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Sobolev spaces are vector spaces whose elements are functions de“ned on domains in

an N-dimensional Euclidean spacRN and whose partial derivatives satisfy certain inte-

grability conditions. In order to develop and elucidate the properties of these spaces and
mappings between them, we require some machinery of general topology and real and

functional analysis.
In one of the classical approximation theories, the properties of approximation of or-
thogonal function systems, polynomials, and trigonometric have been studied fhnorm,
and mostly in the maximum norm by B..5, 25, 27, 28, 30, 31].
The L9-norm for q<  captures the heighZ and widthZ of a function. In mathemati-

cal terms widthZ is same as the measure of support of the function. The Sobolev norms

capture sheighZ, widthZ, and escillationsZ The Fourier transform measures oscillation (or
frequency or wavelength) by decay of the Fourier transform i.e. theseillationZ of a func-
tion is translated to decay of its Fourier transform. Sobolev norms measurescillationZ
via its derivatives (or regularity).

The idea of the best approximation of a function by a polynomial was aggravated by P.
L. Chebyshev. This idea chronologically pioneered the discovery of Weierstrass theorem

and formed the basis of the modern constructive theory of functions.
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The quantity

E,(f) =E,(f;a,b) = inf vrai sup ‘f(t) ..Pv(t)‘ [29],
Pu(t) ath

which gives a measure of the deviation(error) 6¢t) from the polynomial P, (t) = ¢ + ¢;t +
.-+ +¢,t” corresponding to it, has been given the title of the best approximation of order
v of this function. If the polynomial P, is a trigonometric polynomialT, of degreev, then
the best approximation of a functiof C is given by

Ev(f):n%in f.T,,f.T, :mtax|f(t)...Tv(t)|.

In this paper, we study the degree of convergence of the functions of Fourier series and
conjugate Fourier series in Sobolev norms using Riesz means. However, detailed objec-
tives of this paper will be presented in Sec8. Organization of the paper is as follows: In
Sect.2, we give important de“nitions and known results related to our work. In Secs,

we mention detailed objectives of the proposed problems and obtain their results. Appli-
cations and their numerical results are discussed in Se4twhile conclusion is given in
Sect.5.

2 Notations and preliminaries
In this section, we present notations, de“nitions, and known results.

2.1 Notations
(i) C —C[K] with the continuous 27 -periodic functions on R.
(i) vraisup —The essential upper bound vrai supf (t) is the lower bound of all the
numbers M, for which f (t) >M on a set of measure zero.

2.2 Sobolev spaces
Forl qg< ,thespacd9[0,2r]consists of allmeasurable functions on [07] such that

2
/ [f)|*dt<
0

and the norm is de“ned by

(£ [Z@ed)s, 1 g<
essup; o2y If(), a=

When q=2,

1
1 (= 2 .\?
fo=|— ft)|"dt) .
= (57 [ o at)
The vth order modulus of smoothness of a functiofi: A R is de“ned by

w,(f,t)= sup {sup{|Aﬁf(t)|:t,t+vh A}}, t O, 1)
0ht
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where

AVE(D) = Xv:(...la--i<}’)f(t +jh), v N.

=0

Forv =1, w(f,t) is called the modulus of continuity of [8].

Assume thatX is an open subset oRN. The Sobolev spac#/"4(X),v=1,2,3,..., con-
sists of functionsf L9(X) such that, for every multi-indexg with |8] v, the weak
derivative D?f exists andD?f  L9(X).

