

,

and hence by the boundedness of an orbit of σ at s, {τ ks} is ξ ′-convergent to R ∈ Nξ ′ by
[29, Theorem 1.5]. By the ξ ′-contractivity of σ we get

ξ ′(σ ks – σR
) ≤ ψξ ′(σ k–1s – R

)
.

Taking the limit as k → ∞, by the Fatou property of ξ ′ we get

ξ ′(σR – R) ≤ lim
k→∞

inf ξ ′(σR – σ ks
) ≤ ψ lim

k→∞
inf ξ ′(R – σ k–1s

)
= 0.

Hence R is a fixed point of σ . In (3.18), replacing (z1, z2, . . . , zp+1) by ((2) k
m z1, (2) k

m z2, . . . ,
(2) k

m zp+1), we get

ξ

(
1
1

2k
D2s

(
(2)

k
m z1, (2)

k
m z2, . . . , (2)

k
m zp+1

)
)

≤ 1
1

2k
η
(
(2)

k
m z1, (2)

k
m z2, . . . , (2)

k
m zp+1

)
.

By Theorems 2.2 and 2.4, letting k → ∞, R satisfies the reciprocal functional equation,
and using (3.24), we obtain (3.19). For the uniqueness of R, consider another multifarious
radical reciprocal mapping T : M → Zξ satisfying (3.19). Then T is a fixed point of σ . So

ξ ′(R – T) = ξ ′(σR – σT) ≤ ψξ ′(R – T). (3.25)

From (3.25) we get R = T . Hence the proof is complete. �

Since each normed space is a modular space with modular ξ (z) = ‖z‖, we get the follow-
ing:

Corollary 3.12 Let η be a function from Mp+1 to [0, +∞) such that

η
((

2
1
m
)
z1,

(
2

1
m
)
z2, . . . ,

(
2

1
m
)
zp+1

) ≤ 1
2
ψη(z1, z2, . . . , zp+1)

for all z1, z2, . . . , zp+1 ∈ M and ψ < 1. Let Z be an arbitrary vector space. Suppose that s :
M → Z fulfills the condition

∥∥D2s(z1, z2, . . . , zp+1)
∥∥ ≤ η(z1, z2, . . . , zp+1)
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for all z1, z2, . . . , zp+1 ∈ M. Then there is a unique multifarious radical reciprocal mapping
R : M → Z such that

∥∥R(z) – s(z)
∥∥ ≤ η(z, z, . . . , z)

1
2 (p + 1)(1 – ψ)

for all z ∈ M.

Theorem 3.13 Let η be a function from Mp+1 to [0, +∞) satisfying

η

(
z1

(2) 1
m

,
z2

(2) 1
m

, . . . ,
zp+1

(2) 1
m

)
≤ ψ

1
2

η(z1, z2, . . . , zp+1)

for all z1, z2, . . . , zp+1 ∈ M and ψ < 1. Suppose that s : M → Zξ fulfills

ξ
(
D2s(z1, z2, . . . , zp+1)

) ≤ η(z1, z2, . . . , zp+1)

for all z1, z2, . . . , zp+1 ∈ M. Then there is a unique multifarious radical reciprocal mapping
R : M → Zξ such that

ξ
(
R(z) – s(z)

) ≤ 2ψ

(1 – ψ)(p + 1)
η(z, z, . . . , z) ∀z ∈ M.

Proof Replacing z by z
(2)

1
m

in (3.20) of Theorem 3.11 and proceeding similarly, we complete

the proof. �

Corollary 3.14 Let η be a function from Mp+1 to [0, +∞) satisfying

η

(
z1

(2) 1
m

,
z2

(2) 1
m

, . . . ,
zp+1

(2) 1
m

)
≤ ψ

1
2

η(x1, z2, . . . , zp+1)

for all z1, z2, . . . , zp+1 ∈ M and ψ < 1. Suppose that s : M → Z fulfills the inequality

∥
∥D2s(z1, z2, . . . , zp+1)

∥
∥ ≤ η(z1, z2, . . . , zp+1)

for all z1, z2, . . . , zp+1 ∈ M. Then there is a unique multifarious radical reciprocal mapping
R : M → Z such that

∥∥R(z) – s(z)
∥∥ ≤ 2ψ

(1 – ψ)(p + 1)
η(z, z, . . . , z)

for all z ∈ M.

