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1 Introduction
Sobolev spaces are vector spaces whose elements are functions defined on domains in
an N-dimensional Euclidean space R

N and whose partial derivatives satisfy certain inte-
grability conditions. In order to develop and elucidate the properties of these spaces and
mappings between them, we require some machinery of general topology and real and
functional analysis.

In one of the classical approximation theories, the properties of approximation of or-
thogonal function systems, polynomials, and trigonometric have been studied in Lq-norm,
and mostly in the maximum norm by [3–5, 25, 27, 28, 30, 31].

The Lq-norm for q < ∞ captures the “height” and “width” of a function. In mathemati-
cal terms “width” is same as the measure of support of the function. The Sobolev norms
capture “height”, “width”, and “oscillations”. The Fourier transform measures oscillation (or
frequency or wavelength) by decay of the Fourier transform i.e. the “oscillation” of a func-
tion is translated to “decay” of its Fourier transform. Sobolev norms measure “oscillation”
via its derivatives (or regularity).

The idea of the best approximation of a function by a polynomial was aggravated by P.
L. Chebyshev. This idea chronologically pioneered the discovery of Weierstrass theorem
and formed the basis of the modern constructive theory of functions.
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The quantity

Eν(f ) = Eν(f ; a, b) = inf
Pν (t)

vrai sup
a≤t≤b

∣
∣f (t) – Pν(t)

∣
∣ [29],

which gives a measure of the deviation(error) of f (t) from the polynomial Pν(t) = c0 + c1t +
· · · + cνtν corresponding to it, has been given the title of the best approximation of order
ν of this function. If the polynomial Pν is a trigonometric polynomial Tν of degree ν , then
the best approximation of a function f ∈ C∗ is given by

Eν(f ) = min
Tν

‖f – Tν‖,‖f – Tν‖ = max
t

∣
∣f (t) – Tν(t)

∣
∣.

In this paper, we study the degree of convergence of the functions of Fourier series and
conjugate Fourier series in Sobolev norms using Riesz means. However, detailed objec-
tives of this paper will be presented in Sect. 3. Organization of the paper is as follows: In
Sect. 2, we give important definitions and known results related to our work. In Sect. 3,
we mention detailed objectives of the proposed problems and obtain their results. Appli-
cations and their numerical results are discussed in Sect. 4, while conclusion is given in
Sect. 5.

2 Notations and preliminaries
In this section, we present notations, definitions, and known results.

2.1 Notations
(i) C∗ —C[K] with the continuous 2π -periodic functions on R.

(ii) vrai sup —The essential upper bound vrai sup f (t) is the lower bound of all the
numbers M, for which f (t) > M on a set of measure zero.

2.2 Sobolev spaces
For 1 ≤ q < ∞, the space Lq[0, 2π ] consists of all measurable functions on [0, 2π ] such that

∫ 2π

0

∣
∣f (t)

∣
∣
q dt < ∞,

and the norm is defined by

‖f ‖q =

⎧

⎨

⎩

( 1
2π

∫ 2π

0 |f (t)|q dt)
1
q , 1 ≤ q < ∞;

ess supf ∈(0,2π ) |f (t)|, q = ∞.

When q = 2,

‖f ‖2 =
(

1
2π

∫ 2π

0

∣
∣f (t)

∣
∣
2 dt

) 1
2

.

The νth order modulus of smoothness of a function f : A →R is defined by

ων(f , t) = sup
0≤h≤t

{

sup
{∣
∣�ν

hf (t)
∣
∣ : t, t + νh ∈ A

}}

, t ≥ 0, (1)
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where

�ν
hf (t) =

ν
∑

j=0

(–1)ν–j
(

ν

j

)

f (t + jh), ν ∈N.

For ν = 1, ω1(f , t) is called the modulus of continuity of f [8].
Assume that X is an open subset of RN. The Sobolev space W ν,q(X), ν = 1, 2, 3, . . . , con-

sists of functions f ∈ Lq(X) such that, for every multi-index β with |β| ≤ ν , the weak
derivative Dβ f exists and Dβ f ∈ Lq(X).

Thus,

W ν,q(X) =
{

f ∈ Lq(X) : Dβ f ∈ Lq(X), |β| ≤ ν
}

[1]. (2)

The norm of (2) is defined by

‖f ‖Wν,q(X) =
(

∑

|β|≤ν

∥
∥Dβ f

∥
∥

q
Lq(X)

) 1
q

, 1 ≤ q < ∞, (3)

and

‖f ‖Wν,∞(X) = max
|β|≤ν

∥
∥Dβ f

∥
∥

L∞(X). (4)

The semi-norm of (2) is defined by

|f |Wν,q(X) =
(

∑

|β|=ν

∥
∥Dβ f

∥
∥

q
Lq(X)

) 1
q

, 1 ≤ q < ∞, (5)

and

|f |Wν,∞(X) = max
|β|=ν

∥
∥Dβ f

∥
∥

L∞(X). (6)

When q = 2, the Sobolev space W ν,2(X) is a Hilbert space with the inner product

〈f , g〉Wν,2(X) =
∑

|β|≤ν

〈

Dβ f , Dβg
〉

L2(X),

where

〈

Dβ f , Dβg
〉

L2(X) =
∫

X
Dβ fDβg dt

and

‖f ‖Wν,2(X) = 〈f , f 〉 1
2
Wν,2(X).

