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Abstract
This paper is devoted to studying the approximate controllability for second-order
impulsive differential inclusions with infinite delay. For proving the main results, we
use the results related to the cosine and sine function of operators, Martelli’s fixed
point theorem, and the results when combined with the properties of differential
inclusions. Firstly, we prove the approximate controllability for second-order impulsive
differential inclusions with initial conditions. Then, we extend the discussion to the
second-order impulsive system with nonlocal conditions. Finally, we provide an
example for the illustration of the obtained theoretical results.
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1 Introduction
It is necessary for the analysis of impulsive differential systems to predict a system’s true
dynamics. The occurrence of sudden changes in the state of systems gives rise to the notion
of impulsive differential systems. Instantaneous forces (disturbances) or changing opera-
tional conditions cause these changes in status. Differential systems that handle impulsive
changes appear in a variety of applications, including mechanical and biological models
that are subjected to shocks, biological systems, population dynamics, and electromag-
netic wave radiation. Impulsive differential equations have gotten significant in physical
engineering, economics, population dynamics, and social sciences. A critical advance-
ment in the areas of impulsive theory exists, particularly in systems with fixed instants.
This is a powerful model for portraying unexpected transform at specific instants in large
numbers of the unbroken evolution process and permitting a superior perception of some
real circumstances under certain problems in applied science, and one can go through the
books [1, 26] and research articles [14, 18–22, 36, 45, 49, 50, 57]. Recently, in [6–13], the
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authors studied the differential systems with hemivariational inequalities by using vari-
ous fixed point theorems. In articles [21, 22], the authors discussed the existence of mild
solutions for the second-order impulsive differential system by using the sine and cosine
functions of operators, classical nonlocal conditions, piecewise continuous functions, and
fixed point theorems. In articles [18–20], the authors provided a detailed discussion on the
existence of the second-order differential systems by applying evolution operators, sine
and cosine functions of operators, theories on nonautonomous systems, and various fixed
point theorems.

In recent years, controllability has turned into a fascinating exploration in the fractional
dynamical system, and it is also the basic idea in recent mathematical control theory.
Control theory plays a vital role in applied mathematics, which engages the construction
and inspection of the control framework. For the last few years, in countless dimensional
spaces, the controllability of different types of nonlinear has been concentrated in many
exploration papers by employing a variety of approaches. A wide rundown of these con-
veyances may be found in [14, 29–31, 33, 38, 49, 51, 55]. Differential systems of the Sobolev
type are also popular in a variety of applications, such as liquid flow across fissured mate-
rials, thermodynamics, and shearing in second-order liquids. For more information, refer
to articles [3, 14, 16, 17, 24, 28, 34, 48, 49, 52, 54, 56].

In [14], the author proved the controllability of first-order impulsive functional differ-
ential systems with infinite delay by using Schauder’s fixed point theorem combined with
a strongly continuous operator semigroup. In [31], the authors discussed the approxi-
mate controllability of second-order evolution differential inclusions by using sine and
cosine functions of operators, multivalued maps, and Bohnenblust–Karlin’s fixed point
theorem. In [38], the authors discussed the approximate controllability of fractional non-
linear differential inclusions by applying the fractional calculus, multivalued maps, and
Bohnenblust–Karlin’s fixed point theorem. In [39–44], the authors discussed the exis-
tence, approximate controllability, and optimal control for first-order, second-order, and
fractional-order differential systems by applying semigroup theory, fractional calculus, co-
sine and sine functions of operators, and various fixed point theorems. In [48, 49, 51–
55], the authors discussed the exact and approximate controllability results for first-order,
second-order, fractional-order differential systems by applying semigroup theory, resol-
vent operators, multivalued maps, and various fixed point approaches.

This article mainly focuses on the approximate controllability for Sobolev-type impul-
sive delay differential inclusions of second order with the infinite delay of the form

d2

dς2

(
Mz(ς )

) ∈ Az(ς ) + G(ς , zς ) + Bu(ς ), ς ∈ V = [0, c],ς �= ςj, j = 1, 2, . . . , q, (1.1)

z(ς ) = α(ς ) ∈Pν , ς ∈ (–∞, 0], z′(0) = z1 ∈ Z , (1.2)

�z|ς=ςj = Jj
(
z
(
ς–

j
))

, j = 1, 2, . . . , q, (1.3)

�z′|ς=ςj = Jj
(
z
(
ς–

j
))

, j = 1, 2, . . . , q, (1.4)

where z(·) takes values in a Banach space Z . u(·) is given in L2(V , U), a Banach space of ad-
missible control functions, G : V ×Pν → 2Pν is a nonempty, bounded, closed, and convex
multivalued map. The histories zς : (–∞, 0] → Pν , zς (ε) = z(ς + ε), ε ≤ 0 are associated
with the phase space Pν . The linear operator B is bounded from a Banach space U into
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Z . Jj, Jj : Z → Z , �z|ς=ςj = z(ς+
j ) – z(ς–

j ), �z′|ς=ςj = z′(ς+
j ) – z′(ς–

j ) for all j = 1, 2, . . . , q.
0 = ς0 < ς1 < ς2 < · · · < ςj < ςk+1 = c. Here, z(ς+

j ), z(ς–
j ), z′(ς+

j ), and z′(ς–
j ) denote right and

left limits of z(ς ) at ς = ςj and z′(ς ) at ς = ςj respectively.
The main contributions of this study are as follows:
• Under the assumption that the associated linear system is approximately controllable,

we establish a set of adequate requirements for the approximate controllability of
second-order delay differential inclusions of Sobolev type.

• In the recent and vast literature on the exact controllability of abstract control
differential issues, the authors [37] pointed out an inaccuracy. However, in our
research, we merely define necessary conditions for the approximate controllability
results of a second-order differential system to prevent such inaccuracies.

• The cosine function of the operator is considered to be compact, and as a result, the
linear control system connected with the cosine function of the operator is only
approximately controllable.

• We show that the concept of exact controllability has no analogue in our result.
Finally, we show an example of a system that is not exactly controllable but is
approximately controllable to some extent.

• To the best of our knowledge, approximate controllability discussion for second-order
differential systems with infinite delay by using Martelli’s fixed point theorem has not
been studied in this connection. This gives the additional motivation for writing this
article.

We subdivide this paper into the accompanying sections: Some basic definitions are
recalled and preparation outcomes are presented in Sect. 2. Section 3 derives a sort of
adequate conditions proving the approximate controllability of system (1.1)–(1.4). The
extension of system (1.1)–(1.4) with nonlocal conditions can be found in Sect. 4. At last,
in Sect. 5, an example is presented for drawing the theory of our primary outcomes.

2 Preliminaries
This section recalls the necessary things to obtain the primary facts of our discussion.
Bp(z,Z ) denotes the closed ball with center z and radius p > 0 in Z . Now, the sine function
signified by (M (ς ))ς∈R is combined with the cosine function (N (ς ))ς∈R, which is defined
by

M (ς )z =
∫ ς

0
N (ψ)z dψ , z ∈ Z ,ς ∈R.

Now we define the constants P1, P2 such that ‖N (ς )‖ ≤ P1 and ‖M (ς )‖ ≤ P2 for each
ς ∈ V . [D(A)] signifies the domain of A equipped along with the norm ‖z‖A = ‖z‖ + ‖Az‖,
z ∈ D(A). Furthermore, E means the space composed by z ∈ Z for which N (·)z is a class
C1. Kisyński [25] demonstrated that space E provided with

‖z‖E = ‖z‖ + sup
0≤ς≤1

∥
∥AM (ς )z

∥
∥, z ∈ E,

is a Banach space. A group of linear operators

G(ς ) =

[
N (ς ) M (ς )

AM (ς ) N (ς )

]
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is strongly continuous on E ×Z which is generated by A =
[ 0 I

A 0

]
and defined on D(A)×E.

