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Abstract
In this paper, we introduce two subgradient extragradient-type algorithms for solving
variational inequality problems in the real Hilbert space. The first one can be applied
when the mapping f is strongly pseudomonotone (not monotone) and Lipschitz
continuous. The first algorithm only needs two projections, where the first projection
onto closed convex set C and the second projection onto a half-space Ck . The strong
convergence theorem is also established. The second algorithm is relaxed and
self-adaptive; that is, at each iteration, calculating two projections onto some
half-spaces and the step size can be selected in some adaptive ways. Under the
assumption that f is monotone and Lipschitz continuous, a weak convergence
theorem is provided. Finally, we provide numerical experiments to show the
efficiency and advantage of the proposed algorithms.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉. The classic variational inequality
problems for f on C are to find a point x∗ ∈ C such that

〈
f
(
x∗), x – x∗〉 ≥ 0, ∀x ∈ C, (1.1)

where C is a nonempty closed convex subset of H , and f is a mapping from H to H . The
problem and its solution set will be denoted by VI(C, f ) and SOL(C, f ). This class of varia-
tional inequality problems arises in many fields such as optimal control, optimization, par-
tial differential equations, and some other nonlinear problems; see [1] and the references
therein. Nowadays, variational inequality problems with uncertain data are a very inter-
esting topic, and the robust optimization has recently emerged as a powerful approach to
deal with mathematical programming problems with data uncertainty. For more details,
we refer the readers to [18, 29, 30].

In order to solve variational inequality problems, many solution methods have been
introduced [7, 12, 14, 16, 17, 31]. Among these methods, subgradient extragrdeint method
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has attracted much attention. This method has the following form:

yk = PC
(
xk – τ f

(
xk)), (1.2)

xk+1 = PTk

(
xk – τ f

(
yk)), (1.3)

where Tk := {w ∈ H|〈xk – τ f (xk) – yk , w – yk〉 ≤ 0} is a half-space and τ > 0 is a constant.
Under the assumption that f is monotone and L-Lipschitz continuous, the method (1.2)-
(1.3) weakly converges to a solution to VI(C, f ).

The subgradient extragradient method has received a great deal of attention and many
authors modified and improved it in various ways, see [9, 10, 25, 35]. To the best of our
knowledge, almost subgradient extragradient-type algorithms about variational inequality
problems need to assume f is monotone Lipschitz continuous and need one projection on
C. These observations lead us to the following concerns:

Question 1 Can we propose a new subgradient extragradient-type algorithm for solving
strongly pseudomonotone (not monotone) variational inequality problems?

Question 2 Can we propose a new subgradient extragradient-type projection algorithm
such that the projection on C can be replaced by half-space?

In this paper, the main purpose is to solve the two questions. We first introduce a sub-
gradient extragradient-type algorithm for solving Question 1. Under the assumptions that
f is strongly pseudomonotone(not monotone) and Lipschitz continuous, we establish the
strong convergence theorem. The first algorithm has the following form:

yk = PC
(
xk – λkf

(
xk)), (1.4)

xk+1 = PCk

(
yk – λk

(
f
(
yk) – f

(
xk))), (1.5)

where Ck is a half-space (a precise definition will be given in Sect. 3 (3.2)). The main fea-
ture of the new algorithm is that: it only requires the strong pseudomonotonicity (not
monotone) and Lipschitz continuity (there is no need to know or estimate the Lipschitz
constant of f ) of the involving mapping instead of the monotonicity and L-Lipschitz con-
tinuity conditions as in [4]. Moreover, in the new algorithm, the step sizes λk do not nec-
essarily converge to zero, and we get the strong convergence theorem.

Note that, in the algorithms (1.2)-(1.3) and (1.4)-(1.5), one still needs to execute one
projection onto the closed convex set C at each iteration. If C has a simple structure (e.g.,
half-space, a ball, or a subspace), the projection PC can be computed easily. But, if C is a
general closed convex set, one has to solve the minimal distance problem to compute the
projection onto C, which is complicated in general.

To overcome this flaw, we present the second algorithm, named two-subgradient extra-
gradient algorithm, for solving monotone and Lipschitz continuous variational inequality
problems defined on a level set of a convex function. The two-subgradient extragradient
algorithm has the following form:

yk = PCk

(
xk – λkf

(
xk)), (1.6)
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xk+1 = PCk

(
yk – λk

(
f
(
yk) – f

(
xk))), (1.7)

where Ck is a half-space (a precise definition will be given in Sect. 4). It is well known that
the projection onto half-space can be calculated directly. Clearly, the two-subgradient ex-
tragradient algorithm is easy to implement. We prove that the sequence generated by the
algorithm (1.6)-(1.7) weakly converges to a solution to VI(C, f ) for the case where the
closed convex set C can be represented as a lower level set of a continuously differentiable
convex function. Moreover, the step size λk in this algorithm can be selected in some adap-
tive way; that is, we have no need to know or to estimate any information as regards the
Lipschitz constant of f .