Using Corollaries 3.12 and 3.14, we prove the Hyers–Ulam stability of (1.8).

Corollary 3.15 Let η be a function from Mp+1 to [0, +∞) such that

η
(
(2)

1
m z1, (2)

1
m z2, . . . , (2)

1
m zp+1

) ≤ 1
2
ψη(z1, z2, . . . , zp+1)
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for all z1, z2, . . . , zp+1 ∈ M and ψ < 1. Suppose that for some real number ε ≥ 0, s : M → Z
fulfills

∥
∥D2s(z1, z2, . . . , zp+1)

∥
∥ ≤ ε

for all z1, z2, . . . , zn+1 ∈ M. Then there is a unique multifarious radical reciprocal mapping

R : M → Z, defined by R(z) = limk→∞ s((2)
k
m z)

1
2k

, such that

∥∥R(z) – s(z)
∥∥ ≤ 2ε

p + 1

for all z ∈ M.

Proof Setting ε = η(z1, z2, . . . , zp+1) in Corollaries 3.12 and 3.14, we obtain

∥
∥R(z) – s(z)

∥
∥ ≤ 2ε

p + 1

for all z ∈ M and p 
= 0,±1. �

Corollary 3.16 If for some ε ≥ 0, s : M → Z fulfills the inequality,

∥∥D2s(z1, z2, . . . , zs+1)
∥∥ ≤ ε

(‖z1‖u + ‖z2‖u + · · · + ‖zp+1‖u) (3.26)

for all z1, z2, . . . , zu+1 ∈ M with 0 ≤ u < –m or u > –m, then there is a multifarious radical

reciprocal mapping R : M → Z, defined by R(z) = limk→∞ s((2)
k
m z)

1
2k

, such that

∥
∥R(z) – s(z)

∥
∥ ≤ 2ε

|1 – 2 m+u
m | ‖z‖u ∀z ∈ M.

Proof Setting ε(‖z1‖u + ‖z2‖u + · · · + ‖zp+1‖u) = η(z1, z2, . . . , zp+1) in Corollary 3.12, we ob-
tain

∥∥R(z) – s(z)
∥∥ ≤ 2ε

1 – 2 m+u
m

‖z‖u

for u < –m, and by Corollary 3.14 we get

∥∥R(z) – s(z)
∥∥ ≤ 2ε

2 m+u
m – 1

‖z‖u

for u > –m. �

The following example elucidates that (1.8) is not stable in Corollary 3.16 for u = –m.

Example 3.17 For a constant a > 0, define φ : M → Z by

φ(z) =

⎧
⎨

⎩

a
zm if z ∈ (1,∞),

a otherwise,
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and s : M → Z by s(z) =
∑∞

k=0
φ(2–kz)

2mk . Then s fulfills

∥∥D2s(z1, z2, . . . , zp)
∥∥ ≤ a22m

2(2m – 1)
×

(∣
∣∣
∣

1
zm

1

∣
∣∣
∣ +

∣
∣∣
∣

1
zm

2

∣
∣∣
∣ + · · · +

∣
∣∣
∣

1
zm

p+1

∣
∣∣
∣

)
(3.27)

for all z1, z2, . . . , zp+1 ∈ M. In that case, there does not exist a multifarious radical reciprocal
mapping R : M → Z such that

∣∣s(z) – R(z)
∣∣ ≤ β

∣∣∣
∣

1
zm

∣∣∣
∣, β > 0,∀z ∈ M. (3.28)

Proof We have |s(z)| ≤ ∑∞
k=0

|φ(2–kz)|
|2mk | =

∑∞
k=0

a
2mk = a2m

2m–1 . Therefore we see that s is
bounded. Now the aim is to prove that s satisfies (3.27).