Accordingly, the linear operator AM (ς ) : E → Z is bounded and AM (ς )z → 0, ς →
0, for all z ∈ E. Moreover, if z : [0,∞) → Z is locally integrable, then z(ς ) =

∫ ς

0 M (ς –
ψ)z(ψ) dψ establishes an E-valued continuous function. This is an outcome of the way
that

∫ ς

0
G(ς – ψ)

[
0

z(ψ)

]

dψ =

[∫ ς

0 M (ς – ψ)z(ψ) dψ
∫ ς

0 N (ς – ψ)z(ψ) dψ

]

defines a function which is (E × Z )-valued continuous.
Consider the abstract Cauchy problem of a second-order differential system

⎧
⎨

⎩
z′′(ς ) = Az(ς ) + G(ς ), 0 ≤ ς ≤ c,

z(0) = z0, z′(0) = z1,
(2.1)

where G : [0, c] → Z is an integrable function, which can be examined in [46, 47]. Now
z(·) presented by

z(ς ) = N (ς )z0 + M (ς )z1 +
∫ ς

0
M (ς – ψ)G(ψ) dψ , 0 ≤ ς ≤ c, (2.2)

which is known as the mild solution of system (2.1). When z0 ∈ E, z(·) is continuously
differentiable and

z′(ς ) = AM (ς )z0 + N (ς )z1 +
∫ ς

0
N (ς – ψ)F(ψ) dψ . (2.3)

We now show that A : D(A) ⊂ Z → Z and M : D(A) ⊂ Z → Z satisfy the following
conditions discussed in [28]:

(E1) The linear operators A and M are closed.
(E2) D(M) ⊂ D(A) and M is bijective.
(E3) M–1 : Z → D(M) is continuous.

Additionally, because (E1) and (E2) M–1 are closed, by (E3) and applying closed graph
theorem, we get the boundedness of AM–1 : Z → Z . Define ‖M–1‖ = P̃m and ‖M‖ = P̂m.

By referring to [14, 57], we define a phase space as follows:
Consider the function g : (–∞, 0] → (0, +∞) which is continuous along j =

∫ 0
–∞ ν(ς ) dς <

+∞. For any c > 0,

P =
{
α : [–c, 0] → Z such that α(ς ) is bounded and measurable

}
,

along

‖α‖[–c,0] = sup
ψ∈[–c,0]

∥
∥α(ψ)

∥
∥, for all α ∈P .

Now, we define

Pν =
{
α : (–∞, 0] → Z such that for any b > 0,α|[–b,0] ∈P and
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∫ 0

–∞
ν(ψ)‖α‖[ψ ,0] dψ < +∞

}
.

Provided that Pν is endowed along

‖α‖Pν =
∫ 0

–∞
ν(ψ)‖α‖[ψ ,0] dψ for all α ∈Pν ,

then it is clear that (Pν ,‖ · ‖Pν ) is a Banach space.
Presently we discuss

P ′
ν =

{
z : (–∞, b] → Z such that z|V ∈ C(V ,Z ), z0 = α ∈Pν

}
.

Set ‖ · ‖′
g to be a seminorm in P ′

ν defined by

‖z‖′
ν = ‖α‖Pν + sup

{∥∥z(ψ)
∥∥ : ψ ∈ [0, c]

}
, z ∈P ′

ν .

In view of [15, 23], we present some fundamental ideas and facts related to multimaps.

Definition 2.1 ([15, 23]) The multimap K is said to be upper semicontinuous on Z pro-
vided that, for every z0 ∈ Z , K(z0) is a nonempty closed subset of Z and provided that,
for each open set H of Z including K(z0), there exists an open neighborhood V of z0 such
that K(V ) ⊆ H .

Definition 2.2 ([15, 23]) The multimap K is said to be completely continuous provided
that K(H) is relatively compact for every bounded subset H of Z . Provided that K is
completely continuous with nonempty values, at another timeK is upper semicontinuous,
if and only if K has a closed graph, that is, zn → z∗, vn → v∗, vn ∈Kzn imply z∗ ∈Kz∗. The
multimap K has a fixed point provided that there is z ∈ Z such that z ∈K(z).

Definition 2.3 ([15]) A multivalued function K mapping from V into BCC(Z ) is called
measurable provided that, for all z ∈ Z , the function χ mapping from V into Vcl defined
by

χ (ς ) = d
(
z,K(ς )

)
= inf

{‖z – y‖1 : y ∈K(ς )
} ∈ L1(V ,R).

An upper semicontinuous map K : Z → Z is said to be condensing if, for any bounded
subset Q ⊆ Z with j (Q) �= 0, we have

j
(
K(Q)

)
< j (Q).

In the above, j denotes the Kuratowski measure of noncompactness. For additional de-
tails, one can refer to [2].

We point out that the simplest example of a condensing map is a completely continuous
multivalued map.
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We need to provide the following appropriate operators and basic assumption on the
operators:

ℵc
0 =

∫ c

0
M–1M (c – ψ)BB∗M–1M ∗(c – ψ) dψ : Z → Z ,

R
(
δ,ℵc

0
)

=
(
δI + ℵc

0
)–1 : Z → Z ,

where B∗, M ∗(c) denote the adjoint of B and M (c) respectively, and it is easy to conclude
that the linear operator ℵc

0 is bounded.
To prove the approximate controllability of system (1.1)–(1.4), we provide the following

hypothesis:
H0 δR(δ,ℵc

0) → 0 as δ → 0+ in the strong operator topology.
In terms of [30], H0 is satisfied if and only if the linear system

d2

dς2

(
Mz(ς )

)
= Az(ς ) + (Bu)(ς ), ς ∈ [0, c], (2.4)

z(0) = z0, z′(0) = z1, (2.5)

is approximately controllable on [0, c].

Lemma 2.4 ([27, Lasota and Opial]) Assume that V is a compact real interval, the
nonempty set BCC(Z ) is a bounded, closed, and convex subset of Z , and the multimap G
satisfying G : V × Z → BCC(Z ) is measurable to ς for each fixed z ∈ Z , upper semicon-
tinuous to z for each ς ∈ V , z ∈ C the set

TG,z =
{

g ∈ L1(V ,Z ) : g(ς ) ∈ G
(
ς , z(ς )

)
,ς ∈ V

}

is nonempty. Assume that the linear operator G is continuous from L1(V ,Z ) to C , at an-
other time

G ◦ TG : C → BCC(C), z → (G ◦ TG)(z) = G (TG,z)

is closed in C × C .

Theorem 2.5 ([32]) Assume that Z is a Banach space and � : Z → BCC(Z ) is an upper
semicontinuous and condensing function. If

R = {z ∈ Z : λz ∈ �z for some ϕ > 1}

is bounded, then � has a fixed point.

3 Approximate controllability
By applying Martelli’s fixed point theorem, we discuss the primary results in this section.
We present the mild solution of system (1.1)–(1.4) as follows.
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Definition 3.1 A function z : (–∞, c] → Z is said to be a mild solution of system (1.1)–
(1.4) if z0 = α ∈ Pν , z′(0) = z1 ∈ Z on (–∞, 0], �z|ς=ςj = Jj(z(ς–

j )),�z′|ς=ςj = Jj(z(ς–
j )), j =

1, 2, . . . , q; z(·) to Jj (j = 0, 1, . . . , q) is continuous and

z(ς ) = M–1N (ς )Mα(0) + M–1M (ς )Mz1 +
∫ ς

0
M–1M (ς – ψ)g(ψ) dψ

+
∫ ς

0
M–1M (ς – ψ)Bu(ψ) dψ +

∑

0<ςj<c

M–1N (ς – ςj)Jj(zςj )

+
∑

0<ςj<c

M–1M (ς – ςj)Jj(zςj ), ς ∈ V ,

is satisfied.