Our paper is organized as follows: In Sect. 2, we collect some basic definitions and pre-
liminary results. In Sect. 3, we propose an extragradient-type algorithm and analyze its
convergence and convergence rate. In Sect. 4, we consider the two-subgradient extragra-
dient algorithm and analyze its convergence and convergence rate. Numerical results are
reported in Sect. 5.

2 Preliminaries
In this section, we recall some definitions and results for further use. For the given
nonempty closed convex set C in H , the orthogonal projection from H to C is defined
by

PC(x) = argmin
{‖y – x‖ | y ∈ C

}
, x ∈ H . (2.1)

We write xk → x and xk ⇀ x to indicate that the sequence {xk} converges strongly and
weakly to x, respectively.

Definition 2.1 Let f : H → H be a mapping. f is called Lipschitz continuous with constant
L > 0, if

∥∥f (x) – f (y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ H .

Definition 2.2 Let f : C → H be a mapping. f is called
(a) monotone on C, if

〈
f (y) – f (x), y – x

〉 ≥ 0, ∀x, y ∈ C;

(b) σ -strongly pseudomonotone on C, if there exists σ > 0 such that

〈
f (x), y – x

〉 ≥ 0 ⇒ 〈
f (y), y – x

〉 ≥ σ‖x – y‖2, ∀x, y ∈ C.

Remark 2.1 We claim that property (b) guarantees that VI(C, f ) have one solution at most.
Indeed, if u, v ∈ SOL(C, f ) and if (b) is satisfied, then 〈f (v), u – v〉 ≥ 0 and 〈f (v), v – u〉 ≥
σ‖v – u‖2. Adding these two inequalities yields σ‖v – u‖2 ≤ 0, which implies u = v. Note
also that property (b) and the continuity of f guarantee that VI(C, f ) has a unique solu-
tion [19].
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In the following, we introduce an example to illustrate that f is strongly pseudomono-
tone but is not monotone in general.

Example 2.1 Let H = l2 be a real Hilbert space whose elements are square-summable se-
quences of real scalars, i.e.,

H =

{

u = (u1, u2, . . . , un, . . .) :
∞∑

n=1

|un|2 < ∞
}

.

The inner product and the induced norm on H are given by

〈u, v〉 =
∞∑

n=1

unvn and ‖u‖ =
√〈u, u〉

for any u = (u1, u2, . . . , un, . . .), v = (v1, v2, . . . , vn, . . .) ∈ H .
Let α and β be two positive real numbers such that β < α and 1 – αβ < 0. Let us set

C =
{

u ∈ H : ‖u‖ ≤ α
}

, f (u) =
u

1 + ‖u‖2 .

We now show that f is strongly pseudomonotone. Indeed, let u, v ∈ C be such that 〈f (u), v–
u〉 ≥ 0. This implies that 〈u, v – u〉 ≥ 0. Consequently,

〈
f (v), v – u

〉
=

1
1 + ‖v‖2 〈v, v – u〉

≥ 1
1 + ‖v‖2

(〈v, v – u〉 – 〈u, v – u〉)

≥ 1
1 + α2 ‖u – v‖2

= γ ‖u – v‖2,

where γ := 1
1+α2 > 0. Taking u = (α, 0, . . . , 0, . . .), v = (β , 0, . . . , 0, . . .) ∈ C, we find

〈
f (u) – f (v), u – v

〉
=

(
α2 – β2)

[
1 – αβ

(1 + α2)(1 + β2)

]
< 0.

This means f is not monotone on C.

Definition 2.3 Let f : H → (–∞, +∞], and x ∈ H . Then f is weakly sequential lower semi-
continuous at x if for every sequence {xk} in H ,

xk ⇀ x ⇒ f (x) ≤ lim
k→∞

inff
(
xk).

Definition 2.4 A mapping c : H → R, is said to be Gâteaux differentiable at a point x ∈ H ,
if there exists an element, denoted by c′(x) ∈ H , such that

lim
t→0

c(x + tθ ) – c(x))
t

=
〈
c′(x), θ

〉
, ∀θ ∈ H , (2.2)

where c′(x) is called the Gâteaux differential of c at x.
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Definition 2.5 For a convex function c : H → R, c is said to be subdifferentiable at a point
x ∈ H if the set

∂c(x) �
{

v ∈ H | c(y) ≥ c(x) + 〈v, y – x〉,∀y ∈ H
}

(2.3)

is not empty. Each element in ∂c(x) is called a subgradient of c at x. c is said to be subdif-
ferentiable on H if c is subdifferentiable at each x ∈ H .

Note that if c(x) is Gâteaux differentiable at x, then ∂c(x) = {c′(x)}.

Definition 2.6 Suppose that a sequence {xk} in H converges in norm to x∗ ∈ H . We say
that

(a) {xk} converges to x∗ with R-linear convergence rate if

lim
k→∞

sup
∥∥xk – x∗∥∥1/k < 1.

(b) {xk} converges to x∗ with Q-linear convergence rate if there exists μ ∈ (0, 1) such
that

∥∥xk+1 – x∗∥∥ ≤ μ
∥∥xk – x∗∥∥.

for all sufficiently large k.