If | 1
zm

1
| + | 1

zm
2

| + · · · + | 1
zm

p+1
| ≥ 1, then the left-hand side of (3.27) is less than 3(p+1)a2m

2m–1 . Now

suppose that 0 < | 1
zm

1
| + | 1

zm
2

| + · · · + | 1
zm

p+1
| < 1. Then there exists a positive integer r such

that

1
2m(r+1) ≤

∣∣
∣∣

1
zm

1

∣∣
∣∣ +

∣∣
∣∣

1
zm

2

∣∣
∣∣ + · · · +

∣∣
∣∣

1
zm

p+1

∣∣
∣∣ <

1
2mr , (3.29)

and so

2mr 1
zm

1
< 1, 2mr 1

zm
2

< 1, . . . , 2mr 1
zm

p+1
< 1, (3.30)

or
zm

1
2mr > 1,

zm
2

2mr > 1, . . . ,
zm

p+1

2mr > 1,

or
z1

2r > 1,
z2

2r > 1, . . . ,
zp+1

2r > 1.

Consequently, z1
2r–1 > 2 > 1, z2

2r–1 > 2 > 1, . . . , zp+1
2r–1 > 2 > 1. Again from (3.30) we get

zm
1

2m(r–1) > 2m > 1,
zm

2
2m(r–1) > 2m > 1, . . . ,

zm
p+1

2m(r–1) > 2m > 1.

Consequently,

1
2m(r–1)

(
zm

1 + zm
2
)

> 1,
1

2r–1
m
√

zm
1 + zm

2 > 1,

1
2m(r–1)

(
zm

2 + zm
3
)

> 1,
1

2r–1
m
√

zm
2 + zm

3 > 1, . . . ,

1
2m(r–1)

(
zm

p + zm
p+1

)
> 1,

1
2r–1

m
√

zm
p + zm

p+1 > 1,

1
2m(r–1)

(
zm

1 + zm
p+1

)
> 1,

1
2r–1

m
√

zm
1 + zm

p+1 > 1.

Hence we get

z1

2r–1 > 1,
z2

2r–1 > 1, . . . ,
zp+1

2r–1 > 1,

1
2r–1

m
√

zm
1 + zm

2 > 1,
1

2r–1
m
√

zm
2 + zm

3 > 1, . . . ,
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1
2r–1

m
√

zm
p + zm

p+1 > 1,
1

2r–1
m
√

zm
1 + zm

p+1 > 1.

Therefore for each k = 0, 1, . . . , r – 1, we have

z1

2k > 1,
z2

2k > 1, . . . ,
zp+1

2k > 1,

1
2k

m
√

zm
1 + zm

2 > 1,
1
2k

m
√

zm
2 + zm

3 > 1, . . . ,

1
2k

m
√

zm
n + zm

n+1 > 1,
1
2k

m
√

zm
1 + zm

p+1 > 1,

and

φ

(
1
2k

(( m
√

zm
1 + zm

2
)

+
(

m
√

zm
2 + zm

3
)

+ · · · +
(

m
√

zm
p + zm

p+1
))

)

+ φ

(
1
2k

(
m
√

zm
1 + zm

p+1
)
)

–
(

φ( z1
2k )φ( z2

2k )
φ( z1

2k ) + φ( z2
2k )

+ · · · +
φ( zp

2k )φ( zp+1
2k )

φ( zp
2k ) + φ( zp+1

2k )

)

–
φ( z1

2k )φ( zp+1
2k )

φ( z1
2k ) + φ( zp+1

2k )
= 0

for k = 0, 1, . . . , r – 1. From the definition of s and (3.29) we obtain that

∣∣∣
∣∣

p∑

i=1

(
s
(

m
√

zm
i + zm

j
))

+ s
(

m
√

zm
1 + zm

p+1
)

–
p∑

i=1

(
s(zi)s(zj)

s(zi) + s(zj)

)
–

s(z1)s(zp+1)
s(z1) + s(zp+1)