Thus,

W) = {f L9X):DFF LX).18 v} [l @)

The norm of (2) is de“ned by

1
q
ey = (X 10 fay) ' 1 < ©)
1Bl v
and
e (x):lr?lavaDﬂf I oo (4)

The semi-norm of @) is de“ned by

1
q
|‘°|WV~Q(x)=(Z”Dﬂ‘c Hﬁqm> » 1 oa< ®)
|Bl=v
and
[Fhwe. 00 =max|DPf |, . (6)

When g = 2, the Sobolev space/ "(X) is a Hilbert space with the inner product

f,g W"vZ(X) = Z (Dﬂf,Dﬂg)Lz(x),
1Bl v

where
(DPf,DPg) 5y = /x DFfDfg dt
and
fweapg = . \?vvﬁ(x)'
Forv=1,q=2, the Sobolev space is de“ned by

whx)={f L*X):Dff L2%(X)|8| 1}, (7)
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and its norm is de“ned by

f wizx) = (Z “ Dt “fZ(X)
8l 1

)% ®)

Example2.1 (]) For1 ¢ , the function f (t) = |t| belongs tow 19(X), whereX =

(...1,+1) and

+1 ifOo<t<l1,
f(t)=
W1 if L1k,

Remark2.2 Here, we discuss some important properties of the Sobolev space.
andv=1,2,.., the Sobolev space W"9(X) is a Banach space.

(i) Forl q
and v =1,2,.., the Sobolev space W"4(X) is separable.

(i) Forl q<
Remark2.3
(i) For v =0, the Sobolev space reduces in L9 space i.e. W%9(X) = L9(X).
(i) Forv=1,2,3,.., W"4(X) =Lip(v,q).
(iii) For B = v, we have W9(X) = Lip(1,q).
(iv) Forv=1,q , Lip(1,q) = Lip(1).

2.3 Fourier and derived Fourier series
Letf be a 2r-periodic Lebesgue integrable function de“ned on [z.,]. The Fourier series

of f is given by

do .
f(t) > + ;(av cosvt +b, sinvt). 9)
The v™" partial sum of @) is given by
1 T
S(i0=50) 0= 5 [ #ED.Eds (10)
T Jo
where
P(9=F(t+9+F(t..9 ... 2(t), (11)
andD,(s) (Dirichlet kernel) is de“ned by
sin(v + %)S
Dv(9=——=—. (12)
sin 5
The derived Fourier series of9) is given by
(13)

f(t) Z v(b, cosvt ..a, sinvt),
v=1

which is obtained by di erentiating (9) term by term.



Nigam and Yadavournal of Inequalities and Applications  (2022) 2022:59 Page 5 of 21

The v™" partial sum of (13) is given by

8(1:) =301 ©=5- [ D.9dae. 14)
where

G =f(t+9 . .f(t..9.. 2 (1)
and

dg(9=d(f(t+9.f(t..9) ... 2 (1)ds

2.4 Conjugate Fourier and conjugate derived Fourier series
The conjugate series of9) is given by

f(t) D (asinvt..b,cosvt), (15)

v=1

which is said to be a conjugate Fourier series.
The v partial sum of (L5) is given by

1 [ cos(v + %)s
S50 0= 5 [ a9 2 ds (16)
7 Jo sin 5

where the functionf, the conjugate to a 2 -periodic function f, is given by

ft) = %/On ¢t(s)cot(§> ds (17)
where
o =F(t+9 .1t .9 (18)

The derived series of15) is given by

f(t) Z v(a, cos vt + b, sin vt), (29)
v=1

which is said to be a conjugate derived Fourier series.
The v partial sum of (L9) is given by

s, (fst)=s,@t) ..f (1)
20+ ) / a@sin@v+ s 1 / (9 cos(v+ )
2 i

- s T - s S
4sin 5 T 4sin5  tan3

2v (7 py(9sin(v + 3)s 1 /” ot(9) cos VS |
0

— - 2s
4sin 3

.. 20
7 Jo 4sin 3 7 (20)
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where the functionf , the conjugate to a 2 -periodic function f, is given by

f(t)= % fo " (9 cosec? :;' ds 21)
where
o9 =Ff(t+9+f(t..s). (22)

The following result is relevant to our discussion.

Theorem 2.4 ([10]) Letf LY(R) with 1<q . The following properties are equiva-
lent:

M f WH(R);

(i)  a constant C such that foralls (R)

of ..f (R) CIs.
Moreoverone can choose € f q(R) in (ii) and (z5(f))(t) =f(t +9).

