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Abstract
In this paper, we present new iterative techniques for approximating the solution of
an equilibrium problem involving a pseudomonotone and a Lipschitz-type bifunction
in Hilbert spaces. These techniques consist of two computing steps of a
proximal-type mapping with an inertial term. Improved simplified stepsize rules that
do not involve line search are investigated, allowing the method to be implemented
more quickly without knowing the Lipschitz-type constants of a bifunction. The
iterative sequences converge weakly on a specific solution to the problem when the
control parameter conditions are properly specified. The numerical tests were carried
out, and the results demonstrated the applicability and quick convergence of
innovative approaches over earlier ones.
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1 Introduction
Let H be a real Hilbert space and K be a nonempty closed convex subset of H. The
main objective here is to study different iterative methods for solving equilibrium prob-
lems ((EP), to put it short) involving pseudomonotone and a Lipschitz-type bifunction.
Let F : H × H → R be a bifunction with F (u1, u1) = 0, for each u1 ∈ K. An equilibrium
problem for F on K is described in the following manner: Find ð

∗ ∈K such that

F
(
ð

∗, u1
) ≥ 0, ∀u1 ∈K. (EP)

Let us denote the solution set of a problem (EP) as Sol(F ,K), and we will assume in the
following text that this solution set is nonempty. The numerical evaluation of the equilib-
rium problem under the following conditions is the focus of this study. We will assume
that the following conditions have been met:

(F1) The solution set of a problem (EP) is denoted by Sol(F ,K), and it is nonempty;
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(F2) The bifunction F is said to be pseudomonotone [5, 7], i.e.,

F (u1, u2) ≥ 0 �⇒ F (u2, u1) ≤ 0, ∀u1, u2 ∈K;

(F3) The bifunction F is said to be Lipschitz-type continuous [18] on K if there exist two
constants k1, k2 > 0, such that

F (u1, u3) ≤ F (u1, u2) + F (u2, u3) + k1‖u1 – u2‖2

+ k2‖u2 – u3‖2, ∀u1, u2, u3 ∈K;

(F4) For any sequence {vk} ⊂K satisfying vk ⇀ v∗, then the following inequality holds

lim sup
k→+∞

F (vk , u1) ≤F
(
v∗, u1

)
, ∀u1 ∈K;

(F5) F (u1, ·) is convex and subdifferentiable on H for each fixed u1 ∈H.
The equilibrium problem is of tremendous interest among researchers these days since

it connects numerous mathematical problems, including vector and scalar minimization
problems, fixed point problems, variational inequalities, the saddle point problems, the
complementarity problems, and Nash equilibrium problems in non-cooperative games
(for more details, see [6, 7, 12, 15, 20]). It also has various applications in economics [11],
the dynamics of offer and demand [1] and continues to utilize the theoretical framework of
non-cooperative games and Nash’s equilibrium models [21, 22]. The phrase “equilibrium
problem” in its precise design was first introduced in the literature in 1992 by Muu and
Oettli [20] and since then has been studied by Blum and Oettli [7]. More precisely, we
consider two applications for the problem (EP). (i) The variational inequality problem for
A : K →H is stated as follows: Find ð

∗ ∈K such that

〈
A

(
ð

∗), u1 – ð
∗〉 ≥ 0, ∀u1 ∈K. (VIP)

Let us define a bifunction F define as follows:

F (u1, u2) :=
〈
A(u1), u2 – u1

〉
, ∀u1, u2 ∈K. (1.1)

Then, problem (EP) is converted into the problem of variational inequalities defined in
(VIP), and the Lipschitz constants of the mapping A are L = 2k1 = 2k2. (ii) Let a mapping
B : K →K is said to κ-strict pseudocontraction [8] with κ ∈ (0, 1) such that

‖Bu1 – Bu2‖2 ≤ ‖u1 – u2‖2 + κ
∥∥(u1 – Bu1) – (u2 – Bu2)

∥∥2, ∀u1, u2 ∈K. (1.2)

A fixed point problem (FPP) for B : K → K is to find ð
∗ ∈ K such that B(ð∗) = ð

∗. Let us
define a bifunction F as follows:

F (u1, u2) = 〈u1 – Bu1, u2 – u1〉, ∀u1, u2 ∈K. (1.3)