∣∣∣
∣∣

≤
∞∑

k=0

1
2mk

∣∣
∣∣∣

p∑

i=1

(
φ

(
1
2k

m
√

zm
i + zm

j

))
+ φ

(
1
2k

m
√

zm
1 + zm

p+1

)

–
p∑

i=1

(
φ( zi

2k )φ( zj
2k )

φ( zi
2k ) + φ( zj

2k )

)
–

φ( z1
2k )φ( zp+1

2k )
φ( z1

2k ) + φ( zp+1
2k )

∣
∣∣
∣∣

≤
∞∑

k=r

1
2mk

(
a(p + 1)

2

)
=

3(p + 1)a2m

2m – 1
× 1

2mr

=
3(p + 1)a2m

2m – 1
× 2m

(∣∣∣
∣

1
zm

1

∣∣∣
∣ +

∣∣∣
∣

1
zm

2

∣∣∣
∣ + · · · +

∣∣∣
∣

1
zm

p+1

∣∣∣
∣

)

=
3(p + 1)a4m

2m – 1
×

(∣
∣∣∣

1
zm

1

∣
∣∣∣ +

∣
∣∣∣

1
zm

2

∣
∣∣∣ + · · · +

∣
∣∣∣

1
zm

p+1

∣
∣∣∣

)
.

Thus s satisfies (3.27) for all z1, z2, . . . , zp+1 ∈ M such that 0 < | 1
zm

1
| + | 1

zm
2

| + · · · + | 1
zm

p+1
| < 1.

We claim that the multifarious radical reciprocal functional equation (1.8) is not stable
for u = –m in Corollary 3.16. Suppose on the contrary that there exist a multifarious radical
reciprocal mapping R : M → Z and a constant β > 0 satisfying (3.28). Then we have

∣
∣s(z)

∣
∣ ≤ (β + 1)

∣∣
∣∣

1
zm

∣∣
∣∣. (3.31)

We can choose a positive integer q such that qa > β + 1.
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If z ∈ (1, 2q–1), then 2–kz ∈ (1,∞) for all k = 0, 1, . . . , q – 1. For this z, we get

s(z) =
∞∑

k=0

φ(2–kz)
2mk ≥

q–1∑

k=0

a
(2–k z)m

2mk = q
a

zm > (β + 1)
1

zm ,

which contradicts (3.31). Therefore the multifarious radical reciprocal functional equation
(1.8) is not stable in the sense of Ulam, Hyers, and Rassias if u = –m in (3.26). �

Corollary 3.18 Let s : M → Z and suppose that there exists ε ≥ 0 such that

∥
∥D2s(z1, z2, . . . , zp+1)

∥
∥ ≤ ε

(‖z1‖
u

p+1 ‖z2‖
u

p+1 · · · ‖zp+1‖
u

p+1
)

for all z1, z2, . . . , zp+1 ∈ M. Then there exists a unique multifarious radical reciprocal map-
ping R : M → Z satisfying (1.8) and

∥∥R(z) – s(z)
∥∥ ≤

⎧
⎪⎨

⎪⎩

2ε

(p+1)(1–2
m+u

m )
‖z‖u for u < –m,

2ε

(p+1)(2
m+u

m –1)
‖z‖u for u > –m,

for all z ∈ M.

Proof Replacing η(z1, z2, . . . , zp+1) by ε(‖z1‖
u
p ‖z2‖

u
p · · · ‖zp+1‖

u
p ) in Corollary 3.12, we get

∥
∥R(z) – s(z)

∥
∥ ≤ 2ε

(p + 1)(1 – 2 m+u
m )

‖z‖u

for u < –m and for all z ∈ M, and by Corollary 3.14 we have

∥∥R(z) – s(z)
∥∥ ≤ 2ε

(p + 1)(2 m+u
m – 1)

‖z‖u

for u > –m. �

Corollary 3.19 Let s : M → Z and suppose that there exists ε ≥ 0 such that

∥
∥D2s(z1, z2, . . . , zp+1)