2.5 Riesz means
Let )" -ou, be an in“nite series such thas = tho u,. Letp, be a nonnegative, nonde-
creasing sequence of numbers such that

P, = Z pk=0 v 0, P.1=p.1=0 and P, asv
k=0

The sequence-to-sequence transformation de“ned by
1 v
t,= =
P, kZ:; Pr&

is called Riesz means oR(p,) means of the sequencgs,}. The series) ", _,u, is said to
be summable to the sunsby Riesz method if we can writé, sasv
The necessary and su cient conditions for the R, p,) method to be regular are given by

lek|<clpv|r |Pu|
k=0

2.6 Degree of convergence
The degree of convergence of a summation method to a given functiois a measure how
fastT, converges td, which is given by

f.T, :(9(%) [14),

v

wherea, asv
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3 Main results
In this section, we study the following results.

3.1 Degree of convergence of a function of Fourier series

The degree of approximation of a function in function spaces, viz. Lipschitz, Holder, gen-
eralized Holder, generalized Zygmund, and Besov spaces, using di erent means of Fourier
series, has been studied by the authorg [L2, 13, 15, 17..19, 21, 22, 24] etc.

Since the degree of approximation of a function of Fourier series in the above mentioned
spaces only gives the degree of the polynomial with respect to the function, but the degree
of convergence of a function of Fourier series gives the convergence of the polynomial
with respect to the function. The degree of convergence of a function of Fourier series in
Sobolev spaces gives a much better result than that of the earlier results obtained using
the spaces other than Sobolev spaces.

Therefore, in this subsection, we study the degree of convergence of a function in
Sobolev spaces using the Riesz means of Fourier series and establish the following the-
orem.

Theorem 3.1 Letf be a2r-period and Lebesgue integrable function belonging to Sobolev
spaces W2, then the degree of convergence of a function f of Fourier series using Riesz
means is given by

Pv pylogm (v +1)
||T“(t)”1'2:0[(Pu(v+1))+< 5 )

1
pvu+ vl pv T 1
+< I(Dvl))/o |dg(s)|+(P—v> /ﬁ§|dg(s)|}.

The following lemmas are required for the proof of Theorer3.1

Lemma 3.2 Let{p,} be a nonnegative and nondecreasing sequetigen for0 <s lel

M.(9 = O(2E™).
Proof For0<s -1 sin() <£andsin(k+3)s (k+3)s

", sin(k+3)s

1
M. (9| = -
IM.(9)] anvkga‘pk Sin 3

1 | (k+1)s

Zpk

4P, | = =

l v

o > pk(2k+1)

V k=0

1

P O(py(v +1)).

Thus,

pu(v+1)

MV(S):O(T) O
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Lemma 3.3 Let{p,} be a nonnegative and nondecreasing sequeticen for Ha<s m,
M. (9) = O(&).

1 . .
Proof For 55 <s m,sin(3) 2,|sing 1.
v

sm(k+2)s
21 PUZ < sing

1 Zpk31n<k+ )

2sP, e

M, (9] =

Now, using Abelss transformation, we have

o)

v

K
..pk+1)Zsin<r+%)S+pv25in(k+%>s
r=0 k=0
1 v...1
=0( )[Dpk pk+1|+|pv|}

<(3)

Thus,

Mv(s):O(SE;v). .

Proof of Theoren3.1 Using (L0), the Riesz transform of the sequends, (t)} is given by

T, (1) =ti(t) . f(t)——Zpk s(t) - f(t)}——Zp[ M }

0 SlIl z
Thus,

sm(k +

T(t)-—/ ¢t()2 (23)
- fo H(OM(9 ds (24)

Using (14), the Riesz transform of the sequendg, (t)} is given by

TO=0 -1 0= 5> pefs® . O]
V' k=0

1 [ 1 [7sink+)s
S e e @5)
Thus,
1 r L sin(k+d)s
0= 55 [ p e (26)

k=0 2
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= /0 M, () dg(9). (27)
Now, using the de“nition of Sobolev norm given in§), we have

IT.®]= IT.®f,+ 7.0l (28)