For ν = 1, q = 2, the Sobolev space is defined by

W 1,2(X) =
{

f ∈ L2(X) : Dβ f ∈ L2(X), |β| ≤ 1
}

, (7)
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and its norm is defined by

‖f ‖W 1,2(X) =
(

∑

|β|≤1

∥
∥Dβ f

∥
∥

2
L2(X)

) 1
2

. (8)

Example 2.1 ([2]) For 1 ≤ q ≤ ∞, the function f (t) = |t| belongs to W 1,q(X), where X =
(–1, +1) and

f ′(t) =

⎧

⎨

⎩

+1 if 0 < t < 1,

–1 if – 1 < t < 0.

Remark 2.2 Here, we discuss some important properties of the Sobolev space.
(i) For 1 ≤ q ≤ ∞ and ν = 1, 2, . . . , the Sobolev space W ν,q(X) is a Banach space.

(ii) For 1 ≤ q < ∞ and ν = 1, 2, . . . , the Sobolev space W ν,q(X) is separable.

Remark 2.3
(i) For ν = 0, the Sobolev space reduces in Lq space i.e. W 0,q(X) = Lq(X).

(ii) For ν = 1, 2, 3, . . . , W ν,q(X) = Lip(ν, q).
(iii) For β = ν , we have W 1,q(X) = Lip(1, q).
(iv) For ν = 1, q → ∞, Lip(1, q) = Lip(1).

2.3 Fourier and derived Fourier series
Let f be a 2π-periodic Lebesgue integrable function defined on [–π ,π ]. The Fourier series
of f is given by

f (t) ∼ a0

2
+

∞
∑

ν=1

(aν cosνt + bν sinνt). (9)

The νth partial sum of (9) is given by

sν(f ; t) = sν(t) – f (t) =
1

2π

∫ π

0
φt(s)Dν(s) ds, (10)

where

φt(s) = f (t + s) + f (t – s) – 2f (t), (11)

and Dν(s) (Dirichlet kernel) is defined by

Dν(s) =
sin(ν + 1

2 )s
sin s

2
. (12)

The derived Fourier series of (9) is given by

f ′(t) ∼
∞

∑

ν=1

ν(bν cosνt – aν sinνt), (13)

which is obtained by differentiating (9) term by term.
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The νth partial sum of (13) is given by

s′
ν

(

f ′; t
)

= s′
ν(t) – f ′(t) =

1
2π

∫ π

0
Dν(s) dgt(s), (14)

where

gt(s) = f (t + s) – f (t – s) – 2sf ′(t)

and

dgt(s) = d
(

f (t + s) – f (t – s)
)

– 2f ′(t) ds.

2.4 Conjugate Fourier and conjugate derived Fourier series
The conjugate series of (9) is given by

f̃ (t) ∼
∞

∑

ν=1

(aν sinνt – bν cosνt), (15)

which is said to be a conjugate Fourier series.
The νth partial sum of (15) is given by

s̃ν(f̃ ; t) = s̃ν(t) – f̃ (t) = –
1

2π

∫ π

0
ϕt(s)

cos(ν + 1
2 )s

sin s
2

ds, (16)

where the function f̃ , the conjugate to a 2π-periodic function f , is given by

f̃ (t) = –
1

2π

∫ π

0
ϕt(s) cot

(
s
2

)

ds, (17)

where

ϕt(s) = f (t + s) – f (t – s). (18)

The derived series of (15) is given by

f̃ ′(t) ∼
∞

∑

ν=1

ν(aν cosνt + bν sinνt), (19)

which is said to be a conjugate derived Fourier series.
The νth partial sum of (19) is given by

s̃′
ν

(

f ′; t
)

= s̃′
ν(t) – f̃ ′(t)

= –
2(ν + 1

2 )
π

∫ π

0

ρt(s) sin(ν + 1
2 )s

4 sin s
2

ds –
1
π

∫ π

0

ρt(s)
4 sin s

2

cos(ν + 1
2 )s

tan s
2

ds

= –
2ν

π

∫ π

0

ρt(s) sin(ν + 1
2 )s

4 sin s
2

ds –
1
π

∫ π

0

ρt(s) cosνs
4 sin2 s

2
ds, (20)
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where the function f̃ ′, the conjugate to a 2π-periodic function f̃ , is given by

f̃ ′(t) = –
1

4π

∫ π

0
ρt(s) cosec2 s

2
ds, (21)

where

ρt(s) = f (t + s) + f (t – s). (22)

The following result is relevant to our discussion.

Theorem 2.4 ([10]) Let f ∈ Lq(R) with 1 < q ≤ ∞. The following properties are equiva-
lent:

(i) f ∈ W 1,q(R);
(ii) ∃ a constant C such that for all s ∈ (R)

‖τsf – f ‖Lq (R) ≤ C|s|.

Moreover, one can choose C = ‖f ′‖Lq (R) in (ii) and (τs(f ))(t) = f (t + s).

2.5 Riesz means
Let

∑∞
ν=0 uν be an infinite series such that sk =

∑k
ν=0 uν . Let pν be a nonnegative, nonde-

creasing sequence of numbers such that

Pν =
ν

∑

k=0

pk �= 0 ∀ ν ≥ 0, P–1 = p–1 = 0 and Pν → ∞ as ν → ∞.

The sequence-to-sequence transformation defined by

tν =
1

Pν

ν
∑

k=0

pksk

is called Riesz means or (R, pν) means of the sequence {sν}. The series
∑∞

ν=0 uν is said to
be summable to the sum s by Riesz method if we can write tν → s as ν → ∞.