Note that Q-linear convergence rate implies R-linear convergence rate; see [[23],
Sect. 9.3]. We remark here that R-linear convergence does not imply Q-linear conver-
gence in general. We consider one simple example, which is derived from [15].

Example 2.2 Let {xk} ∈ R be the sequence of real numbers defined by

xk =

⎧
⎨

⎩
2–k , k is even,

3–k , k is odd.

Since

lim
k→∞

sup
∥∥xk – 0

∥∥1/k =
1
2

,

{xk} converges to 0 with an R-linear convergence rate. Note that

lim
k→∞

sup
‖xk+1 – 0‖
‖xk – 0‖ = +∞,

this implies {xk} does not converge to 0 with the Q-linear convergence rate.

The following well-known properties of the projection operator will be used in this pa-
per.

Lemma 2.1 Let PC(·) be the projection onto C. Then
(a) 〈x – PC(x), y – PC(x)〉 ≤ 0, ∀x ∈ H , y ∈ C;
(b) ‖x – y‖2 ≥ ‖x – PC(x)‖2 + ‖y – PC(x)‖2, ∀x ∈ H , y ∈ C;
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(c) ‖PC(y) – PC(x)‖ ≤ 〈PC(y) – PC(x), y – x〉, ∀x, y ∈ H ;
(d) ‖PC(y) – PC(x)‖ ≤ ‖y – x‖, ∀x, y ∈ H .

Lemma 2.2 ([2]) Let f : H → (–∞, +∞] be convex. Then the following are equivalent:
(a) f is weakly sequential lower semicontinuous;
(b) f is lower semicontinuous.

Lemma 2.3 ([22](Opial)) Assume that C is a nonempty subset of H , and {xk} is a sequence
in H such that the following two conditions hold:

(i) ∀x ∈ C, limk→∞ ‖xk – x‖ exists;
(ii) every sequential weak cluster point of {xk} belongs to C.

Then {xk} converges weakly to a point in C.

Lemma 2.4 ([13]) Assume that the solution set SOL(C, f ) of VI(C, f ) is nonempty. Given
x∗ ∈ C and C is defined in (3.1), where C is a Gâteaux differentiable convex function. Then
x∗ ∈ SOL(C, f ) if and only if we have either

(i) f (x∗) = 0, or
(ii) x∗ ∈ ∂C and there exists a positive constant η such that f (x∗) = –ηc′(x∗).

Remark 2.2 According to Sect. 5: Application in [13], we remark here that determining η

is an easy and/or feasible task.

Lemma 2.5 ([5]) Consider the problem VI(C, f ) with C being a nonempty, closed, convex
subset of a real Hilbert space H and f : C → H being pseudo-monotone and continuous.
Then, x∗ is a solution to VI(C, f ) if and only if

〈
f (x), x – x∗〉 ≥ 0, ∀x ∈ C.

3 Convergence of subgradient extragradient-type algorithm
In this section, we introduce a self-adaptive subgradient extragradient-type method for
solving variational inequality problems. The nonempty closed convex set C will be given
as follows:

C =
{

x ∈ H | c(x) ≤ 0
}

, (3.1)

where c : H → R is a convex function.
We define the half-space as

Ck =
{

x ∈ H | c
(
xk) +

〈
ζ k , x – xk 〉 ≤ 0

}
, (3.2)

with ζ k ∈ ∂c(xk), where ∂c(xk) is the subdifferential of c at xk . It is clear that C ⊂ Ck for
any k ≥ 0.

In order to prove our theorem, we assume that the following conditions are satisfied:
C1: The mapping f : H → H is σ -strongly pseudomonotone and Lipschitz continuous (but

we have no need to know or estimate the Lipschitz constant of f ).
Note that strong pseudomonotonicity and the continuity of f guarantee that VI(C, f )

has a unique solution denoted by x∗.
Now we propose our Algorithm 1.
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Algorithm 1 Subgradient extragradient-type algorithm
Initialization: Choose x–1, x0, y–1 ∈ H ;ρ, δ ∈ [a, b] ⊂ (0, 1); λ–1 ∈ (0,∞), set k = 0.
Iterative Steps: Calculate xk+1 as follows:

Step 1. Given λk–1, yk–1 and xk–1. Let pk–1 = xk–1 – yk–1.

λk =

⎧
⎨

⎩
λk–1, λk–1‖f (xk–1) – f (yk–1)‖ ≤ ρ‖pk–1‖,

λk–1δ, otherwise.

Step 2. Compute

yk = PC
(
xk – λkf

(
xk)).

Step 3. Compute

xk+1 = PCk

(
yk – λk

(
f
(
yk) – f

(
xk))).

Step 4. Set k := k + 1 and return to Step 1.

The following lemma gives an explicit formula of PCk .