Using the de“nition of L? norm, we have
_ 1 2 2 %
mol=|5 [ morel

1 2
“far ]

Using generalized Minkowskiss inequalitye], we have

2 33
)

/0 " sOM, (9 ds

b4 2r %
Imol, fo{%fo y¢t(s)|2dt} M, (9] ds
JAZCIRITCIES @)

Using Theorem?2.4, we get

7.0, /0 2C4M, (9| ds

ZC/ siM, ()| ds
0

:Zc[fms}MU(s)]ds+ /n s|Mu(s)|ds]
0 L

v+

=2C[l;1 +13]. (30)
Now, using Lemma3.2 we get
1
v+l
l1 :f M, (9] ds
0

1
v+1
pv(v+1) / sds
0
Py

P,

Now, using Lemma3.3 we get

|2:/1 sM, ()| ds

VI

T
2
A SR
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1 (™ Py
=— —ds
P\,/l S

VI

_ p,logz (v +1)
'O( P, )

From (31) and 32), we have

IT.0,= O[(pv(5v+ 1)) * <%v(v+l))]_

Using the de“nition of L? norm, we get
_ 1 2w 9 %
m0l={5 [ Imore]

1 2
“fr

Using generalized Minkowskiss inequalitys], we get

2 43
)

/O” M, (9 dg(9

rol, [ m.olde)

[ m.olldao]+ [, m.olldae)]
0

vt

=l3+l4.

Now, using Lemma3.2 we get

|3:/0m|Mv(s)||dg<s)|

1
v+ vH
:(9('0|(D 1>>/ | dg(9)].
v 0

Now, using Lemma3.3 we get

0= [, M.l da

VI

:/1 SE)I; |dg(5)|
7+ 1 v

v 1
:O(%) /1 Slda(s).

VI

From (35) and (36), we have

role](%52) [ Mo (2) ] ]

Page 10 of 21

(32)

(33)

(34)

(35)

(36)

(37)
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From (33) and 37), we have

T 0l2= O[(PV(S: 1)) l (pv loggv(v - 1)>

+<DI(DU1))/O |dg(s)|+<g—u)/1 §|dg(s)|}. 0

v+l

3.2 Degree of convergence of a function of conjugate Fourier series
Consider a series

Z sin(vt). (38)

s logv

We note that (38) is a conjugate series of a Fourier serigs _, °fg—(“t) butitis not a Fourier
v gV

series that can be easily observed by the following theorem.

Theorem 3.4 ([9)) Ifa,>0,) %= then) a,sinvtisnotaFourier serieHencethere
exists a trigopnometric series with coe cients tending to zero which are not Fourier series

One can see9] for more details on conjugate Fourier series.

The degree of approximation of a conjugate function in function spaces, viz. Lips-
chitz, Holder, generalized Holder, generalized Zygmund, and Besov spaces, using di erent
means of conjugate Fourier series, has been studied by the auth@r4.], 12, 16, 17, 19,

20, 23, 26] etc.

As discussed in Sect. 3.1, the degree of convergence of a function of conjugate Fourier
series also gives the convergence of the polynomial with respect to the function. The de-
gree of convergence of a function of conjugate Fourier series in Sobolev spaces gives a
much better result than that of the results using the spaces other than Sobolev spaces.

Therefore, in this subsection, we study the degree of convergence of conjugate of a func-
tion in Sobolev spaces using the Riesz means of conjugate Fourier series and establish a
following theorem.

Theorem 3.5 Letf be a2r-period and Lebesgue integrable function belonging to Sobolev
spaces W2, then the degree of convergence of a funcfiaf conjugate Fourier series using
Riesz means is given by

1 )1 +1 +1)p,\ [
o] () () [ o
P (71 w1 1
(8 [ sl ([ 1a0lg )

(%)
P,

T 1
[ 19l o8]
The following lemmas are required for the proof of Theorer.5.

VI

1
v+l’

Lemma 3.6 Let{p,} be a nonnegative and nondecreasing sequetigen for0 <s
M. (9 = O(3).
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Proof For0<s -1 sin(3) 2and|cosky 1.