The necessary and sufficient conditions for the (R, pν) method to be regular are given by

ν
∑

k=0

|pk| < c|Pν |, |Pν | → ∞.

2.6 Degree of convergence
The degree of convergence of a summation method to a given function f is a measure how
fast Tν converges to f , which is given by

‖f – Tν‖ = O
(

1
λν

)

[14],

where λν → ∞ as ν → ∞.
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3 Main results
In this section, we study the following results.

3.1 Degree of convergence of a function of Fourier series
The degree of approximation of a function in function spaces, viz. Lipschitz, Hölder, gen-
eralized Hölder, generalized Zygmund, and Besov spaces, using different means of Fourier
series, has been studied by the authors [7, 12, 13, 15, 17–19, 21, 22, 24] etc.

Since the degree of approximation of a function of Fourier series in the above mentioned
spaces only gives the degree of the polynomial with respect to the function, but the degree
of convergence of a function of Fourier series gives the convergence of the polynomial
with respect to the function. The degree of convergence of a function of Fourier series in
Sobolev spaces gives a much better result than that of the earlier results obtained using
the spaces other than Sobolev spaces.

Therefore, in this subsection, we study the degree of convergence of a function in
Sobolev spaces using the Riesz means of Fourier series and establish the following the-
orem.

Theorem 3.1 Let f be a 2π -period and Lebesgue integrable function belonging to Sobolev
spaces W 1,2, then the degree of convergence of a function f of Fourier series using Riesz
means is given by

∥
∥Tν(t)

∥
∥

1,2 = O
[(

pν

Pν(ν + 1)

)

+
(

pν logπ (ν + 1)
Pν

)

+
(

pν(ν+1)

Pν

)∫ 1
ν+1

0

∣
∣dgt(s)

∣
∣ +

(
pν

Pν

)∫ π

1
ν+1

1
s2

∣
∣dgt(s)

∣
∣

]

.

The following lemmas are required for the proof of Theorem 3.1.

Lemma 3.2 Let {pn} be a nonnegative and nondecreasing sequence, then for 0 < s ≤ 1
ν+1 ,

Mν(s) = O( pν (ν+1)
Pν

).

Proof For 0 < s ≤ 1
ν+1 , sin( s

2 ) ≥ s
π

and sin(k + 1
2 )s ≤ (k + 1

2 )s.

∣
∣Mν(s)

∣
∣ =

∣
∣
∣
∣
∣

1
2πPν

ν
∑

k=0

pk
sin(k + 1

2 )s
sin s

2

∣
∣
∣
∣
∣

≤ 1
4πPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk
(2k + 1)s

s
π

∣
∣
∣
∣
∣

≤ 1
4Pν

∣
∣
∣
∣
∣

ν
∑

k=0

pk(2k + 1)

∣
∣
∣
∣
∣

≤ 1
4Pν

O
(

pν(ν + 1)
)

.

Thus,

Mν(s) = O
(

pν(ν + 1)
Pν

)

. �
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Lemma 3.3 Let {pn} be a nonnegative and nondecreasing sequence, then for 1
ν+1 < s ≤ π ,

Mν(s) = O( pν

s2Pν
).

Proof For 1
ν+1 < s ≤ π , sin( s

2 ) ≥ s
π

, | sin s| ≤ 1.

∣
∣Mν(s)

∣
∣ =

∣
∣
∣
∣
∣

1
2πPν

ν
∑

k=0

pk
sin(k + 1

2 )s
sin s

2

∣
∣
∣
∣
∣

≤ 1
2sPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk sin

(

k +
1
2

)

s

∣
∣
∣
∣
∣
.

Now, using Abel’s transformation, we have

∣
∣
∣
∣
∣

ν
∑

k=0

pk sin

(

k +
1
2

)

s

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

ν–1
∑

k=0

(pk – pk+1)
k

∑

r=0

sin

(

r +
1
2

)

s + pν

ν
∑

k=0

sin

(

k +
1
2

)

s

∣
∣
∣
∣
∣

= O
(

1
s

)[
ν–1
∑

k=0

|pk – pk+1| + |pν |
]

= O
(

pν

s

)

.

Thus,

Mν(s) = O
(

pν

s2Pν

)

. �

Proof of Theorem 3.1 Using (10), the Riesz transform of the sequence {sν(t)} is given by

Tν(t) = tR
ν (t) – f (t) =

1
Pν

ν
∑

k=0

pk
{

sk(t) – f (t)
}

=
1

Pν

ν
∑

k=0

pk

[
1

2π

∫ π

0

φt(s)sin(k + 1
2 )s

sin s
2

ds
]

.

Thus,

Tν(t) =
1

2πPν

∫ π

0
φt(s)

ν
∑

k=0

pk
sin(k + 1

2 )s
sin s

2
ds (23)

=
∫ π

0
φt(s)Mν(s) ds. (24)

Using (14), the Riesz transform of the sequence {s′
ν(t)} is given by

T ′
ν(t) = t′R

ν (t) – f ′(t) =
1

Pν

ν
∑

k=0

pk
{

s′
k(t) – f ′(t)

}

=
1

Pν

ν
∑

k=0

pk

[
1

2π

∫ π

0

sin(k + 1
2 )s

sin s
2

dgt(s)
]

. (25)

Thus,

T ′
ν(t) =

1
2πPν

∫ π

0

ν
∑

k=0

pk
sin(k + 1

2 )s
sin s

2
dgt(s) (26)
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=
∫ π

0
Mν(s) dgt(s). (27)

Now, using the definition of Sobolev norm given in (8), we have

∥
∥Tν(t)

∥
∥

1,2 =
∥
∥Tν(t)

∥
∥

2 +
∥
∥T ′

ν(t)
∥
∥

2. (28)

Using the definition of L2 norm, we have

∥
∥Tν(t)

∥
∥

2 =
{

1
2π

∫ 2π

0

∣
∣Tν(t)

∣
∣
2 dt

} 1
2

=
{

1
2π

∫ 2π

0

∣
∣
∣
∣

∫ π

0
φt(s)Mν(s) ds

∣
∣
∣
∣

2

dt
} 1

2
.