∥
∥

≤ ε
{‖z1‖(p+1)α + ‖z2‖(p+1)α + · · · + ‖zp+1‖(p+1)α +

(‖z1‖α‖z2‖α · · · ‖zp+1‖α
)}

for all z1, z2, . . . , zp+1 ∈ M. Then there exists a unique multifarious radical reciprocal map-
ping R : M → Z satisfying (1.8) and

∥
∥R(z) – s(z)

∥
∥ ≤

⎧
⎪⎨

⎪⎩

2(p+2)ε

(p+1)(1–2
(p+1)α+m

m )
‖z‖(p+1)α for α < – m

p+1 ,

2(p+2)ε

(p+1)(2
(p+1)α+m

m –1)
‖z‖(p+1)α for α > – m

p+1 ,

for all z ∈ M.
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Proof Replacing η(z1, z2, . . . , zp+1) by

ε
{‖z1‖(p+1)α + ‖z2‖(p+1)α + · · · + ‖zp+1‖(p+1)α +

(‖z1‖α‖z2‖α · · · ‖zp+1‖α
)}

in Corollary 3.14, we obtain

∥∥R(z) – s(z)
∥∥ ≤ 2(p + 2)ε

(p + 1)(1 – 2
(p+1)α+m

m )
‖z‖(p+1)α

for α < – m
p+1 , and by Corollary 3.14 we get

∥∥R(z) – s(z)
∥∥ ≤ 2(p + 2)ε

(p + 1)(2
(p+1)α+m

m – 1)
‖z‖(p+1)α

for α > – m
p+1 . �

The following example elucidates that (1.8) is not stable in Corollary 3.19 for α = – m
p+1 .

Example 3.20 For a constant l > 0, define φ : M → Z by

φ(z) =

⎧
⎨

⎩

l
zm if z ∈ (1,∞),

l otherwise,

and s : M → Z by s(z) =
∑∞

k=0
φ(2–kz)

2mk . Then s fulfills

∥∥D2s(z1, z2, . . . , zp+1)
∥∥ (3.32)

≤ l22m

2(2m – 1)
×

(∣∣
∣∣

1
zm

1

∣∣
∣∣ +

∣∣
∣∣

1
zm

2

∣∣
∣∣ + · · · +

∣∣
∣∣

1
zm

p+1

∣∣
∣∣ +

∣∣
∣∣

1
zm

1

∣∣
∣∣

∣∣
∣∣

1
zm

2

∣∣
∣∣ · · ·

∣∣
∣∣

1
zm

p+1

∣∣
∣∣

)

for all z1, z2, . . . , zp+1 ∈ M. In that cas,e there does not exist a multifarious radical reciprocal
mapping R : M → Z such that

∣∣s(z) – R(z)
∣∣ ≤ β

∣
∣∣
∣

1
zm

∣
∣∣
∣, β > 0,∀z ∈ M.

Proof We have |s(z)| ≤ ∑∞
k=0

|φ(2–kz)|
|2mk | =

∑∞
k=0

l
2mk = l2m

2m–1 . Therefore we see that s is
bounded. The next aim is to prove that s satisfies (3.32). If | 1

zm
1

| + | 1
zm

2
| + · · · + | 1

zm
p+1

| +

| 1
zm

1
|| 1

zm
2

| · · · | 1
zm

p+1
| ≥ 1, then the left-hand side of (3.32) is less than 3(p+1)a2m

2m–1 . Now suppose

that 0 < | 1
zm

1
| + | 1

zm
2

| + · · · + | 1
zm

p+1
| + | 1

zm
1

|| 1
zm

2
| · · · | 1

zm
p+1

| < 1. Then there exists a positive integer
r such that

1
2m(r+1) ≤

∣∣
∣∣

1
zm

1

∣∣
∣∣ +

∣∣
∣∣

1
zm

2

∣∣
∣∣ + · · · +

∣∣
∣∣

1
zm

p+1

∣∣
∣∣ +

∣∣
∣∣

1
zm

1

∣∣
∣∣

∣∣
∣∣

1
zm

2

∣∣
∣∣ · · ·

∣∣
∣∣

1
zm

p+1

∣∣
∣∣ <

1
2mr ,

and the rest of the proof is the same as in that of Example 3.17. �



Pachaiyappan et al. Journal of Inequalities and Applications         (2022) 2022:60 Page 28 of 33

4 Applications of p-dimensional multifarious radical reciprocal functional
equations

4.1 The parallel circuit and the p-dimensional multifarious radical reciprocal
functional equation

A parallel circuit has more than one resistor and gets its name from having multiple paths
to move along. Also, we know that the following rule applies to a parallel circuit.