! cos(k+ s
M 2
M.OI= |55 Z A in 3
1 | cosk+3)s
> P
27TP\) k=0 =
1 |~ _ cos(k+3)s
3 p TS
2P, e S
1 1
Z Pk cos( )s .
2sR, | = 2
Thus,
1
M, (s = (’)(—). O
s
Lemma 3.7 Let{p,} be a nonnegative and nondecreasing sequetizen for a1 <s m,
M.(9) = O(gg).

1 H S S
Proof For =3 <s m,sin(3) 2.

", cos(k+3)s
M.OI= |5, P, Z inz |
", cos(k+3)
|Mv(s)| 27P, Z Pk B
k=0 7
1| 1
pkcos(k+—)s
2sPh, ; 2

Now, using Abeles transformation, we have

-o(%)

Zpkcos(k+ >

Thus,

m.9=0( ) 0

Lemma 3.8 Let{p,} be a nonnegative and nondecreasing sequetigen for0 <s lel
M, (9 = O(“52e).
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Proof For0<s -1 sin() <2andsin(k+3)s (k+3)s

R i sin(k + 1)s

M.,(9]= 7P, 4sin 3

k=0

sin(k + 1)s

k v
27P, kX:(; P 4sin 3

k v
= 5 Do Pk +1)
47 P, ( s

k
WO((V + 1)pv)

Thus,

O

M= 0(@ +P1)pv)_

v

Lemma 3.9 Let{p,} be nonnegative and nondecreasjtgen for .3z <s 7, M (9 =

O(g5)-

1 H S S
Proof For -5 <s m,sin(3) .

LR Z sin(k + 1)s
S )3

IM.,(9]= 7P 4sin 3

Y k=0

k
2nP,

", sin(k+2)s

Z Pk —s
s 4sin 3

sm(k +
E

k
25:1 P,

Zpk sm(k+ 1)’

k=0

Now, using Abelss transformation, we have
v...1 k v
. 1\| _ ) 1 ) 1
(k + E) = 2 . Prs1) ;:O sm(r + §)s+ Py kE:O s1n<k + E)S

v...1l
(9(%) |:Z|(pk - Pre)| + lpV|:|
k=0

Thus,

0=0(35:) :
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Lemma 3.10 Let{p,} be a nonnegative and nondecreasing sequetien forO<s -4,
M., (9= O(3)-

Proof For0<s -1 sin(3) =2and|cosky 1.

v+l?

1 < cosks
M__(9|=]..5 —
’ i )‘ ‘ TP, gpk4sin2§‘
ks.
29P, 2 Prccos S{
k=0
Thus,
1
MVZ(S):O(§>- O
Lemma 3.11 Let{p,} be nonnegative and nondecreasijriben for F<s m M, (9=
O(g5)-

1 H S S
Proof For -5 <s m,sin(3) .

1 < cosks
|Mv2(s)| = ’---T[Pv kX:(;pk.—zg

4sin

Z Pk cos kS‘

k=0

282 P,

Now, using Abeles transformation, we have

(-2)9o(3)

Thus,

Mvz(s):(’)<§f)|;v). 0

Proof of Theoren3.5 Using (16), the Riesz transform of the sequends, (t)} is given by

T«%WMfmr—Zm&mfm}

”ko

T pi(9cos(k + %)S
P

”ko

Thus,

v

nm:——/@©2m

cos(k + 2)S
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= /0 " (OM, (9 ds (39)

Using (20), the Riesz transform of the sequendg, (t)} is given by

T,(0)=t7(). f(t)——Zpk s -.f )}

”ko

. 9sin(k+3)s 1 [7 k
_Z / pr( )SH?( . 2) dS—/ pt(s).ccz)s SdS .
4sin 3 mwJo 4sin”3