Using generalized Minkowski’s inequality [6], we have

∥
∥Tν(t)

∥
∥

2 ≤
∫ π

0

{
1

2π

∫ 2π

0

∣
∣φt(s)

∣
∣
2 dt

} 1
2 ∣
∣Mν(s)

∣
∣ds

≤
∫ π

0

∥
∥φt(s)

∥
∥

2

∣
∣Mν(s)

∣
∣ds. (29)

Using Theorem 2.4, we get

∥
∥Tν(t)

∥
∥

2 ≤
∫ π

0
2Cs

∣
∣Mν(s)

∣
∣ds

≤ 2C
∫ π

0
s
∣
∣Mν(s)

∣
∣ds

= 2C
[∫ 1

ν+1

0
s
∣
∣Mν(s)

∣
∣ds +

∫ π

1
ν+1

s
∣
∣Mν(s)

∣
∣ds

]

= 2C[I1 + I2]. (30)

Now, using Lemma 3.2, we get

I1 =
∫ 1

ν+1

0
s
∣
∣Mν(s)

∣
∣ds

≤ pν(ν+1)

Pν

∫ 1
ν+1

0
s ds

= O
(

pν

Pν(ν + 1)

)

. (31)

Now, using Lemma 3.3, we get

I2 =
∫ π

1
ν+1

s
∣
∣Mν(s)

∣
∣ds

≤
∫ π

1
ν+1

pν

sPν

ds
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=
1

Pν

∫ π

1
ν+1

Pm

s
ds

= O
(

pν logπ (ν + 1)
Pν

)

. (32)

From (31) and (32), we have

∥
∥Tν(t)

∥
∥

2 = O
[(

pν

Pν(ν + 1)

)

+
(

pν logπ (ν + 1)
Pν

)]

. (33)

Using the definition of L2 norm, we get

∥
∥T ′

ν(t)
∥
∥

2 =
{

1
2π

∫ 2π

0

∣
∣T ′

ν(t)
∣
∣
2 dt

} 1
2

=
{

1
2π

∫ 2π

0

∣
∣
∣
∣

∫ π

0
Mν(s) dgt(s)

∣
∣
∣
∣

2

dt
} 1

2
. (34)

Using generalized Minkowski’s inequality [6], we get

∥
∥T ′

ν(t)
∥
∥

2 ≤
∫ π

0

∣
∣Mν(s)

∣
∣
∣
∣dgt(s)

∣
∣

≤
[∫ 1

ν+1

0

∣
∣Mν(s)

∣
∣
∣
∣dgt(s)

∣
∣ +

∫ π

1
ν+1

∣
∣Mν(s)

∣
∣
∣
∣dgt(s)

∣
∣

]

= I3 + I4.

Now, using Lemma 3.2, we get

I3 =
∫ 1

ν+1

0

∣
∣Mν(s)

∣
∣
∣
∣dgt(s)

∣
∣

= O
(

pν(ν+1)

Pν

)∫ 1
ν+1

0

∣
∣dgt(s)

∣
∣. (35)

Now, using Lemma 3.3, we get

I4 =
∫ π

1
ν+1

∣
∣Mν(s)

∣
∣
∣
∣dgt(s)

∣
∣

=
∫ π

1
ν+1

pν

s2Pν

∣
∣dgt(s)

∣
∣

= O
(

pν

Pν

)∫ π

1
ν+1

1
s2

∣
∣dgt(s)

∣
∣. (36)

From (35) and (36), we have

∥
∥T ′

ν(t)
∥
∥

2 = O
[(

pν(ν+1)

Pν

)∫ 1
ν+1

0

∣
∣dgt(s)

∣
∣ +

(
pν

Pν

)∫ π

1
ν+1

1
s2

∣
∣dgt(s)

∣
∣

]

. (37)
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From (33) and (37), we have

∥
∥Tν(t)

∥
∥

1,2 = O
[(

pν

Pν(ν + 1)

)

+
(

pν logπ (ν + 1)
Pν

)

+
(

pν(ν+1)

Pν

)∫ 1
ν+1

0

∣
∣dgt(s)

∣
∣ +

(
pν

Pν

)∫ π

1
ν+1

1
s2

∣
∣dgt(s)

∣
∣

]

. �

3.2 Degree of convergence of a function of conjugate Fourier series
Consider a series

∞
∑

ν=2

sin(νt)
logν

. (38)

We note that (38) is a conjugate series of a Fourier series
∑∞

ν=2
cos(νt)
logν

, but it is not a Fourier
series that can be easily observed by the following theorem.

Theorem 3.4 ([9]) If aν > 0,
∑ aν

ν
= ∞, then

∑
aν sinνt is not a Fourier series. Hence, there

exists a trigonometric series with coefficients tending to zero which are not Fourier series.