Lemma 3.1 ([24]) For any y ∈ H ,

PCk (y) =

⎧
⎨

⎩
y – c(xk )+〈u,y–xk〉

‖u‖2 u, c(xk) + 〈u, y – xk〉 > 0,

y, c(xk) + 〈u, y – xk〉 ≤ 0,

where u ∈ ∂c(xk).

Lemma 3.2 The sequence {λk} is nonincreasing and is bounded away from zero. Moreover,
there exists a number m > 0 such that

(1) λk+1 = λk and λk‖f (xk) – f (yk)‖ ≤ ρ‖xk – yk‖ for all k ≥ m.
(2) λk ≥ λ–1δ

m+1 for any k ≥ 0.

Proof Since δ ∈ (0, 1), it is easy to see the sequence {λk} is nonincreasing. We claim this
sequence is bounded away from zero. Suppose, on the contrary, that λk → 0. Then, there
exists a subsequence {λki} ⊂ {λk} such that

λki–1
∥∥f

(
xki–1) – f

(
yki–1)∥∥ > ρ

∥∥xki–1 – yki–1∥∥.

Let L be the Lipschitz constant of f , we have

λki–1 > ρ
‖xki–1 – yki–1‖

‖f (xki–1) – f (yki–1)‖ ≥ ρ

L
.

Obviously, this inequality contradicts the fact λk → 0. Therefore, there exists a number
m > 0 such that

λk+1 = λk and λk
∥∥f

(
xk) – f

(
yk)∥∥ ≤ ρ

∥∥xk – yk∥∥ (3.3)
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for all k ≥ m. Since the sequence {λk} is nonincreasing, the preceding relation (3.3) implies
λk ≥ λm ≥ λ–1δ

m+1 for all k. �

The following lemma plays a key role in our convergence analysis.

Lemma 3.3 For x∗ ∈ SOL(C, f ), let the sequences {xk} and {yk} be generated by Algorithm 1.
There exists a number m > 0 such that

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 –
(
1 – ρ2)∥∥xk – yk∥∥2 – 2σλk

∥∥yk – x∗∥∥2

for all k ≥ m.

Proof For x∗ ∈ SOL(C, f ), x∗ ∈ Ck due to SOL(C, f ) ⊂ C ⊂ Ck for all k ≥ 0. Using
Lemma 2.1, we have

∥∥xk+1 – x∗∥∥2 = ‖PCk (yk – λk
(
f
(
yk) – f

(
xk)) – x∗‖2

= ‖PCk (yk – λk
(
f
(
yk) – f

(
xk)) – PCk

(
x∗)‖2

≤ ∥∥yk – λk
(
f
(
yk) – f

(
xk)) – x∗∥∥2

=
∥∥yk – x∗∥∥2 + λ2

k
∥∥f

(
yk) – f

(
xk)∥∥2 – 2λk

〈
f
(
yk) – f

(
xk), yk – x∗〉

=
∥∥xk – x∗∥∥2 +

∥∥xk – yk∥∥2 + 2
〈
yk – xk , xk – x∗〉

+ λ2
k
∥∥f

(
yk) – f

(
xk)∥∥2 – 2λk

〈
f
(
yk) – f

(
xk), yk – x∗〉

=
∥∥xk – x∗∥∥2 +

∥∥xk – yk∥∥2 – 2
〈
yk – xk , yk – xk 〉 + 2

〈
yk – xk , yk – x∗〉

+ λ2
k
∥∥f

(
yk) – f

(
xk)∥∥2 – 2λk

〈
f
(
yk) – f

(
xk), yk – x∗〉. (3.4)

Noting that yk = PC(xk – λkf (xk , vk)), this implies that

〈
yk – xk + λkf

(
xk), yk – x∗〉 ≤ 0, (3.5)

or equivalently

〈
yk – xk , yk – x∗〉 ≤ –λk

〈
f
(
xk), yk – x∗〉. (3.6)

By (3.4), (3.6), and Lemma 3.2, ∀k ≥ m, we get

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 –
∥∥xk – yk∥∥2 – 2λk

〈
f
(
xk), yk – x∗〉

+ λ2
k
∥∥f

(
yk) – f

(
xk)∥∥2 – 2λk

〈
f
(
yk) – f

(
xk), yk – x∗〉

=
∥∥xk – x∗∥∥2 –

∥∥xk – yk∥∥2 + λ2
k
∥∥f

(
yk) – f

(
xk)∥∥2 – 2λk

〈
f
(
yk), yk – x∗〉

≤ ∥∥xk – x∗∥∥2 –
(
1 – ρ2)∥∥xk – yk∥∥2 – 2σλk

∥∥yk – x∗∥∥2, (3.7)

where the third term in the right-hand side of (3.7) is estimated by the strong pseudomono-
tonicity of f . �
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Theorem 3.1 Suppose that condition C1 is satisfied. Then the sequences {xk} and {yk}
generated by Algorithm 1 strongly converge to a unique solution to VI(C, f ).