The sum of inverses of individual resistances is equal to the inverse of the total resistance
rt of the circuit, that is,

1
rt

=
1
r1

+
1
r2

+
1
r3

+ · · · .

In Fig. 3, is = i1 + i2 + · · ·+ ip or is = v
r1

+ v
r2

+ · · ·+ v
rp

, where r1, r2, . . . , rp are the p individual
resistances of the parallel circuit, and rt is the total resistance. Then

1
rt

=
1
r1

+
1
r2

+
1
r3

+ · · · +
1
rp

. (4.1)

If we do not want more resistors r1, r2, . . . , rp as in the circuit in Fig. 3, then they can be
replaced by a single equivalent resistor rt (see Fig. 4). Now equality (4.1) simplifies to

rt =
∏p

i=1 ri
1
r1

∏p
i=1 ri + 1

r2

∏p
i=1 ri + · · · + 1

rp

∏p
i=1 ri

.

Considering r1 = c
zm

1
, r2 = c

zm
2

, . . . , rp = c
zm

p
and Fig. 3, we get

rt =

∏p
i=1

c
zm

i
zm

1
c

∏p
i=1

c
zm

i
+ zm

2
c

∏p
i=1

c
zm

i
+ · · · + zm

p
c

∏p
i=1

c
zm

i

. (4.2)

Figure 3 Parallel circuit with p resistances

Figure 4 Equivalent circuit
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Figure 5 Parallel circuit with two resistances

The total conductance td of a circuit in Fig. 3 is td = zm
1 + zm

2 + · · · + zm
p , since rt is reciprocal

to td , that is, rt = c
td

, where c is an arbitrary constant. Equation (4.2) implies that

c
td

=

∏p
i=1

c
zm

i
zm

1
c

∏p
i=1

c
zm

i
+ zm

2
c

∏p
i=1

c
zm

i
+ · · · + zm

p
c

∏p
i=1

c
zm

i

,

which implies

c
zm

1 + zm
2 + · · · + zm

p
=

∏p
i=1

c
zm

i
zm

1
c

∏p
i=1

c
zm

i
+ zm

2
c

∏p
i=1

c
zm

i
+ · · · + zm

p
c

∏p
i=1

c
zm

i

. (4.3)

We may observe that equation (4.3) is our introduced functional equation (1.7) with
solution s(z) = c

zm . Hence for a circuit in Fig. 3, we have the functional equation (1.7).
Also, the left-hand side of equation (4.3) corresponds the circuit in Fig. 4 with only one
resistor, and the right-hand side of equation (4.3) corresponds to the circuit in Fig. 3 with
p resistors.

Hence we may conclude that our introduced functional equation (1.7) means that a par-
allel circuit with p resistors is equivalent to a parallel circuit with only one resistor, which
is a combination of all the single resistors.

If we consider only two resistances in the parallel circuit, then equation (4.3) with p = 2
is our introduced functional equation (1.4) with solution s(z) = c

zm . Hence for a circuit in
Fig. 5, we have the functional equation (1.4).

If we consider only three resistances in the parallel circuit, equation (4.3) with p = 3 is
our introduced functional equation (1.5) with solution s(z) = c

zm . Hence for a circuit in
Fig. 6, we have the functional equation (1.5).