One can see [9] for more details on conjugate Fourier series.
The degree of approximation of a conjugate function in function spaces, viz. Lips-

chitz, Hölder, generalized Hölder, generalized Zygmund, and Besov spaces, using different
means of conjugate Fourier series, has been studied by the authors [7, 11, 12, 16, 17, 19,
20, 23, 26] etc.

As discussed in Sect. 3.1, the degree of convergence of a function of conjugate Fourier
series also gives the convergence of the polynomial with respect to the function. The de-
gree of convergence of a function of conjugate Fourier series in Sobolev spaces gives a
much better result than that of the results using the spaces other than Sobolev spaces.

Therefore, in this subsection, we study the degree of convergence of conjugate of a func-
tion in Sobolev spaces using the Riesz means of conjugate Fourier series and establish a
following theorem.

Theorem 3.5 Let f̃ be a 2π -period and Lebesgue integrable function belonging to Sobolev
spaces W 1,2, then the degree of convergence of a function f̃ of conjugate Fourier series using
Riesz means is given by

∥
∥T̃ν(t)

∥
∥

1,2 = O
[(

1
ν + 1

)

+
(

pν logπ (ν + 1)
Pν

)

+
(

(ν + 1)pν

Pν

)∫ 1
ν+1

0

∥
∥ρt(s)

∥
∥

2 ds

+
(

pν

Pν

)∫ π

1
ν+1

1
s2

∥
∥ρt(s)

∥
∥

2 ds +
(∫ 1

ν+1

0

∥
∥ρt(s)

∥
∥

2
1
s2 ds

)

+
(

pν

Pν

)∫ π

1
ν+1

∥
∥ρt(s)

∥
∥

2
1
s3 ds

]

.

The following lemmas are required for the proof of Theorem 3.5.

Lemma 3.6 Let {pn} be a nonnegative and nondecreasing sequence, then for 0 < s ≤ 1
ν+1 ,

M̃ν(s) = O( 1
s ).
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Proof For 0 < s ≤ 1
ν+1 , sin( s

2 ) ≥ s
π

and | cos ks| ≤ 1.

∣
∣M̃ν(s)

∣
∣ =

∣
∣
∣
∣
∣

1
2πPν

ν
∑

k=0

pk
cos(k + 1

2 )s
sin s

2

∣
∣
∣
∣
∣

≤ 1
2πPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk
cos(k + 1

2 )s
s
π

∣
∣
∣
∣
∣

≤ 1
2Pν

∣
∣
∣
∣
∣

ν
∑

k=0

pk
cos(k + 1

2 )s
s

∣
∣
∣
∣
∣

≤ 1
2sPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk cos

(

k +
1
2

)

s

∣
∣
∣
∣
∣
.

Thus,

M̃ν(s) = O
(

1
s

)

. �

Lemma 3.7 Let {pn} be a nonnegative and nondecreasing sequence, then for 1
ν+1 < s ≤ π ,

M̃ν(s) = O( pν

s2Pν
).

Proof For 1
ν+1 < s ≤ π , sin( s

2 ) ≥ s
π

.

∣
∣M̃ν(s)

∣
∣ =

∣
∣
∣
∣
∣

1
2πPν

ν
∑

k=0

pk
cos(k + 1

2 )s
sin s

2

∣
∣
∣
∣
∣
,

∣
∣M̃ν(s)

∣
∣ ≤ 1

2πPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk
cos(k + 1

2 )s
s
π

∣
∣
∣
∣
∣

≤ 1
2sPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk cos

(

k +
1
2

)

s

∣
∣
∣
∣
∣
.

Now, using Abel’s transformation, we have

∣
∣
∣
∣
∣

ν
∑

k=0

pk cos

(

k +
1
2

)

s

∣
∣
∣
∣
∣

= O
(

pν

s

)

.

Thus,

M̃ν(s) = O
(

pν

s2Pν

)

. �

Lemma 3.8 Let {pn} be a nonnegative and nondecreasing sequence, then for 0 < s ≤ 1
ν+1 ,

M̃′
ν1 (s) = O( (ν+1)pν

Pν
).
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Proof For 0 < s ≤ 1
ν+1 , sin( s

2 ) ≥ s
π

and sin(k + 1
2 )s ≤ (k + 1

2 )s.

∣
∣M̃′

ν1 (s)
∣
∣ =

∣
∣
∣
∣
∣

–2k
πPν

ν
∑

k=0

pk
sin(k + 1

2 )s
4 sin s

2

∣
∣
∣
∣
∣

≤ k
2πPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk
sin(k + 1

2 )s
4 sin s

2

∣
∣
∣
∣
∣

=
k

4πPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk(2k + 1)

∣
∣
∣
∣
∣

≤ k
4πPν

O
(

(ν + 1)pν

)

.

Thus,

M̃′
ν1 (s) = O

(
(ν + 1)pν

Pν

)

. �

Lemma 3.9 Let {pn} be nonnegative and nondecreasing, then for 1
ν+1 < s ≤ π , M̃′

ν1 (s) =
O( pν

s2Pν
).

Proof For 1
ν+1 < s ≤ π , sin( s

2 ) ≥ s
π

.