Proof Let x∗ ∈ SOL(C, f ). Using Lemma 3.3, there exists a number m > 0 such that for all
k ≥ m,

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 –
(
1 – ρ2)∥∥xk – yk∥∥2 – 2σλk

∥∥yk – x∗∥∥2, (3.8)

or equivalently

(
1 – ρ2)∥∥xk – yk∥∥2 + 2σλk

∥∥yk – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 –
∥∥xk+1 – x∗∥∥2. (3.9)

Continuing, we get for all integers n ≥ 0,

n∑

k=0

(
1 – ρ2)∥∥xk – yk∥∥2 +

n∑

k=0

2σλk
∥∥yk – x∗∥∥2 ≤ ∥∥x0 – x∗∥∥2. (3.10)

Since the sequence {∑n
k=0(1 – ρ2)‖xk – yk‖2 +

∑n
k=0 2σλk‖yk – x∗‖2} is monotonically in-

creasing and bounded, we obtain

∞∑

k=0

(
1 – ρ2)∥∥xk – yk∥∥2 +

∞∑

k=0

2σλk
∥∥yk – x∗∥∥2 ≤ ∥∥x0 – x∗∥∥2. (3.11)

By Lemma 3.2, {λk} is bounded away from zero. Hence, we have

lim
k→∞

∥∥yk – x∗∥∥2 = 0 and lim
k→∞

∥∥xk – yk∥∥2 = 0. (3.12)

That is, xk → x∗ and yk → x∗. This completes the proof. �

We note that Algorithm 1 can give convergence when f is strongly pseudomonotone
and Lipschitz continuous without PCk in Step 3. We now give a convergence result via the
following new method.

Theorem 3.2 Assume that condition C1 is satisfied. Let ρ, δ ∈ [a, b] ⊂ (0, 1); λ–1 ∈ (0,∞).
Choose x–1, x0, y–1 ∈ H . Let pk–1 = xk–1 – yk–1.

λk =

⎧
⎨

⎩
λk–1, λk–1‖f (xk–1) – f (yk–1)‖ ≤ ρ‖pk–1‖,

λk–1δ, otherwise.
(3.13)

Suppose {xk} is generated by

⎧
⎨

⎩
yk = PC(xk – λkf (xk))

xk+1 = yk – λk(f (yk) – f (xk)).
(3.14)

Then the sequences {xk} and {yk} generated by (3.14) strongly converge to a unique solution
to VI(C, f ).
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Proof Similar to the proof of Theorem 3.1, it is not difficult to get a conclusion. We omit
the proof here. �

Remark 3.1
(a) Suppose f is monotone and L-Lipschitz continuous. Let λk = λ ∈ (0, 1/L). Then the

new method (3.13)-(3.14) reduces to the algorithm proposed by Tseng in [34].
(b) Tseng’s algorithm [34] has been studied extensively by many authors;

see [3, 26, 27, 32, 33, 36] and the references therein. We notice that many modified
Tseng’s algorithms require that the operator f is monotone and Lipschitz
continuous operator. Recently, weak convergence has been obtained in several
papers [3, 26, 27], even when the cost operator is pseudomonotone.

(c) We obtain strong convergence under the assumptions that f is strongly
pseudomonotone and Lipschitz continuous. That is to say, the new method
(3.13)-(3.14) is different from the methods suggested in [3, 26, 27, 32–34, 36].

Before ending this section, we provide a result on the linear convergence rate of the
iterative sequence generated by Algorithm 1.

Theorem 3.3 Let f : C → H be strongly pseudomonotone and L-Lipschitz continuous
mapping. Then the sequence generated by Algorithm 1 converges in norm to the unique
solution x∗ of VI(C, f ) with a Q-linear convergence rate.

Proof It follows from Lemma 3.3 that

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 –
(
1 – ρ2)∥∥xk – yk∥∥2 – 2σλk

∥∥yk – x∗∥∥2.

Put

β :=
1
2

min
{

1 – b2, 2σλ–1δ
m+1}.

By Lemma 3.2(2), we have

2σλk ≥ 2σλ–1δ
m+1 ≥ 2β .

Note that

1 – ρ2 ≥ 1 – b2 ≥ 2β .

Thus, we get

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 – 2β
(∥∥xk – yk∥∥2 +

∥∥yk – x∗∥∥2)

≤ ∥∥xk – x∗∥∥2 – β
(∥∥xk – yk∥∥ +

∥∥yk – x∗∥∥)2

≤ ∥∥xk – x∗∥∥2 – β
∥∥(

xk – yk) +
(
yk – x∗)∥∥2

= (1 – β)
∥∥xk – x∗∥∥2.
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Hence,

∥∥xk+1 – x∗∥∥ ≤ μ
∥∥xk – x∗∥∥, (3.15)

where μ :=
√

1 – β ∈ (0, 1). The inequality (3.15) shows that {xk} converges in norm to x∗

with a Q-linear convergence rate. �

4 Convergence of two-subgradient extragradient algorithm
In this section, we introduce an algorithm named two-subgradient extragradient algo-
rithm, which replaces the first projection in Algorithm 1 onto closed convex set C with
a projection onto a specific constructible half-space Ck . We assume that C is the same
form given in (3.1). In order to prove our theorem, we assume the following conditions
are satisfied:

A1: SOL(C, f ) �= 0.
A2: The mapping f : H → H is monotone and Lipschitz continuous (but we do not need

to know or estimate the Lipschitz constant of f ).
A3: (a) The feasible set C = {x ∈ H | c(x) ≤ 0} is continuously Gâteaux differentiable

convex function.
(b) Gâteaux differential of c at x, denoted by c′(x), is K-Lipschitz continuous.