To discuss the controllability performance and achieve the goal, we introduce the nec-
essary hypotheses as follows:

H1 The operator M (ς ), ς > 0 is compact.
H2 The function G : V ×Pν → BCC(Z ) is L1-Caratheodory and satisfies the following

conditions:
For each ς ∈ V , G(ς , ·) is upper semicontinuous; for each z ∈Pν , G(·, z) is measur-

able and z ∈Pν ,

TG,z =
{

g ∈ L1(V ,Z ) : g(ς ) ∈ G(ς , zς ) for almost everywhere ς ∈ V
}

,

is nonempty.
H3 There exists ρ : V → [0,∞) such that

∥
∥G(ς , zς )

∥
∥ = sup

{‖g‖ : g(ς ) ∈ G(ς , zς )
} ≤ ρ(ς )�

(‖z‖Pν

)
, ς ∈ V .

In the above, the continuous increasing function � maps from [0,∞) into itself.
H4 The functions Jj ∈ C(Z ,Z ), and there exists Pm : [0, +∞) → (0, +∞) to be continu-

ous nondecreasing such that

∣
∣Jj(z)

∣
∣ ≤ Pm

(|z|), j = 1, 2, . . . , q, z ∈ Z ,

and

lim inf
p→∞

Pm(p)
p

= τj < ∞, j = 1, 2, . . . , q.

H5 The function Jj ∈ C(Z ,Z ), and there exists Pm : [0, +∞) → (0, +∞) to be continuous
nondecreasing such that

∣∣Jj(z)
∣∣ ≤ Pm

(|z|), j = 1, 2, . . . , q, z ∈ Z

and

lim inf
p→∞

Pm(p)
p

= τj < ∞, j = 1, 2, . . . , q.
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H6 The following inequalities hold:

‖B‖ = PB, � = P̃mP̂mP1
∥
∥α(0)

∥
∥ + l̃PmP̂mP2‖z1‖,

�1 = P̃mP2, η =
1
δ

P̃2
mP2

2P2
Bc,

�2 = η

[

‖zc‖ + � + P̃mP1

q∑

j=1

Pm
(
l–1p′) + P̃mP2

q∑

j=1

Pm
(
l–1p′)

]

+ P̃mP1

q∑

j=1

Pm
(
l–1p′) + P̃mP2

q∑

j=1

Pm
(
l–1p′), � = l�1(1 + η).

We demonstrate that system (1.1)–(1.4) is approximately controllable if for all δ > 0 there
exists z(·) which is continuous such that

z(ς ) = M–1N (ς )Mα(0) + M–1M (ς )Mz1 +
∫ ς

0
M–1M (ς – ψ)g(ψ) dψ

+
∫ ς

0
M–1M (ς – ψ)Buδ(ψ , z) dψ +

∑

0<ςj<c

M–1N (ς – ςj)Jj(zςj )

+
∑

0<ςj<c

M–1M (ς – ςj)Jj(zςj ), g ∈ TG,z, (3.1)

uδ(ς , z) = B∗M–1M (c – ς )R
(
δ,ℵc

0
)
σ
(
z(·)), (3.2)

where

σ
(
z(·)) = zc – M–1N (ς )Mα(0) – M–1M (ς )Mz1 –

∫ ς

0
M–1M (ς – ψ)g(ψ) dψ

–
∑

0<ςj<c

M–1N (ς – ςj)Jj(zςj ) –
∑

0<ςj<c

M–1M (ς – ςj)Jj(zςj ).

Remark 3.2 ([27, 35])
(a) Provided that dimZ < ∞, then for all z ∈ Z , TG,z = ∅.
(b) TG,z is nonempty if and only if ψ(ς ) maps from V into R defined by

ψ(ς ) = inf
{‖g‖ : g ∈G(ς , zς )

} ∈ L1(V ,R).

Lemma 3.3 (See [14]) Assume z ∈P ′
ν , then for ς ∈ V , zς ∈Pν . Moreover,

j
∣∣z(ς )

∣∣ ≤ ‖zς‖Pν ≤ ‖α‖Pν + j sup
ψ∈[0,ς ]

∣∣z(ψ)
∣∣,

where j =
∫ 0

–∞ ν(ς ) dς < +∞.
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For any � > 0, we define
∧� : P ′

ν → 2P ′
ν by

∧� z the set of z ∈P ′
ν such that

z(ς ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α(ς ), ς ∈ (–∞, 0],

M–1N (ς )Mα(0) + M–1M (ς )Mz1 +
∫ ς

0 M–1M (ς – ψ)g(ψ) dψ

+
∫ ς

0 M–1M (ς – ψ)Buδ(ψ , z) dψ +
∑

0<ςj<c M–1N (ς – ςj)Jj(zςj )

+
∑

0<ςj<c M–1M (ς – ςj)Jj(zςj ), ς ∈ V ,

where g ∈ TG,z. To demonstrate
∧� has a fixed point, we conclude that it is the solution

of system (1.1)–(1.4). Obviously, zc = z(c) ∈ (
∧� z)(c), which means that u�(z,ς ) drives

(1.1)–(1.4) from z0 to zc in finite time c.
For α ∈Pν , we now define α̂ by

α̂(ς ) =

⎧
⎨

⎩
α(ς ), ς ∈ (–∞, 0],

M–1N (ς )Mα(0) + M–1M (ς )Mz1, ς ∈ V ,

then α̂ ∈ P ′
ν . Assume z(ς ) = x(ς ) + α̂(ς ), –∞ < ς ≤ c. We come to an end that x satisfies

x0 = 0 and

x(ς ) =
∫ ς

0
M–1M (ς – ψ)g(ψ) dψ +

∫ ς

0
M–1M (ς – ζ )BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1 –
∫ c

0
M–1M (c – ζ )g(ζ ) dζ

–
∑

0<ςj<c

M–1N (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

]
(ψ) dψ

+
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

+
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

, ς ∈ V .

If x satisfies the following:

z(ς ) = M–1N (ς )Mα(0) + M–1M (ς )Mz1 +
∫ ς

0
M–1M (ς – ψ)g(ψ) dψ

+
∫ ς

0
M–1M (ς – ψ)BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)
[

zc – M–1N (c)Mα(0)

– M–1M (c)Mz1 –
∫ c

0
M–1M (c – ζ )g(ζ ) dζ

–
∑

0<ςj<c

M–1N (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

]
(ψ) dψ
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+
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

+
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

, ς ∈ V ,

and z(ς ) = α(ς ), ς ∈ (–∞, 0].
Assume P ′′

ν = {x ∈P ′
ν : x0 = 0 ∈Pν}. For any x ∈P ′′

ν ,

‖x‖c =‖x0‖Pν + sup
{∣∣x(ψ)

∣∣ : 0 ≤ ψ ≤ c
}

= sup
{∣∣x(ψ)

∣∣ : 0 ≤ ψ ≤ c
}

,

hence (P ′′
ν ,‖·‖c) is a Banach space. Fix Bp = {x ∈P ′′

ν : |x|c ≤ p} for some p > 0, then Bp ⊆P ′′
ν

is uniformly bounded, and for x ∈ Bp, by referring to Lemma 3.3, we have

‖xς + α̂ς‖Pν ≤ ‖xς‖Pν + ‖α̂ς‖Pν

≤ l sup
ψ∈[0,ς ]

∣∣x(ψ)
∣∣ + ‖x0‖Pν + l sup

ψ∈[0,ς ]

∣∣̂α(ψ)
∣∣ + ‖α̂0‖Pν

≤ l
(
p + P̃mP1P̂m‖α(0)| + P̃mP2P̂m|z1|

)
+ ‖α̂0‖Pν = p′. (3.3)

Considering Lemma 3.3, for each ς ∈ V ,

∣
∣x(ς ) + α̂(ς )

∣
∣ ≤ l–1‖xς + α̂ς‖Pν .