∣
∣M̃′

ν1 (s)
∣
∣ =

∣
∣
∣
∣
∣

–2k
πPν

ν
∑

k=0

pk
sin(k + 1

2 )s
4 sin s

2

∣
∣
∣
∣
∣

≤ k
2πPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk
sin(k + 1

2 )s
4 sin s

2

∣
∣
∣
∣
∣

≤ k
4πPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk
sin(k + 1

2 )s
s
π

∣
∣
∣
∣
∣

=
k

2sπPν

∣
∣
∣
∣
∣

ν
∑

k=0

pk sin

(

k +
1
2

)
∣
∣
∣
∣
∣
.

Now, using Abel’s transformation, we have

∣
∣
∣
∣
∣

ν
∑

k=0

pk sin

(

k +
1
2

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

ν–1
∑

k=0

(pk – pk+1)
k

∑

r=0

sin

(

r +
1
2

)

s + pν

ν
∑

k=0

sin

(

k +
1
2

)

s

∣
∣
∣
∣
∣

≤O
(

1
s

)[
ν–1
∑

k=0

∣
∣(pk – pk+1)

∣
∣ + |pν |

]

= O
(

pν

s

)

.

Thus,

M̃′
ν1 (s) = O

(
pν

s2Pν

)

. �
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Lemma 3.10 Let {pn} be a nonnegative and nondecreasing sequence, then for 0 < s ≤ 1
ν+1 ,

M̃′
ν2 (s) = O( 1

s2 ).

Proof For 0 < s ≤ 1
ν+1 , sin( s

2 ) ≥ s
π

and | cos ks| ≤ 1.

∣
∣M̃′

ν2 (s)
∣
∣ =

∣
∣
∣
∣
∣
–

1
πPν

ν
∑

k=0

pk
cos ks

4 sin2 s
2

∣
∣
∣
∣
∣

≤ π

2s2Pν

∣
∣
∣
∣
∣

ν
∑

k=0

pk cos ks

∣
∣
∣
∣
∣
.

Thus,

M̃′
ν2 (s) = O

(
1
s2

)

. �

Lemma 3.11 Let {pn} be nonnegative and nondecreasing, then for 1
ν+1 < s ≤ π , M̃′

ν2 (s) =
O( pν

s3Pν
).

Proof For 1
ν+1 < s ≤ π , sin( s

2 ) ≥ s
π

.

∣
∣M̃′

ν2 (s)
∣
∣ =

∣
∣
∣
∣
∣
–

1
πPν

ν
∑

k=0

pk
cos ks

4 sin2 s
2

∣
∣
∣
∣
∣

≤ π

2s2Pν

∣
∣
∣
∣
∣

ν
∑

k=0

pk cos ks

∣
∣
∣
∣
∣
.

Now, using Abel’s transformation, we have

∣
∣
∣
∣
∣

ν
∑

k=0

pk cos

(

k +
1
2

)

s

∣
∣
∣
∣
∣

= O
(

pν

s

)

.

Thus,

M̃′
ν2 (s) = O

(
pν

s3Pν

)

. �

Proof of Theorem 3.5 Using (16), the Riesz transform of the sequence {s̃ν(t)} is given by

T̃ν(t) = t̃R
ν (t) – f̃ (t) =

1
Pν

ν
∑

k=0

pk
{

s̃k(t) – f̃ (t)
}

=
1

Pν

ν
∑

k=0

pk

[

–
1

2π

∫ π

0

ϕt(s)cos(k + 1
2 )s

sin s
2

ds
]

.

Thus,

T̃ν(t) = –
1

2πPν

∫ π

0
ϕt(s)

ν
∑

k=0

pk
cos(k + 1

2 )s
sin s

2
ds
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=
∫ π

0
ϕt(s)M̃ν(s) ds. (39)

Using (20), the Riesz transform of the sequence {s̃′
ν(t)} is given by

T̃ ′
ν(t) = t̃′R

ν (t) – f̃ ′(t) =
1

Pν

ν
∑

k=0

pk
{

s̃′
k(t) – f̃ ′(t)

}

=
1

Pν

ν
∑

k=0

pk

(

–
2k
π

∫ π

0

ρt(s) sin(k + 1
2 )s

4 sin s
2

ds –
1
π

∫ π

0

ρt(s) cos ks
4 sin2 s

2
ds

)

.

Thus,

T̃ ′
ν(t) = –

2
πPν

(
∫ π

0
kρt(s)

ν
∑

k=0

pk
sin(k + 1

2 )s
4 sin s

2
ds

)

–
1

πPν

(
∫ π

0
ρt(s)

ν
∑

k=0

pk
cos ks

4 sin2 s
2

ds

)

=
∫ π

0
ρt(s)

(

M̃′
ν1 (s) + M̃′

ν2 (s)
)

ds

=
∫ π

0
ρt(s)M̃′

ν(s) ds, (40)

where

M̃′
ν(s) = M̃′

ν1 (s) + M̃′
ν2 (s). (41)

Now, using the definition of Sobolev norm given in (8), we have

∥
∥T̃ν(t)

∥
∥

1,2 =
∥
∥T̃ν(t)

∥
∥

2 +
∥
∥T̃ ′

ν(t)
∥
∥

2. (42)

Using the definition of L2 norm, we have

∥
∥T̃ν(t)

∥
∥

2 =
{

1
2π

∫ 2π

0

∣
∣T̃ν(t)

∣
∣
2 ds

} 1
2

=
{

1
2π

∫ 2π

0

∣
∣
∣
∣

∫ π

0
ϕt(s)M̃ν(s) ds

∣
∣
∣
∣

2

dt
} 1

2
.