The following lemma plays an important role in our convergence analysis.

Lemma 4.1 For any x∗ ∈ SOL(X, F) and let the sequences {xk} and {yk} be generated by
Algorithm 2. Then we have

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 –
(
1 – ρ2 – 2λkηK

)∥∥xk – yk∥∥2.

for all k ≥ m.

Algorithm 2 Two-subgradient extragradient algorithm
Initialization: Choose x–1, x0, y–1 ∈ H ;ρ, δ ∈ [a, b] ∈ (0, 1); λ–1 ∈ (0,∞), set k = 0.
Iterative Steps: Calculate xk+1 as follows:

Step 1. Given λk–1, yk–1 and xk–1. Let pk–1 = xk–1 – yk–1.

λk =

⎧
⎨

⎩
λk–1, λk–1‖f (xk–1) – f (yk–1)‖ ≤ ρ‖pk–1‖,

λk–1δ, Otherwise.

Step 2. Compute

yk = PCk

(
xk – λkf

(
xk)).

Step 3. Compute

xk+1 = PCk

(
yk – λk

(
f
(
yk) – f

(
xk))),

where Ck = {x ∈ H|c(xk) + 〈c′(xk), x – xk〉 ≤ 0}.
Step 4. Set k := k + 1 and return to Step 1.
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Proof By an argument very similar to the proof of Lemma 3.3, it is not difficult to get the
following inequality:

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 –
(
1 – ρ2)∥∥xk – yk∥∥2 – 2λk

〈
f
(
x∗), yk – x∗〉, (4.1)

where the second inequality follows by the monotonicity of f .
The subsequent proof is divided into the following two cases:
Case 1: f (x∗) = 0, then Lemma 4.1 holds immediately in view of (4.1).
Case 2: f (x∗) �= 0.
By Lemma 2.4, we have x∗ ∈ ∂C and there exists η > 0 such that f (x∗) = –ηc′(x∗). Because

c(·) is differentiable convex function, it follows

c
(
x∗) +

〈
c′(x∗), yk – x∗〉 ≤ c

(
yk).

Note that c(x∗) = 0 due to x∗ ∈ ∂C, we have

〈
f
(
x∗), x∗ – yk 〉 ≤ ηc

(
yk). (4.2)

Since yk ∈ Ck and by the definition of Ck in step 3, we have

c
(
xk) +

〈
c′(xk), yk – xk 〉 ≤ 0.

By the convexity of c(·), we have

c
(
yk) +

〈
c′(yk), xk – yk 〉 ≤ c

(
xk).

Adding the two above inequalities, we get

c
(
yk) ≤ 〈

c′(yk) – c′(xk), yk – xk 〉 ≤ K
∥∥yk – xk∥∥2, (4.3)

where the second inequality follows from the Lipschitz continuity of c′(·). Thus, combining
(4.1), (4.2), and (4.3), we get

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 –
(
1 – ρ2 – 2λkηK

)∥∥xk – yk∥∥2. �

Theorem 4.1 Suppose that conditions A1-A3 are satisfied. Let 0 < λ–1 ≤ 1–ρ2

2ηK . Then the
sequence {xk} generated by Algorithm 2 weakly converges to a solution to VI(C, f ).

Proof Let x∗ ∈ SOL(C, f ). Using Lemma 4.1, there exists a number m > 0 such that

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 –
(
1 – ρ2 – 2λkηK

)∥∥xk – yk∥∥2 (4.4)

for all k ≥ m. By Remark 2.2, determining η is an easy and/or feasible task. So, find a
number λ–1 ≤ 1–ρ2

2ηK is a feasible task. Since {λk} is nonincreasing, we get λk ≤ 1–ρ2

2ηK for
all k ≥ 0. Thus, we have 1 – ρ2 – 2λkηK ≥ 0, which implies that limk→∞ ‖xk – x∗‖ exists
and limk→∞ ‖xk – yk‖ = 0. Thus, the sequence {xk} is bounded. Consequently, {yk} is also
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bounded. Let x̂ ∈ H be a sequential weak cluster of {xk}, then there exists a subsequence
{xki} of {xk} such that limi→∞ xki = x̂. Since ‖xk – yk‖ → 0, we also have limi→∞ yki = x̂. Due
to yki ∈ Cki and the definition of Cki ,

c
(
xki

)
–

〈
c′(xki

)
, xki – yki

〉 ≤ 0,

we can get

c
(
xki

) ≤ ∥∥c′(xki
)∥∥∥∥xki – yki

∥∥.