For each ς ∈ V , x ∈ Bp, from (3.3), H5 and H6, we have

sup
ς∈V

∣
∣x(ς ) + α̂(ς )

∣
∣ ≤ l–1‖xς + α̂ς‖Pν ≤ l–1p′,

hence

∣
∣Jj

(
x
(
ς–

j
)

+ α̂
(
ς–

j
))∣∣ ≤ Pm(|(x

(
ς–

j
)

+ α̂
(
ς–

j
)|)

≤ Pm

(
sup
ς∈V

∣∣x(ς ) + α̂(ς )
∣∣
)

≤ Pm
(
l–1p′), j = 1, 2, . . . , q,

and

∣
∣Jj

(
x
(
ς–

j
)

+ α̂
(
ς–

j
))∣∣ ≤ Pm(|(x

(
ς–

j
)

+ α̂
(
ς–

j
)|)

≤ Pm

(
sup
ς∈V

∣∣x(ς ) + α̂(ς )
∣∣
)

≤ Pm
(
l–1p′), j = 1, 2, . . . , q.
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Define � : P ′′
ν →P ′′

ν provided that �(x) is the set of z ∈P ′′
ν such that

z(ς ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ς ∈ (–∞, 0],
∫ ς

0 M–1M (ς – ψ)g(ψ) dψ +
∫ ς

0 M–1M (ς – ζ )BB∗M–1M ∗(c – ς )R(δ,ℵc
0)

× [zc – M–1N (c)Mα(0) – M–1M (c)Mz1 –
∫ c

0 M–1M (c – ζ )g(ζ ) dζ

–
∑

0<ςj<c M–1N (c – ςj)Jj(x(ς–
j ) + α̂(ς–

j ))

–
∑

0<ςj<c M–1M (c – ςj)Jj(x(ς–
j ) + α̂(ς–

j ))](ψ) dψ

+
∑

0<ςj<ς M–1N (ς – ςj)Jj(x(ς–
j ) + α̂(ς–

j ))

+
∑

0<ςj<ς M–1M (ς – ςj)Jj(x(ς–
j ) + α̂(ς–

j )), ς ∈ V .

Clearly, a fixed point of �� exists if a fixed point of � exists. Hence, our focus is to verify
that a fixed point of � exists.

Lemma 3.4 If hypotheses H0–H5 are satisfied, then � : P ′′
ν →P ′′

ν is completely continuous
multivalued, upper semicontinuous with a convex closed value.

Proof To make things easier, we will divide our discussion into stages as follows:
Step 1. � is convex for each x ∈ Bp. Actually, if z1, z2 ∈ �(x), then there exist g1, g2 ∈ TG,z

such that, for all ς ∈ V , we have

z(ς ) =
∫ ς

0
M–1M (ς – ψ)gi(ψ) dψ +

∫ ς

0
M–1M (ς – ζ )BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1 –
∫ c

0
M–1M (c – ζ )gi(ζ ) dζ

–
∑

0<ςj<c

M–1N (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))]

(ψ) dψ

+
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

+
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

, i = 1, 2.

Let β ∈ [0, 1]. Then, for each ς ∈ V , we have

(
βz1 + (1 – β)z2

)
(ς )

=
∫ ς

0
M–1M (ς – ψ)

[
βg1(ψ) + (1 – β)g2(ψ)

]
dψ

+
∫ ς

0
M–1M (ς – ζ )BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1

–
∫ c

0
M–1M (c – ζ )

[
βg1(ζ ) + (1 – β)g2(ζ )

]
dζ
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–
∑

0<ςj<c

M–1N (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))]

(ψ) dψ

+
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

+
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

.

It is easy to verify that TG,z is convex and since G has convex values. Hence, βg1 +(1–β)g2 ∈
TG,z. Consequently,

βz1 + (1 – β)z2 ∈ �(x).

Step 2. On bounded sets of P ′′
ν , �(x) is bounded.

In fact, this is sufficient to prove that there exists � > 0 such that for all z(x) ∈ �(x), x ∈ Bp.
In the above

Bp =
{

x ∈P ′′
ν : |x|c ≤ p

}
,

one possesses ‖z‖ ≤ �.
Provided that z ∈ �(x), there exists g ∈ TG,z such that, for all ς ∈ V ,

z(ς ) =
∫ ς

0
M–1M (ς – ψ)g(ψ) dψ +

∫ ς

0
M–1M (ς – ψ)BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1 –
∫ c

0
M–1M (c – ζ )g(ζ ) dζ

–
∑

0<ςj<c

M–1N (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))]

(ψ) dψ

+
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

+
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

. (3.4)

By referring to (H2)–(H5) and (3.4), we get

∣∣(z)(ς )
∣∣ ≤

∣
∣∣∣

∫ ς

0
M–1M (ς – ψ)g(ψ) dψ

∣
∣∣∣ +

∣
∣∣∣

∫ ς

0
M–1M (ς – ψ)Buδ(ψ , x + α̂) dψ

∣
∣∣∣

+
∣
∣∣
∣

∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

∣
∣∣
∣

+
∣
∣∣∣

∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

∣
∣∣∣
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≤ P̃mP2

∫ ς

0
ρ(ψ)�

(‖xψ + α̂ψ‖Pν

)
dψ +

1
δ

P̃2
mP2

2P2
Bc

[

‖zc‖ + P̃mP̂mP1
∥∥α(0)

∥∥

+ P̃mP̂mP2‖z1‖

+ P̃mP2

∫ c

0
ρ(ζ )�

(‖xζ + α̂ζ‖Pν

)
dζ + P̃mP1

q∑

j=1

Pm
(∣∣xp(ς–

j
)

+ α̂
(
ς–

j
)∣∣)

+ P̃mP2

q∑

j=1

Pm
(∣∣xp(ς–

j
)

+ α̂
(
ς–

j
)∣∣)

]

+ P̃mP1

q∑

j=1

Pm
(∣∣xp(ς–

j
)

+ α̂
(
ς–

j
)∣∣)

+ P̃mP2

q∑

j=1

Pm
(∣∣xp(ς–

j
)

+ α̂
(
ς–

j
)∣∣)

≤ P̃mP2 sup
x∈[0,p′]

�(x)
∫ c

0
ρ(ψ) dψ

+
1
δ

P̃2
mP2

2P2
Bc

[

‖zc‖ + P̃mP̂mP1
∥
∥α(0)

∥
∥ + P̃mP̂mP2‖z1‖

+ P̃mP2 sup
x∈[0,p′]

�(x)
∫ c

0
ρ(ζ ) dζ + P̃mP1

q∑

j=1

Pm
(
l–1p′) + P̃mP2

q∑

j=1

Pm
(
l–1p′)

]

+ P̃mP1

q∑

j=1

Pm
(
l–1p′) + P̃mP2

q∑

j=1

Pm
(
l–1p′) = �.