Using generalized Minkowski’s inequality [6], we have

∥
∥T̃ν(t)

∥
∥

2 ≤
∫ π

0

{
1

2π

∫ 2π

0

∣
∣ϕt(s)

∣
∣
2 dt

} 1
2 ∣
∣M̃ν(s)

∣
∣ds

≤
∫ π

0

∥
∥ϕt(s)

∥
∥

2

∣
∣M̃ν(s)

∣
∣ds. (43)

Using Theorem 2.4, we get

∥
∥T̃ν(t)

∥
∥

2 ≤
∫ π

0
2Cs

∣
∣M̃ν(s)

∣
∣ds



Nigam and Yadav Journal of Inequalities and Applications         (2022) 2022:59 Page 16 of 21

≤ 2C
∫ π

0
s
∣
∣M̃ν(s)

∣
∣ds

= 2C
[∫ 1

ν+1

0
s
∣
∣M̃ν(s)

∣
∣ds +

∫ π

1
ν+1

s
∣
∣M̃ν(s)

∣
∣ds

]

= 2C[Ĩ1 + Ĩ2]. (44)

Now, using Lemma 3.6, we get

Ĩ1 =
∫ 1

ν+1

0
s
∣
∣M̃ν(s)

∣
∣ds

≤
∫ 1

ν+1

0
ds

= O
(

1
ν + 1

)

. (45)

Now, using Lemma 3.7, we get

Ĩ2 =
∫ π

1
ν+1

s
∣
∣M̃ν(s)

∣
∣ds

≤ pν

Pν

∫ π

1
ν+1

1
s

ds

=
pν

Pν

[

logπ (ν + 1)
]

= O
(

pν logπ (ν + 1)
Pν

)

. (46)

From (45) and (46), we have

∥
∥T̃ν(t)

∥
∥

2 = O
[(

1
ν + 1

)

+
(

pν logπ (ν + 1)
Pν

)]

. (47)

Using the definition of L2 norm and generalized Minkowski’s inequality [6], we get

∥
∥T̃ ′

ν(t)
∥
∥

2 ≤
∫ π

0

∥
∥ρt(s)

∥
∥

2

∣
∣M̃′

ν(s)
∣
∣ds

=
∫ π

0

∥
∥ρt(s)

∥
∥

2

∣
∣M̃′

ν1 (s)
∣
∣ds +

∫ π

0

∥
∥ρt(s)

∥
∥

2

∣
∣M̃′

ν2 (s)
∣
∣ds

= Ĩ ′
3 + Ĩ ′

4. (48)

Now, using Lemmas 3.8 and 3.9, we get

Ĩ ′
3 =

∫ π

0

∥
∥ρt(s)

∥
∥

2

∣
∣M̃′

ν1 (s)
∣
∣ds

=
∫ 1

ν+1

0

∥
∥ρt(s)

∥
∥

2

∣
∣M̃′

ν1 (s)
∣
∣ds +

∫ π

1
ν+1

∥
∥ρt(s)

∥
∥

2

∣
∣M̃′

ν1 (s)
∣
∣ds

= O
[(

(ν + 1)pν

Pν

)∫ 1
ν+1

0

∥
∥ρt(s)

∥
∥

2 ds +
(

pν

Pν

)∫ π

1
ν+1

1
s2

∥
∥ρt(s)

∥
∥

2 ds
]

. (49)
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Now, using Lemmas 3.10 and 3.11, we get

Ĩ ′
4 =

∫ π

0

∥
∥ρt(s)

∥
∥

2

∣
∣M̃′

ν2 (s)
∣
∣ds

=
∫ 1

ν+1

0

∥
∥ρt(s)

∥
∥

2

∣
∣M̃′

ν2 (s)
∣
∣ds +

∫ π

1
ν+1

∥
∥ρt(s)

∥
∥

2

∣
∣M̃′

ν2 (s)
∣
∣ds

= O
[(∫ 1

ν+1

0

∥
∥ρt(s)

∥
∥

2
1
s2 ds

)

+
(

pν

Pν

)∫ π

1
ν+1

∥
∥ρt(s)

∥
∥

2
1
s3 ds

]

. (50)

From (49) and (50), we have

∥
∥T̃ ′

ν(t)
∥
∥

2 = O
[(

(ν + 1)pν

Pν

)∫ 1
ν+1

0

∥
∥ρt(s)

∥
∥

2 ds

+
(

pν

Pν

)∫ π

1
ν+1

1
s2

∥
∥ρt(s)

∥
∥

2 ds +
(∫ 1

ν+1

0

∥
∥ρt(s)

∥
∥

2
1
s2 ds

)

+
(

pν

Pν

)∫ π

1
ν+1

∥
∥ρt(s)

∥
∥

2
1
s3 ds

]

. (51)

From (47) and (51), we have

∥
∥T̃ν(t)

∥
∥

1,2 = O
[(

1
ν + 1

)

+
(

pν logπ (ν + 1)
Pν

)

+
(

(ν + 1)pν

Pν

)∫ 1
ν+1

0

∥
∥ρt(s)

∥
∥

2 ds

+
(

pν

Pν

)∫ π

1
ν+1

1
s2

∥
∥ρt(s)

∥
∥

2 ds +
(∫ 1

ν+1

0

∥
∥ρt(s)

∥
∥

2
1
s2 ds

)

+
(

pν

Pν

)∫ π

1
ν+1

∥
∥ρt(s)

∥
∥

2
1
s3 ds

]