Since c′(·) is Lipschitz continuous and {xki} is bounded, we deduce that c′(xki ) is bounded
on any bounded sets of H . This fact means that there exists a constant M > 0 such that

c
(
xki

) ≤ M
∥∥xki – yki

∥∥ → 0. (4.5)

Because c(·) is convex and lower semicontinuous, using Lemma 2.2, we get c(·) is weak
sequential lower semicontinuous. Thus, by combining (4.5) and Definition 2.3, we obtain

c(x̂) ≤ lim
i→∞ infc

(
xki

) ≤ 0, (4.6)

which means x̂ ∈ C.
Now we turn to show x̂ ∈ SOL(C, f ).
Note that C ⊂ Ck for all k ≥ 0. From yki = PCki

(xki – λki f (xki )) and f is monotone, ∀x ∈
C ⊂ Cki , we get

0 ≤ 〈
yki – xki + λki f

(
xki

)
, x – yki

〉

=
〈
yki – xki , x – yki

〉
+ λki

〈
f
(
xki

)
, x – yki

〉

=
〈
yki – xki , x – yki

〉
+ λki

〈
f
(
xki

)
, xki – yki

〉
+ λki

〈
f
(
xki

)
, x – xki )

〉

≤ 〈
yki – xki , x – yki

〉
+ λki

〈
f
(
xki

)
, xki – yki

〉
+ λki

〈
f (x), x – xki

〉
. (4.7)

By Lemma 3.2, we get λk > 0 is bounded away from zero. Passing to the limit in (4.7), we
have

〈
f (x), x – x̂

〉 ≥ 0, ∀x ∈ C.

By Lemma 2.5, we have x̂ ∈ SOL(C, f ). Therefore, we proved that
(1) limk→∞ ‖xk – x∗‖ exists;
(2) If xki ⇀ x̂ then x̂ ∈ SOL(C, f ).

It follows from Lemma 2.3 that the sequence {xk} converges weakly to a solution to
VI(C, f ). �

Before ending this section, we prove the convergence rate of the iterative sequence gen-
erated by Algorithm 2 in the ergodic sense. The base of the complexity proof ([8]) is

SOL(C, f ) =
⋂

u∈C

{
z ∈ C|〈f (u), u – z

〉 ≥ 0
}

.
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In order to prove the convergence rate, the following key inequality is needed. Indeed, by
an argument very similar to the proof of Lemma 4.1, it is not difficult to get the following
result.

Lemma 4.2 Let {xk} and {yk} be two sequences generated by Algorithm 2, and let λk be
selected as Step 1 in Algorithm 2. Suppose conditions A1-A3 are satisfied. Then for any
u ∈ C, we get

∥∥xk+1 – u
∥∥2 ≤ ∥∥xk – u

∥∥ – (1 – ρ)
∥∥xk – u

∥∥2 – 2λk
〈
f (u), yk – u

〉
.

Theorem 4.2 For any integer n > 0, there exists a sequence {zn} satisfying zn ⇀ x∗ ∈
SOL(C, f ) and

〈
f (u), zn – u

〉 ≤ ‖x0 – u‖2

Tk
, ∀u ∈ C,

where

zn =
∑n

k=0 2λkyk

Tn
and Tn =

n∑

k=0

2λk . (4.8)

Proof By Lemma 4.2, we have

2λk
〈
f (u), yk – u

〉 ≤ ∥∥xk – u
∥∥2 –

∥∥xk+1 – u
∥∥2. (4.9)

Summing (4.9) over k = 0, 1, . . . , n, we have

〈

f (u),
n∑

k=0

2λkyk –
n∑

k=0

2λku

〉

≤ ∥∥x0 – u
∥∥2, ∀u ∈ C. (4.10)

Combining (4.8) and (4.10), we derive

〈
f (u), zn – u

〉 ≤ ‖x0 – u‖2

Tn
, ∀u ∈ C. (4.11)

Note that from the fact that yk ⇀ x∗ ∈ SOL(C, f ) and zn is a convex combination of
y0, y1, . . . , yk , we get zn ⇀ x∗ ∈ SOL(C, f ). This completes the proof. �

Denote α := λ–1δ
m+1. From Lemma 3.2(2), λk ≥ α holds for all k ≥ 0. This fact together

with the relation (4.8) yields

Tn ≥ 2(n + 1)α.

The preceding inequality implies Algorithm 2 has O( 1
n ) convergence rate. For a given ac-

curacy ε > 0 and any bounded subset X ⊂ C, Algorithm 2 achieves

〈
f (u), zn – u

〉 ≤ ε

in at most � r
2αε

� iterations, where r = sup{‖x0 – u‖2|u ∈ X}.
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5 Numerical experiments
In order to evaluate the performance of the proposed algorithms, we present numerical
examples relative to the variational inequalities. In this section, we provide some numer-
ical experiments to demonstrate the convergence of our algorithms and compare the al-
gorithms we proposed with the existing algorithms in [11, 21, 28]. The MATLAB codes
are run on a PC (with Intel(R) Core(TM) i7-6700HQ CPU@2.60 GHz, 2.59 GHZ, RAM
16.0 GB) under MATLAB Version 9.2.0.538062 (R2017a) Service Pack 1, which contains
Global optimization Toolbox version 3.4.2.