As a result, for all z ∈ �(Bp), we get ‖z‖c ≤ �.
Step 3. �(Bp) is equicontinuous. In fact, assume that � > 0 is small, 0 < ω1 < ω2 ≤ c. For

each x ∈ Bp and z ∈ �1(x), there exists g ∈ TG,z such that, for each ς ∈ V , we have

∣∣z(ω2) – z(ω1)
∣∣

=
∣∣
∣∣

∫ ω2

ω1

M–1M (ω2 – ψ)g(ψ) dψ
∣∣
∣∣

+
∣∣
∣∣

∫ ω1

ω1–�
M–1[M (ω2 – ψ) – M (ω1 – ψ)

]
g(ψ) dψ

∣∣
∣∣

+
∣
∣∣
∣

∫ ω1–�

0
M–1[M (ω2 – ψ) – M (ω1 – ψ)

]
g(ψ) dψ

∣
∣∣
∣

+
∣∣
∣∣

∫ ω1–�

0
M–1[M (ω2 – ψ) – M (ω1 – ψ)

]
Bup

δ (ψ , x) dψ
∣∣
∣∣

+
∣∣
∣∣

∫ ω1

ω1–�
M–1[M (ω2 – ψ) – M (ω1 – ψ)

]
Bup

δ (ψ , x) dψ
∣∣
∣∣

+
∣∣
∣∣

∫ ω2

ω1

M–1M (ω2 – ψ)Bup
δ (ψ , x) dψ

∣∣
∣∣

+
∣
∣∣
∣

∑

0<ςj<ω1

M–1[N (ω2 – ςj) – N (ω1 – ςj)
]
Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

∣
∣∣
∣

+
∣
∣∣
∣

∑

ω1<ςj<ω2

M–1N (ω2 – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

∣
∣∣
∣
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+
∣∣
∣∣

∑

0<ςj<ω1

M–1[M (ω2 – ςj) – M (ω1 – ςj)
]
Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

∣∣
∣∣

+
∣∣
∣∣

∑

ω1<ςj<ω2

M–1M (ω2 – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

∣∣
∣∣

≤ P̃mP2

∫ ω2

ω1

ρ(ψ)�
(‖xψ + α̂ψ‖Pν

)
dψ

+ P̃m

∫ ω1

ω1–�

∥∥M (ω2 – ψ) – M (ω1 – ψ)
∥∥ρ(ψ)�

(‖xψ + α̂ψ‖Pν

)
dψ

+ P̃m

∫ ω1–�

0

∥∥M (ω2 – ψ) – M (ω1 – ψ)
∥∥ρ(ψ)�

(‖xψ + α̂ψ‖Pν

)
dψ

+ P̃mPB

∫ ω1–�

0

∥
∥M (ω2 – ψ) – M (ω1 – ψ)

∥
∥

×
[

‖zc‖ + P̃mP̂mP1
∥∥α(0)

∥∥ + P̃mP̂mP2‖z1‖

+ P̃mP2

∫ c

0
ρ(ζ )�

(‖xζ + α̂ζ‖Pν

)
dζ + P̃mP1

q∑

j=1

Pm
(
l–1p′)

+ P̃mP2

q∑

j=1

Pm
(
l–1p′)

]

(ψ) dψ

+ P̃mPB

∫ ω1

ω1–�

∥
∥M (ω2 – ψ) – M (ω1 – ψ)

∥
∥

×
[

‖zc‖ + P̃mP̂mP1
∥∥α(0)

∥∥ + P̃mP̂mP2‖z1‖

+ P̃mP2

∫ c

0
ρ(ζ )�

(‖xζ + α̂ζ‖Pν

)
dζ + P̃mP1

q∑

j=1

Pm
(
l–1p′)

+ P̃mP2

q∑

j=1

Pm
(
l–1p′)

]

(ψ) dψ

+ P̃mP2PB

∫ ω2

ω1

[

‖zc‖ + P̃mP̂mP1
∥
∥α(0)

∥
∥ + P̃mP̂mP2‖z1‖

+ P̃mP2

∫ c

0
ρ(ζ )�

(‖xζ + α̂ζ‖Pν

)
dζ + P̃mP1

q∑

j=1

Pm
(
l–1p′)

+ P̃mP2

q∑

j=1

Pm
(
l–1p′)

]

(ψ) dψ

+ P̃m
∑

0<ςj<ω1

∥
∥N (ω2 – ςj) – N (ω1 – ςj)

∥
∥Pm

(
l–1p′) + P̃mP1

∑

ω1<ςj<ω2

Pm
(
l–1p′)

+ P̃m
∑

0<ςj<ω1

∥
∥M (ω2 – ςj) – M (ω1 – ςj)

∥
∥Pm

(
l–1p′)

+ P̃mP2
∑

ω1<ςj<ω2

Pm
(
l–1p′). (3.5)
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Hence, for � > 0, we conclude that inequality (3.5) tends to zero as ς2 → ς1. Then, the
compactness of M (ς ) for ς > 0 gives continuity in uniform operator topology. Therefore,
� maps Bp into an equicontinuous family of functions.

Therefore, from Step 2 and Step 3, and utilizing Arzela–Ascoli theorem, we can deduce
that � is a compact multivalued function and, hence, a condensing map.

Step 4: � has a closed graph.
Assume xn → x∗ as n → ∞, zn ∈ �(xn) for each xn ∈ Bp, and zn → z∗ as n → ∞. Now,

we demonstrate z∗ ∈ �(x∗). Because zn ∈ �(xn), there exists gn ∈ TG,zn such that

zn(ς ) =
∫ ς

0
M–1M (ς – ψ)gn(ψ) dψ +

∫ ς

0
M–1M (ς – ψ)BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1 –
∫ c

0
M–1M (c – ψ)gn(ψ) dψ

–
∑

0<ςj<c

M–1N (c – ςj)Jj
(
xn

(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
xn

(
ς–

j
)

+ α̂
(
ς–

j
))]

(ψ) dψ

+
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
xn

(
ς–

j
)

+ α̂
(
ς–

j
))

+
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
xn

(
ς–

j
)

+ α̂
(
ς–

j
))

, ς ∈ V .

We must demonstrate that there exists g∗ ∈ TG,z∗ such that

z∗(ς ) =
∫ ς

0
M–1M (ς – ψ)g∗(ψ) dψ +

∫ ς

0
M–1M (ς – ψ)BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1 –
∫ c

0
M–1M (c – ψ)g∗(ψ) dψ

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
x∗

(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
x∗

(
ς–

j
)

+ α̂
(
ς–

j
))

]
(ψ) dψ

+
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
x∗

(
ς–

j
)

+ α̂
(
ς–

j
))

+
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
x∗

(
ς–

j
)

+ α̂
(
ς–

j
))

, ς ∈ V .

For every ς ∈ V , since G is continuous and from x� , we have

∥
∥∥
∥(zn(ς ) –

∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
xn

(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
xn

(
ς–

j
)

+ α̂
(
ς–

j
))
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–
∫ ς

0
M–1M (ς – ψ)BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1

–
∑

0<ςj<c

M–1N (c – ςj)Jj
(
xn

(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
xn

(
ς–

j
)

+ α̂
(
ς–

j
))

]
(ψ) dψ)

– (z∗(ς ) –
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
x∗

(
ς–

j
)

+ α̂
(
ς–

j
))

–
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
x∗

(
ς–

j
)

+ α̂
(
ς–

j
))

× –
∫ ς

0
M–1M (ς – ψ)BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1

–
∑

0<ςj<c

M–1N (c – ςj)Jj

(
x∗

(
ς–

j
)

+ α̂
(
ς–

j
)

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
x∗

(
ς–

j
)

+ α̂
(
ς–

j
))

]
(ψ) dψ

)∥
∥∥∥ → 0 as n → ∞.