. �

4 Applications
In this section, we study some applications of our main results.

4.1 Application on the degree of convergence of a function of Fourier series in
Sobolev norm using Riesz means

Consider a function f (t) = t3 and P–1 = p–1 = 0 and pν = 1 ∀ ν ≥ 0 and Pν = 1 + ν .
Then φt(s) = 0 and dgt(s) = 6s2 ds.
Therefore, Mν(s) = O(1) for 0 < s ≤ 1

ν+1 and Mν(s) = O( 1
s2(ν+1) ) for 1

ν+1 < s ≤ π .
Then, we have

∥
∥T ′

ν(t)
∥
∥

2 = O
(

1
(ν + 1)3 +

1
(ν + 1)

[

π –
1

(ν + 1)

])

. (52)

Since ‖Tν(t)‖2 = 0, the degree of convergence of f (t) = t3 is obtained by

∥
∥Tν(t)

∥
∥

1,2 = O
(

1
(ν + 1)3 +

1
(ν + 1)

[

π –
1

(ν + 1)

])

.

Now, we draw the graphs of Tν(f ) for different values of ν (see Fig. 1).
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Table 1 Degree of convergence of f (t) = t3

ν Tν (t) = 1
(ν+1)3

+ 1
(ν+1) [π – 1

(ν+1) ]

100 0.031105
1000 0.003139

10,000 0.00031413
50,000 0.00006283
75,000 0.00004189
100,000 0.00003142
. .
. .
. .
∞ 0

Figure 1 Degree of convergence of f (t) = t3

Remark 4.1 From Table 1 and Figs. 1(a) to 1(f ), we observe that the result obtained in
Theorem 3.1 is much better than earlier results.
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4.2 Application on the degree of convergence of a function of conjugate Fourier
series in Sobolev norm using Riesz means

Consider a conjugate function f̃ (t) =
∑∞

ν=2
sinνt
logν

for ν ≥ 2 and P–1 = p–1 = 0 and pν = 1
∀ ν ≥ 0 and Pν = 1 + ν .

Then ϕt(s) =
∑∞

ν=2
2 cosνt sinνs

logν
, ‖ϕt(s)‖2 =

∑∞
ν=2

s
logν

and ρt(s) =
∑∞

ν=2
2 sinνt cosνs

logν
, ‖ρt(s)‖2 =

∑∞
ν=2

1
logν

.
Therefore, M̃ν(s) = O( 1

s ) for 0 < s ≤ 1
ν+1 , M̃ν(s) = O( 1

s2(ν+1) ) for 1
ν+1 < s ≤ π , M̃ν1 (s) = O(1)

for 0 < s ≤ 1
ν+1 , M̃ν1 (s) = O( 1

(ν+1)s2 ) for 1
ν+1 < s ≤ π , M̃ν2 (s) = O( 1

s2 ) for 0 < s ≤ 1
ν+1 , M̃ν2 (s) =

O( 1
s3 ) for 1

ν+1 < s ≤ π .
Then, we have

∥
∥T̃ν(t)

∥
∥

2 = O
[( ∞

∑

ν=2

1
logν

)[(
1 + logπ (ν + 1)

ν + 1

)]]

and

∥
∥T̃ ′

ν(t)
∥
∥

2 = O
[( ∞

∑

ν=2

1
logν

)[(
1

(ν + 1)2

)

+
(

1
(ν + 1)2

(
1
π

– (ν + 1)
))

+
(

1
(ν + 1)2

(
1
π2 – (ν + 1)2

))]]

.

Thus, the degree of convergence of f̃ (t) =
∑∞

ν=2
sinνt
logν

for ν ≥ 2 is obtained by

∥
∥T̃ν(t)

∥
∥

1,2 = O
[( ∞

∑

ν=2

1
logν

)[(
1 + logπ (ν + 1)

ν + 1

)

+
(

1
(ν + 1)2

)

+
(

1
(ν + 1)2

(
1
π

– (ν + 1)
))

+
(

1
(ν + 1)2

(
1
π2 – (ν + 1)2

))]]

.

Now, we draw the graphs of T̃ν(f ) for different values of ν (see Fig. 2).

Remark 4.2 From Table 2 and Figs. 2(a) to 2(f ), we observe that the result obtained in
Theorem 3.5 is much better than earlier results.

Remark 4.3 From Table 1 and Table 2, we also observe that the convergence of Fourier
series is faster than the convergence of conjugate Fourier series.

Table 2 Degree of convergence of f (t) =
∑∞

ν=2
sinνt
logν

ν T̃ν (t) = (
∑∞

ν=2
1

logν )[
1+logπ (ν+1)

ν+1 +
( 1π –(ν+1))( 1

π2 –(ν+1)2)

(ν+1)2
]

100 –0.15357
1000 –0.15841

10,000 –0.15906
50,000 –0.15913
75,000 –0.15914
100,000 –0.15914
. .
. .
. .
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Figure 2 Degree of convergence of f (t) =
∑∞

ν=2
sinνt
logν

5 Conclusion
From Table 1 and Figs. 1(a) to 1(f ), we observe that the degree of convergence of Fourier
series f (t) = t3 is much better than that of earlier results, and from Table 2 and Figs. 2(a) to
2(f ), we observe that the degree of convergence of conjugate Fourier series f̃ (t) =

∑∞
ν=2

sinνt
logν

for ν ≥ 2 is much better than that of earlier results. Also, from Table 1 and Table 2, we
observe that the convergence of Fourier series is faster than the convergence of conjugate
Fourier series.
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