4.2 Relation between electrical resistance and conductance using functional
equation

In this subsection, we provide a formula for finding the equivalent resistance Req of parallel
electrical circuit using the functional equation that relates the electrical resistances and
conductances:

s
( m√Total conductance

)
= Req.
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Figure 6 Parallel circuit with three resistances

Figure 7 Parallel and series circuit

Let s(z1), s(z2), . . . , s(zp) be the resistances of a parallel electrical circuit, and let zm
1 , zm

2 , . . . ,
zm

p be the conductances corresponding to the resistances. Then we have

s
(

m
√

zm
1 + zm

2 + · · · + zm
p
)

= Req, (4.4)

where Req is the equivalent resistance of p resistors. Then

Req =
∏p

i=1 s(zi)
1

s(z1)
∏p

i=1 s(zi) + 1
s(z2)

∏p
i=1 s(zi) + · · · + 1

s(zp)
∏p

i=1 s(zi)
. (4.5)

Also, we may observe that by equations (4.4) and (4.5) we have our introduced functional
equation (1.7) with solution s(z) = 1

zm .

4.3 Counterexamples
In this subsection, we obtain the equivalent resistance using the functional equation (4.4).

Example 4.1 Find the equivalent resistance for the following combination of resistors be-
tween A and B in Fig. 7.

Solution. The resistances 4 �, 4 �, and 4 � are in series, and thus

s(z1) = 4 + 4 + 4 = 12 �,
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and also 2 �, 2 �, and 2 � are in series, and so

s(z2) = 2 + 2 + 2 = 6 �.

At present, s(z1), s(z2), and 4 � are in parallel. For the three parallel resistances, by (4.4)
we have

Req = f
(

m
√

zm
1 + zm

2 + zm
3
)
, (4.6)

where Req = s(z1)s(z2)s(z3)
s(z2)s(z3)+s(z1)s(z3)+s(z1)s(z2) . Let s(z1) = 1

zm
1

= 12, s(z2) = 1
zm

2
= 6, and s(z3) = 1

zm
3

= 4.
Then (4.6) implies that

Req = s
(

m

√
1

12
+

1
6

+
1
4

)
= s

(
m

√
1
2

)
= 2 �.

Let Req = s(z4). Now, from A to B, 5 �, s(z4) = 2 �, and 6 � are in series, and hence

Req = 5 � + 2 � + 6 � = 13 �.

Therefore the equivalent resistance between A and B is 13 �.

Example 4.2 Find the equivalent resistance for the parallel circuit in Fig. 8.

Solution. Let s(z1) = 6 �, s(z2) = 12 �, s(z3) = 24 �, s(z4) = 12 �, s(z5) = 6 �, s(z6) = 24 �,
s(z7) = 24 �, s(z8) = 12 �, s(z9) = 6 �, and s(z10) = 8 � be the parallel resistors. Then for
the ten parallel resistances by using functional equation (4.4), we have

Req = s
(

m
√

zm
1 + zm

2 + zm
3 + · · · + zm

10
)
, (4.7)

Figure 8 Parallel circuit with 10 resistances
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where Req =
∏10

i=1 s(zi)
1

s(z1)
∏10

i=1 s(zi)+ 1
s(z2)

∏10
i=1 s(zi)+···+ 1

s(z10)
∏10

i=1 s(zi)
. Now (4.7) implies that

Req = s
(

m

√
1
6

+
1

12
+

1
24

+
1

12
+

1
6

+
1

24
+

1
24

+
1

12
+

1
6

+
1
8

)

= s
(

m

√
24
24

)
= 1 �.

Hence the equivalent resistance of a given circuit is 1 �.

5 Conclusions
In this work, we introduced new generalized multifarious radical reciprocal functional
equations combining three classical Pythagorean means: arithmetic, geometric, and
harmonic. Importantly, we obtained their general solution and stability related to the
Ulam problem with suitable counterexamples in modular spaces by using the fixed point
method. Also, we illustrated their geometrical interpretation and applications in connec-
tion with the parallel circuit. Importantly, we provided a formula for finding the equiva-
lent resistance Req of parallel electrical circuit using functional equations, which relates
the electrical resistances and conductances with suitable examples.
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