Consider the continuous linear operator � : L1(V ,Z ) → C(V ,Z ),

(�g)(ς ) =
∫ ς

0
M–1M (ς – ψ)g(ψ) dψ

–
∫ ς

0
M–1M (ς – ψ)BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
(∫ c

0
M–1M (c – ζ )g(ζ ) dζ

)
dψ .

Therefore, by referring to Lemma 2.4, �◦TG is a closed graph operator. Additionally, from
�, we have

zn(ς ) – M–1N (ς )Mα(0) – M–1M (ς )Mz1 –
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
(xn)ςj + α̂ςj

)

–
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
(xn)ςj + α̂ςj

)

–
∫ ς

0
M–1M (ς – ψ)BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1

–
∑

0<ςj<c

M–1N (c – ςj)Jj
(
(xn)ςj + α̂ςj

)
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–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
(xn)ςj + α̂ςj

)]
(ψ) dψ ∈ �(TG,zn ).

Because xn → x∗, for some x∗ ∈ TG,z∗ , by referring to Lemma 2.4, we have

z∗(ς ) – M–1N (ς )Mα(0) – M–1M (ς )Mz1 –
∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
(x∗)ςj + α̂ςj

)

–
∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
(x∗)ςj + α̂ςj

)

–
∫ ς

0
M–1M (ς – ψ)BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)

×
[

zc – M–1N (c)Mα(0) – M–1M (c)Mz1

–
∑

0<ςj<c

M–1N (c – ςj)Jj
(
(x∗)ςj + α̂ςj

)

–
∑

0<ςj<c

M–1M (c – ςj)Jj
(
(x∗)ςj + α̂ςj

)]
(ψ) dψ ∈ �(TG,z∗ )

for some g∗ ∈ (TG,z∗ ). Hence, � has a closed graph. �

Therefore � is a completely continuous multivalued function with convex closed values
and upper semicontinuity. Now, by using Theorem 2.5, we determine a parameter λ > 1
and define the following auxiliary system:

d2

dς2

(
Mz(ς )

) ∈ Az(ς ) +
1
λ

G(ς , zς ) +
1
λ

Bu(ς ),

ς ∈ V = [0, c],ς �= ςj, j = 1, 2, . . . , q, (3.6)

z(ς ) = α(ς ) ∈Pν , ς ∈ (–∞, 0], z′(0) = z1 ∈ Z , (3.7)

�z|ς=ςj =
1
λ

Jj
(
z
(
ς–

j
))

, j = 1, 2, . . . , q, (3.8)

�z′|ς=ςj =
1
λ

Jj
(
z
(
ς–

j
))

, j = 1, 2, . . . , q. (3.9)

As a result, from Definition 3.1, the mild solution of system (3.6)–(3.9) is given by

z(ς ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(ς ), ς ∈ (–∞, 0],

M–1N (ς )Mα(0) + M–1M (ς )Mz1

+ 1
λ

∫ ς

0 M–1M (ς – ψ)g(ψ) dψ

+ 1
λ

∫ ς

0 M–1M (ς – ψ)Buδ(ψ , z) dψ

+
∑

0<ςj<c M–1N (ς – ςj)Jj(zςj )

+
∑

0<ςj<c M–1M (ς – ςj)Jj(zςj ), ς ∈ V ,

(3.10)

where g ∈ TG,z = {g ∈ L1(V ,Z ) : g(ς ) ∈ G(ς , zς ) for ς ∈ V }.
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Lemma 3.5 Consider (H1)–(H6) to be satisfied. Assume that z(ς ) is a mild solution of
system (3.9). In addition, there exists a priori bounds J > 0 such that ‖zς‖Pν ≤ J , ς ∈ V ,
where J depends only on μ and on the �(·), and ρ .

Proof By referring to system (3.10), we get

∣∣z(ς )
∣∣ ≤ ∣∣M–1N (ς )Mα(0)

∣∣ +
∣∣M–1M (ς )Mz1

∣∣ +
∣
∣∣∣

∫ ς

0
M–1M (ς – ψ)g(ψ) dψ

∣
∣∣∣

+
∣
∣∣
∣

∫ ς

0
M–1M (ς – ζ )BB∗M–1M ∗(c – ς )R

(
δ,ℵc

0
)
[

zc – M–1N (c)Mα(0)

– M–1M (c)Mz1 –
∫ c

0
M–1M (c – ζ )g(ζ ) dζ –

∑

0<ςj<c

M–1N (c – ςj)Jj
(
z
(
ς–

j
))

+
∑

0<ςj<c

M–1M (c – ςj)Jj
(
z
(
ς–

j
))

]
(ψ) dψ

∣
∣∣∣ +

∣
∣∣∣

∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
z
(
ς–

j
))

∣
∣∣∣

+
∣∣
∣∣

∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
z
(
ς–

j
))

)
∣∣
∣∣

≤ P̃mP̂mP1
∥
∥α(0)

∥
∥ + P̃mP̂mP2‖z1‖ + P̃mP2

∫ ς

0
ρ(ψ)�

(‖zψ‖Pν

)
dψ

+
1
δ

P̃2
mP2

2P2
Bc

[

‖zc‖ + P̃mP̂mP1
∥
∥α(0)

∥
∥ + P̃mP̂mP2‖z1‖

+ P̃mP2

∫ c

0
ρ(ζ )�

(‖zζ‖Pν

)
dζ

+ P̃mP1

q∑

j=1

Pm
(∣∣zp(ς–

j
)∣∣) + P̃mP2

q∑

j=1

Pm
(∣∣zp(ς–

j
)∣∣)

]

+ P̃mP1

q∑

j=1

Pm
(∣∣zp(ς–

j
)∣∣) + P̃mP2

q∑

j=1

Pm
(∣∣zp(ς–

j
)∣∣)

≤ � + �2 + �1

∫ ς

0
ρ(ψ)�

(‖zψ‖Pν

)
dψ + �1η

∫ c

0
ρ(ζ )�

(‖zζ‖Pν

)
dζ

≤ � + �2 + �1(1 + η)
∫ ς

0
ρ(ψ)�

(‖zψ‖Pν

)
dψ , ς ∈ V .

As a result, by Lemma 3.3, we have

‖zς‖Pν ≤ l sup
{∣∣z(ψ)

∣∣ : 0 ≤ ψ ≤ ς
}

+ ‖℘‖Pν

≤ l� + l�2 + l�1(1 + η)
∫ ς

0
ρ(ψ)�

(‖zψ‖Pν

)
dψ + ‖℘‖Pν .

Assume that v(ς ) = sup{‖zψ‖Pν : 0 ≤ ψ ≤ ς}. In addition, the function v(ς ) ∈ V is increas-
ing, then

v(ς ) ≤ l� + l�2 + l�1(1 + η)
∫ ς

0
ρ(ψ)�

(
v(ψ)

)
dψ + ‖℘‖Pν .
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Assume that v(ς ) is the right-hand side of the above inequality. Since we get

a = v(0) = l� + l�2 + ‖℘‖Pν , v(ς ) ≤ y(ς ), ς ∈ V ,

and

y′(ς ) ≤ �ρ(ς )�
(
v(ς )

)
, ς ∈ V .

Applying the nondecreasing properties of �, we have

y′(ς ) ≤ �ρ(ς )�
(
y(ς )

)
, ς ∈ V .

The above inequality implies, for all ς ∈ V , that

∫ y(ς )

a

dψ
�(ψ)

≤ �

∫ c

0
ρ(ψ) dψ ≤

∫ ∞

a

dψ
�(ψ)

. �

This implies that y(ς ) < ∞. Hence, there exists J > 0 such that y(ς ) ≤ J , ς ∈ V , and then

‖zς‖Bj ≤ v(ς ) ≤ y(ς ) ≤ J , ς ∈ V .