”ko

Thus,

Tv(t):—P</(; kpt(s)zv:p sin (k+ 2)3 )
([

: /0 " A9, (9+M,,(9) ds

S ACIRCES (40)
where
M, (=M, (9 +M,,(9). (41)
Now, using the de“nition of Sobolev norm given in§), we have

IT.®]= IT.®f,+ [T.0], (42)

Using the de“nition of L? norm, we have

21 3
m0l={5 [ mole]
7'[ 2 3
:{%/2 dt}z.
0

Using generalized Minkowskiss inequalitys], we have

b4 2n %
ol [ o [ lael ) Mol
/0 |9 ,IM.(9)] ds (43)

/0 " (M, (s

Using Theorem?2.4, we get

7.0, /O”chmv(s)ms
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ZC/ siM, ()| ds
0

1 .
= ZC[/O M, (9| ds+ /_11 M, (9] ds]

= 2C[I1 +1,]. (44)

Now, using Lemma3.6, we get

u_il
|1:f M, (9| ds
0

v+1
/ ds
0
1
-0(v+1).

Now, using Lemma3.7, we get

(45)

IZ:f M, (9] ds
v_ii
y [T 1
p_/ —ds
P, 1S

= %[log a(v+ 1)]

v

_ O(DV logg(v+ 1))_

(46)

From (45) and (46), we have

||Tv(t)||2:o[<vi1>+(p“1°ggv(”+l)>] (47)

Using the de“nition of L? norm and generalized Minkowskiss inequalitys], we get

Tl [ @ ]m.o]ds

= [ 1ol ©lds+ [ Ja]M.,0]ds
0 0

=ly+1,. (48)
Now, using Lemmas3.8and 3.9, we get
5= [ 91 M (9] as
a1 %
o A T RTCIESy I PYCTRIVCIEE
0 v+
(49)

v+1)p, [ D\ [T 1
=0 (“52) [T Inolass () [, glaole]
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Now, using Lemmas3.10and 3.11, we get
T
6= [ @] M., ds

:/Om||pt(s)||2|MU2(s)|ds+ / lon(@],IM,, (9| ds

v+1

:o[(/ ||pt(S)H282ds> (p‘;>/v_;||pt(s)||2éds:|. (50)

From (49) and 60), we have

+1)p,\ [
m0l=0 (S52) [ Iaelas

R <g)/ S la)],ds+ (/Ov—h”pt(s)uzéds)

VI

N (g_) f ), = ds] (51)

From (47) and (51), we have

0 () (P () [ o

. T 1
N 52||pt<s>||2ds+ ([ 106l )

v+l

(B ] :

4 Applications
In this section, we study some applications of our main results.

4.1 Application on the degree of convergence of a function of Fourier series in
Sobolev norm using Riesz means
Consider a functionf (t) =t®andP_;=p_.=0andp,=1 v OandP,=1+v.
Then ¢(s) = 0 anddg(s) = 65° ds.
Therefore,M, (s) = O(1) for 0 <s
Then, we have

1 1 1
||TU(t)||2:(’)((v+l)3+ (U+1)|:7r “'(v+1)]>' (52)

Since T,(t) »=0, the degree of convergence 6ft) = t2 is obtained by

||Tv(t)||1'2:(9<(v 4_11)3 + (Ui]_) [ﬂ "'(vil)D'

Now, we draw the graphs of ,(f) for di erent values of v (see Figl).

M andM, (s = (9(32( +l))for 1 <s .
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Table 1 Degree of convergence ¢ft) = t3

- _1 1 1
v Tv(t)—m+m[n...m]
100 0.031105
1000 0.003139
10,000 0.00031413
50,000 0.00006283
75,000 0.00004189
100,000 0.00003142
0
Tv Tv
100 010
08 0.08f
0.6 0.06
0.4+ 0.041
02 0.02
0 2 20 60 80 w0 o 200 200 500 800 1000
(1.a) For v = 100 (1.b) For v = 1000
Tv v
0.010 o.oosoT—
0.008- 0.0025 f
0.0020 f
0.006 -
0.0015f
0.004 -
0.0010 |
0.002 0.0005 |
0 2000 2000 5000 3000 10000" 0 10000 20000 30000 40000 50000"

(1.c) For v = 10000 (1.d) For v = 50000
0.0025
00020
00015 |

0.0010 -

0.0005

L L T T T L T
v
0 10000 20000 30000 40000 50000 60000 70000 0 20000 40000 60000 80000 100000

(1.e) For v = 75000 (1.f) For v = 100000.