Example 5.1 We consider VI(C, f ) with the constraint set C = {x ∈ R
20 : ‖x‖ – 5 ≤ 0}.

Define f : R20 →R
20 by

f (x) =
(

2 –
1

1 + ‖x‖
)

x.

In this case, we can verify that x∗ = 0 is the solution to VI(C, f ). We note that f is 1-
strongly pseudomonotone and 4-Lipschitz continuous on R

n (See Example 3.3 [20]) and
is not (strongly) monotone. It means that when the methods in [11, 28] are applied to solve
Example 5.1, its iteration point sequence may not converge to the solution point.

In the implementation of Algorithm 1, we take ρ = 0.5, δ = 0.1, λ–1 = 0.5. In the imple-
mentation of Algorithm 3.1 in [21], we set λ = 0.05, δ = 0.025 and γ = 0.49. Moreover,
we choose x0 = xT

‖xT ‖ , x–1 = xT

‖xT ‖ and y–1 = 0 as the staring point for Algorithm 1, where

xT = (1, 1, . . . , 1)T . We choose x0 = xT

‖xT ‖ , x1 = xT

‖xT ‖ as the staring point for Algorithm 3.1
in [21]. The numerical results of Example 5.1 are shown in Fig. 1, which illustrate the
sequence generated by Algorithm 1 is more efficient in comparison with Algorithm 3.1
in [21].

Figure 1 Comparison of the number of iterations of Algorithm 1 with algorithm in [21] for Example 5.1
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Figure 2 Comparison of the number of iterations of Algorithm 1 and Algorithm 2 with algorithms in
[11, 21, 28] for Example 5.2

Example 5.2 Consider variational inequality problems VI(C, f ). The constraint set C =
{(x1, x2) ∈R

2 : x2
1 +x2

2 ≤ 100}. Let f : C →R
2 be defined by f (x) = (2x1 +2x2 +sin(x1), –2x1 +

2x2 + sin(x2))T , ∀x = (x1, x2)T ∈ C.

For Example 5.2, the following conclusions can be obtained from [6]:
(1) F is 1-strongly monotone and

√
26-Lipschitz continuous mapping.

(2) x∗ = (0, 0)T ∈ C is the unique solution to VI(C, f ).
In this example, we take ρ = 0.5, δ = 0.1, λ–1 = 0.5 for Algorithm 1,2; γ = 0.4, δ = 0.2,

λ = 0.05 for Algorithm 3.1 in [21]; set λ = 1
20 , γ = 1 and αk = 1

k+1 for Algorithm 4.1 in [11];
set θ = 0.25, σ = 0.7, γ = 0.6 and αk = 1

k+1 for Algorithm 3.3 in [28]. For Example 5.2,
we choose x0 = (–10, –12)T , x–1 = (0, 0)T , y–1 = (–1, 5)T as the initial points for Algo-
rithm 1 and Algorithm 2; x1 = (–10, –12)T , x0 = (0, 0)T as the initial points for [21, 28];
x0 = (–10, –12)T as the initial point for [11]. The numerical results of Example 5.2 are
shown in Fig. 2 and have suggested that our algorithms are more efficient in comparison
with existing algorithms such as the methods in [11, 21, 28].

Example 5.3 Consider VI(C, f ) with constraint set C = {x ∈ Rm : ‖x‖2 – 100 ≤ 0}. Define
f (x) : Rm →R

m by f (x) = x + q, where q ∈ R
m.

It is easy to verify that f is 1-Lipschitz continuous and 1-strongly monotone mapping.
Therefore, the variational inequality (1.1) has a unique solution. For q = 0, the solution set
SOL(C, f ) = {0}. In our experiment, we take m = 100.

In this example, we select the parameters ρ = 0.5, δ = 0.1, λ–1 = 0.5 for Algorithm 1
and Algorithm 2; γ = 0.49, δ = 0.2, λ = 0.05 for Algorithm 3.1 in [21]; λ = 1, γ = 1 and
αk = 1

k+1 for Algorithm 4.1 [11]; θ = 0.25, σ = 0.7, γ = 0.6 and αk = 1
k+1 for Algorithm 3.3
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Figure 3 Comparison of the number of iterations of Algorithm 1 and Algorithm 2 with algorithms in
[11, 21, 28] for Example 5.3

[28]. We choose x0 = xT , x–1 = xT

‖xT ‖ , y–1 = (0, 0, . . . , 0)T as the initial points for Algorithm 1

and Algorithm 2; x1 = xT , x0 = xT

‖xT ‖ as the initial points for [21, 28]; x0 = xT as the initial
point for [11], where xT = (1, 1, . . . , 1)T . The numerical results of Example 5.3 are shown
in Fig. 3, where it can be seen that the behavior of Algorithm 1 and Algorithm 2 is better
than the algorithms in [11, 21, 28].
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