Here, J depends only on c, the functions � and ρ . The proof has been completed.

Theorem 3.6 If H0–H6 are satisfied. In addition, (1.1)–(1.4) admits at least one mild so-
lution on V .

Proof Suppose that � = {x ∈P ′′
ν : λx ∈ �x for some λ > 1}. Since for all x ∈ �, we have

x(ς ) =
1
λ

M–1N (ς )Mα(0) +
1
λ

M–1M (ς )Mz1 +
1
λ

∫ ς

0
M–1M (ς – ψ)g(ψ) dψ

+
1
λ

∫ ς

0
M–1M (ς – ζ )Bu(ψ) dψ +

1
λ

∑

0<ςj<ς

M–1N (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

+
1
λ

∑

0<ςj<ς

M–1M (ς – ςj)Jj
(
x
(
ς–

j
)

+ α̂
(
ς–

j
))

,

which implies z = x + α̂ is a mild solution of (3.10), that we demonstrated in Lemma 3.3
and Lemma 3.5

‖x‖ς = ‖x0‖Pν + sup
{∣∣x(ς )

∣∣ : 0 ≤ ς ≤ c
}

= sup
{∣∣x(ς )

∣∣ : 0 ≤ ς ≤ c
}

≤ sup
{∣∣z(ς )

∣∣ : 0 ≤ ς ≤ c
}

+ sup
{∣∣̂α(ς )

∣∣ : 0 ≤ ς ≤ c
}

≤ sup
{

l–1‖zς‖Pν : 0 ≤ ς ≤ c
}

+ sup
{∣∣M–1N (ς )Mα(0) + M–1M (ς )Mz1

∣
∣ : 0 ≤ ς ≤ c

}

≤ 7l–1J + P̃mP̂mP1
∣∣α(0)

∣∣ + P̃mP̂mP2|z1|,

which implies � is bounded on V .
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Accordingly, by referring to Theorem 2.5 and Lemma 3.4, then � has a fixed point x∗ ∈
P ′′

v . Assume that z(ς ) = x∗(ς ) + α̂(ς ), ς ∈ (–∞, c]. As a result, z is a fixed point of
∧� that

is a mild solution of system (1.1)–(1.4). �

Definition 3.7 The second-order Sobolev system (1.1)—(1.4) is said to be approximately
controllable on V provided that R(c, z0) = Z , where R(c, z0) = {zc(z0; u) : z(·) ∈ L2(V , U)} is
a mild solution of system (1.1)–(1.4).

Theorem 3.8 If hypotheses H0–H6 are satisfied. In addition, there exists N ∈ L1(V , [0,∞))
such that

sup
z∈Pν

∥
∥G(ς , z)

∥
∥ ≤ N(ς ),

for almost everywhere ς ∈ V , then system (1.1)–(1.4) is approximately controllable on V .

Proof Assume ẑδ(·) to be a fixed point of
∧� in Bp. In view of Theorem 3.4, any fixed point

of
∧� is a mild solution of system (1.1)–(1.4) under

ûς (ς ) = B∗M–1M ∗(c – ς )R
(
δ,ℵc

0
)
σ
(
ẑδ

)
,

and satisfies the following:

ẑδ(c) = zc + δR
(
δ,ℵc

0
)
σ
(
ẑδ

)
. (3.11)

Further, by using the facts about G and Dunford–Pettis theorem, we know that {gς (ψ)} is
weakly compact in L1(V ,Z ); accordingly, there is a subsequence {gδ(ψ)}, which converges
weakly to say g(ψ) in L1(V ,Z ). Define

w = zc – M–1N (ς )Mα(0) – M–1M (ς )Mz1 –
∫ ς

0
M–1M (ς – ψ)g(ψ) dψ

–
∫ ς

0
M–1M (ς – ψ)Bu(ψ) dψ –

∑

0<ςj<c

M–1N (ς – ςj)Jj(zςj )

–
∑

0<ςj<c

M–1M (ς – ςj)Jj(zςj ).

Now, we have

∥∥σ
(
ẑδ

)
– w

∥∥ =
∥
∥∥∥

∫ c

0
M–1M (c – ψ)

[
g
(
ψ , ẑδ(ψ)

)
– g(ψ)

]
dψ

∥
∥∥∥

≤ sup
ς∈V

∥
∥∥
∥

∫ ς

0
M–1M (ς – ψ)

[
g
(
ψ , ẑδ(ψ)

)
– g(ψ)

]
dψ

∥
∥∥
∥. (3.12)

By using the Ascoli–Arzela theorem of infinite-dimensional version, we prove l(·) →
∫ ·

0 M–1M (· – ψ)l(ψ) dψ : L1(V ,Z ) → C(V ,Z ) is compact. Thus, ‖σ (̂zδ) – w‖ → 0 as
δ → 0+. Additionally, from (3.11), we have

∥∥̂zδ(c) – zc
∥∥ ≤ ∥∥δR

(
δ,ℵc

0
)
(w)

∥∥ +
∥∥δR

(
δ,ℵc

0
)∥∥∥∥σ

(
ẑδ

)
– w

∥∥

≤ ∥∥δR
(
δ,ℵc

0
)
(w)

∥∥ +
∥∥σ

(
ẑδ

)
– w

∥∥.
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In view of H0 and from (3.12), ‖̂zδ(c) – zc‖ → 0 as δ → 0+, which shows the approximate
controllability of system (1.1)–(1.4). �

4 Nonlocal conditions
Byszewski has presented the concept of nonlocal conditions for the extension of problems
based on classical conditions. When comparing nonlocal initial conditions with the clas-
sical initial condition, which is more accurate to depict the nature marvels, since more
information is considered, along these lines we lessen the negative impacts initiated by
a potential incorrect single estimation taken toward the beginning time. The researchers
recently established the nonlocal fractional differential systems with or without delay by
referring to nondense domain, semigroup, cosine families, several fixed point techniques,
and measure noncompactness. It is a very useful discussion about differential systems,
including nonlocal conditions, and one can refer to [4, 5, 19–21, 50].

Assume the nonlocal impulsive differential systems of the following form:

d2

dς2

(
Mz(ς )

) ∈ Az(ς ) + G(ς , zς ) + Bu(ς ), ς ∈ V = [0, c],ς �= ςj, j = 1, 2, . . . , q, (4.1)

z(ς ) = α(ς ) + h(zς1 , zς2 , zς3 , . . . , zςn ) ∈Pν , ς ∈ (–∞, 0], z′(0) = z1 ∈ Z , (4.2)

�z|ς=ςj = Jj
(
z
(
ς–

j
))

, j = 1, 2, . . . , q, (4.3)

�z′|ς=ςj = Jj
(
z
(
ς–

j
))

, j = 1, 2, . . . , q, (4.4)

where 0 < ς1 < ς2 < ς3 < · · · < ςj ≤ c, h : P j
ν →Pν which satisfies the following hypothesis:

H7 h : Pq →P is continuous and Pj(h) > 0 such that

∥∥h(u1, u2, u3, . . . , uq) – h(v1, v2, v3, . . . , vq)
∥∥ ≤

q∑

j=1

Pj(h)‖u – v‖P ,

for each u, v ∈Pν and Nh = sup{‖h(uς1 , uς2 , uς3 , . . . , uςn )‖ : u ∈Pν}.