Figure 1 Degree of convergence 6ft) = 3

Remark4.1 From Tablel and Figs.1(a) to 1(f), we observe that the result obtained in
Theorem 3.1is much better than earlier results.
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4.2 Application on the degree of convergence of a function of conjugate Fourier
series in Sobolev norm using Riesz means

Consider a conjugate functiorf(t) =), _, jg;”v‘ forv 2andP_;=p_i=0andp, =1
v OandP,=1+v.

Then (9 =Y, 288302, () 2= 3 oy @ANA (S = 30 2R, py(9) 2=
ZUZZ @'
Therefore,M, (9 =O(%)for0<s L, M, (9= O(;ﬁ) for £ <s 7,M,(9=0()

for0<s =, M, (9= (9(V+—1)Sz)f0r 4 <S T,M,(9=0(F)for0<s 5 M, (9=
(’)(gg)for—<s .

Then, we have

IT.®|,= O[(ij 10;) [(moff(lv : 1)>”

and

||Tv<t)||2=O[@IO;)K(Usz)*(@31)2( -+1))
(e (z o))

Thus, the degree of convergence bft) =) _, j:‘;”j forv 2is obtained by

HTv(t)Hl,z:O{(;1021;)[(1“05:(1”1))+((v+11)2>
(e o) (@l e 1)2>)H

Now, we draw the graphs of ,(f) for di erent values of v (see Fig2).

Remark4.2 From Table2 and Figs.2(a) to 2(f), we observe that the result obtained in
Theorem 3.5is much better than earlier results.

Remark4.3 From Tablel and Table2, we also observe that the convergence of Fourier
series is faster than the convergence of conjugate Fourier series.

Table 2 Degree of convergence 6{) =, _» f(')g'g

(7 D) 417

Vv T\} (T) (Z:U 2 Iogy )[1+IOQN(U+1) (U+1)2
100 ...0.15357
1000 ...0.15841
10,000 ...0.15906
50,000 ...0.15913
75,000 ...0.15914

100,000 ...0.15914
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Tv
-0.101

0.1

-0.12F

-0.131

-0.14}

-0.151

Tv
-0.1570 -

-0.1575

-0.1580 -

-0.1585 -

-0.1590 (-

100

0 2000 4000 6000 8000

(2.c) For v = 10000.

Tv
-0.1580

-0.1582
-0.1584 {
-0.1586 [
-0.1588 |-

-0.1590 |-

= v
10000

0 10000 20000 30000 40000 50000 60000

(2.e) For v = 75000.

Figure 2 Degree of convergence &) = _,_,

70000

sinvt
logv

Tv
-0.151

-0.152

-0.153

-0.154

-0.155

-0.156 [

-0.157 |

-0.158

Tv
-0.1580

-0.1582

-0.1584 1|

-0.1586 -

-0.1588 -

-0.1590 -

200 400 600

(2.b) For v = 1000.

800

— v
1000

Tv
-0.1580

-0.1582

-0.1584

-0.1586

-0.1588 1

-0.1590 -

30000

(2.d) For v = 50000.

10000 20000

40000

4
50000

20000 40000 60000

(2.f) For v = 100000.

80000

- v
100000
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From Table1 and Figs.1(a) to 1(f), we observe that the degree of convergence of Fourier

seriesf (t) = t% is much better than that of earlier results, and from Tabl2and Figs 2(a) to
2(f), we observe that the degree of convergence of conjugate Fourier séiigs= )

for v

sin vt
v=2 logv
2 is much better than that of earlier results. Also, from Tablg& and Table?2, we

observe that the convergence of Fourier series is faster than the convergence of conjugate

Fourier series.
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