Definition 4.1 A function z : (–∞, c] → Z is said to be a mild solution of system (1.1)–
(1.4) provided that z0 = α ∈ Pν , z′(0) = z1 ∈ Z on (–∞, 0], �z|ς=ςj = Jj(z(ς–

j )),�z′|ς=ςj =
Jj(z(ς–

j )), j = 1, 2, . . . , q; z(·) to Jj (j = 0, 1, . . . , q) is continuous and

z(ς ) = M–1N (ς )M
[
α(0) + q(zς1 , zς2 , zς3 , . . . , zςn )(0)

]
+ M–1M (ς )Mz1

+
∫ ς

0
M–1M (ς – ψ)g(ψ) dψ +

∫ ς

0
M–1M (ς – ψ)Bu(ψ) dψ

+
∑

0<ςj<c

M–1N (ς – ςj)Jj(zςj ) +
∑

0<ςj<c

M–1M (ς – ςj)Jj(zςj ), ς ∈ V ,

is satisfied.

Theorem 4.2 If hypotheses H0–H7 are satisfied, then system (4.1)–(4.4) is approximately
controllable on V .
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Remark 4.3 Many integral and differential equations related to integrals and derivatives
of integer order have proven to be a powerful tool in describing various phenomena of en-
gineering systems, advancement of the calculus of variations and optimal control to frac-
tional dynamic systems, bioengineering, biomedical applications, image and signal pro-
cessing, and other fields in recent years. Inspired by the above theory and the research
articles [16, 17, 54, 56], one can extend the current study to the second-order integrod-
ifferential systems and Volterra–Fredholm integrodifferential systems with impulses by
using the way of the approach presented in this article.

5 An example
Consider the second-order Sobolev-type impulsive differential control system of the fol-
lowing form:

∂2

∂ς2

[
y(ς , z) – yzz(ς , z)

] ∈ yzz(ς , z) + μ̂(ς , z) + Ĝ
(
ς , y(ς – p, z)

)
, ς ∈ [0, c], p > 0, (5.1)

y(ς , 0) = y(ς ,π ) = 0, ς ∈ [0, c], (5.2)

y(ς , z) = α(ς , z), z ∈ [0,π ],ς ∈ (–∞, 0],
∂

∂ς
y(0, z) = y1, z ∈ [0,π ], (5.3)

y
(
ς+

j , z
)

– y
(
ς–

j , z
)

=
∫ ςj

–∞
γj(ςj – ψ)y(ψ , z) dψ , j = 1, 2, . . . , q, (5.4)

y′(ς+
j , z

)
– y′(ς–

j , z
)

=
∫ ςj

–∞
γ̃k(ςj – ψ)y(ψ , z) dψ , j = 1, 2, . . . , q. (5.5)

To change this framework into abstract structure (1.1)–(1.4), assume Z = L2([0,π ]) and
let A : D(A) ⊂ Z → Z , M : D(M) ⊂ Z → Z given by Av = v′′ and Mv = v – A, where
D(A) and D(M) is given by {v ∈ Z : v, v′ are absolutely continuous, v(0) = v(π ) = 0}. Addi-
tionally, A and M can be given by

Av =
∞∑

j=1

j2〈v, yj〉yj,

w ∈ D(A),

Mv =
∞∑

j=1

(
1 + j2)〈v, yj〉yj,

v ∈ D(M), where yj(z) =
√

2
π

sin(jz), j = 1, 2, 3, . . . , is the orthonormal of vectors of A. Addi-
tionally, for y ∈ Z , we have

M–1y =
∞∑

j=1

1
(1 + j2)

〈v, yj〉yj,

AM–1y =
∞∑

j=1

j2

(1 + j2)
〈v, yj〉yj,

N (ς )y =
∞∑

j=1

cos jς〈v, yj〉yj,
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and

M (ς )y =
∞∑

j=1

sin jς
j

〈v, yj〉yj.

Phase space Pν along the norm is given by

‖ϕ‖Pν =
∫ 0

–∞
g(ψ) sup

ψ≤θ≤0

(∥∥α(θ )
∥
∥)

L2 dψ ,

where g(ψ) = e2ψ , ψ < 0, and j =
∫ 0

–∞ g(ψ) dψ = 1
2 .

Consider y(ς )(z) = y(ς , z) and define G(ς , y)(·) = Ĝ(ς , y(·)). B : U → Z is interpreted as
Bu(ς )(z) = μ̂(ς , z). Hence, AM–1 is compact and bounded with ‖M–1‖ ≤ 1 and ‖N (ς )‖ =
‖M (ς )‖ ≤ 1 for all ς ∈R, and M (ς ) is compact for all ς ∈ R.

Next, we verify hypotheses H1–H6 for system (5.1)–(5.5) one by one.
Verification of H1:
The operator N (ς , 0),ς > 0 is compact. Thus, clearly, ‖N (ς ,ψ)‖2 ≤ 1 and

‖M (ς ,ψ)‖2 ≤ 1 for ς ∈ R and M (ς ,ψ) is compact for all ς ∈R.
From the above conditions, hypothesis H1 is satisfied.
Verification of H2 and H3:
Set

G(ς , y) = Ĝ
(
ς , y(ς – p, z)

)
=

{
G ∈ Z ; g1

(
ς , y(ς – p, z)

) ≤ G ≤ g2
(
ς , y(ς – p, z)

)}
, (5.6)

where g1, g2 : V × Pν → BCC(Z ). We assume that, for each ς ∈ V , g1 is lower semi-
continuous and g2 is upper semi-continuous. Assume that p : V → [0,∞) is an integrable
function and θ2 : [0,∞) → (0,∞) is a continuous increasing function such that

max

{∫ ς

0

∥∥g1
(
ς , y(ς – p, z)

)∥∥,
∫ ς

0

∥∥g2
(
ς , y(ς – p, z)

)∥∥
}

≤ p(ς )θ2
(∥∥y(ς – p, z)

∥
∥
Pν

)
. (5.7)

From equations (5.6) and (5.7), Ĝ satisfies conditions H2 and H3.
Verification of H4 and H5 :
From system (5.1)–(5.5),

�y|ς=ςj = �y(ςj)(z) =
∫ ςj

–∞
γj(ςj – ψ)y(ψ , z) dψ , j = 1, 2, . . . , q,

and we consider the function Jj : Z → Z is given by

Jj(yςj ) =
∫ ςj

–∞
γj(ςj – ψ)y(ψ , z) dψ ,

∥
∥Jj(yςj )

∥
∥ ≤ Pm.

(5.8)

Similarly,

�y′|ς=ςj = �y′(ςj)(z) =
∫ ςj

–∞
γ̃j(ςj – ψ)y(ψ , z) dψ , j = 1, 2, . . . , q,
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and we consider the function J j : Z → Z is given by

J j
(
y′
ςj

)
=

∫ ςj

–∞
γ̃j(ςj – ψ)y(ψ , z) dψ ,

∥
∥J j

(
y′
ςj

)∥∥ ≤ Pm.
(5.9)

From equations (5.8) and (5.9), we observe that hypotheses H4 and H5 are satisfied. By
using hypotheses H1–H5 and Lemma 3.5, we realize that hypothesis H6 is also satisfied.

Clearly, all the hypotheses of Theorem 3.8 and Lemma 3.5 are satisfied. Hence, by the
conclusion of Theorem 3.8 and Lemma 3.5, it follows that system (5.1)–(5.5) has a solution,
and we conclude that system (5.1)–(5.5) is approximately controllable.

6 Conclusion
This work focused on the approximate controllability of second-order impulsive delay dif-
ferential inclusions. Our key tasks are dictated by the usage of the outcomes, facts related
to operators’ cosine and sine functions, Martelli’s fixed point theorem, and their results
when paired with the features of differential inclusions. Finally, we proposed an illustra-
tion of the hypothesis that had been proven. In the future, we will focus our study on the
existence and approximate controllability of second-order Sobolev-type neutral stochastic
differential inclusions by employing Martelli’s fixed point theorem.
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