It can be easily seen in [35] that the expression (1.3) satisfies the conditions F1-F5 as well
as the value of Lipschitz constants are k1 = k2 = 3–2κ

2–2κ
.
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The extragradient method developed by Lyashko and Semenov [17] is one of the use-
ful methods to solve equilibrium problems. The following is how this approach was con-
structed. Take an arbitrary initial points u0, v0 ∈H; using the current iteration uk , take the
next iteration as continues to follow:

⎧
⎪⎪⎨

⎪⎪⎩

u0, v0 ∈K,

uk+1 = arg minv∈K{κF (vk , v) + 1
2‖uk – v‖2},

vk+1 = arg minv∈K{κF (vk , v) + 1
2‖uk+1 – v‖2},

(1.4)

where 0 < κ < 1
2k2+4k1

and k1, k2 are two Lipschitz-type constants. The iterative techniques
in [17] are also acknowledged as Popov’s extragradient method because of Popov’s first
contribution in the work [27] to solve saddle point problems. Recently, Yang [36] combined
Popov’s extragradient method (1.4) with a non-monotonic stepsize rule. This method re-
quires the solution of one optimization program on K as well as a minimization problem
on a half-space with a non-monotonic stepsize rule.

The main goal is to develop inertial-type methods in the case of [36] that will be designed
to increase the rate of convergence of the iterative sequence. Such methods have already
been established as a result of the oscillator equation, damping, and conservative force
restoration. This second-order dynamical scheme represents a heavy friction ball, which
Polyak first viewed in [26]. The main characteristic of this method is that the next iteration
is composed of two previous iterations. In this context, numerical results indicate that
inertial terms increase the method’s efficiency in terms of the number of iterations and
elapsed time. In recent years, such methods have been extensively studied for specific
types of equilibrium problems [2, 4, 13, 14, 19, 29–33] and others in [9, 16, 23, 34, 37–40].

As a result, a natural question arises:

Is it possible to develop new inertial-like weakly convergent extragradient-type meth-
ods for solving equilibrium problems using monotone and non-monotone stepsize
rules?

In our study, we provide a positive answer to this question, namely, the gradient ap-
proach still generates a weak convergence sequence when solving equilibrium problems
involving pseudomonotone bifunctions using a monotone and nonmonotone variable
stepsize rule. Inspired by the work by Censor et al. [10] and Yang [36], we will describe
new inertial extragradient-like approaches to solving the problem (EP) in the setting of
real Hilbert spaces.

Our important contributions to this work are as follows: (i) We build an inertial sub-
gradient extragradient method to solving equilibrium problems in Hilbert spaces using a
monotone variable stepsize rule and show that the resulting sequence is weakly conver-
gent. (ii) To solve equilibrium problems, we develop a new inertial subgradient extragra-
dient strategy that makes use of a variable nonmonotone stepsize rule that is independent
of the Lipschitz constants. (iii) Some conclusions are drawn in order to address various
types of equilibrium problems in real Hilbert space. (iv) We provide more mathematical
demonstrations of the proposed approaches for the verification of theoretical findings and
compare them to the results in Algorithm 3.1 in [36]. The mathematical findings suggest
that the proposed methods are advantageous and perform better than the already existed.
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The paper is structured as follows: In Sect. 2, preliminary results were presented.
Section 3 gives all new methods and their convergence theorems. Finally, Sect. 4 gives
certain numerical results to highlight the practical effectiveness of the proposed ap-
proaches.

2 Preliminaries
In this section, we will go over some elementary identities as well as key lemmas and def-
initions. A metric projection PK(u1) of u1 ∈H is defined as follows:

PK(u1) = arg min
{‖u1 – u2‖ : u2 ∈K

}
.

Lemma 2.1 ([3]) Let PK : H →K be a metric projection. Then
(i)

∥
∥u1 – PK(u2)

∥
∥2 +

∥
∥PK(u2) – u2

∥
∥2 ≤ ‖u1 – u2‖2, u1 ∈K, u2 ∈H;

(ii) u3 = PK(u1) if and only if

〈u1 – u3, u2 – u3〉 ≤ 0, ∀u2 ∈K;

(iii)

∥
∥u1 – PK(u1)

∥
∥ ≤ ‖u1 – u2‖, u2 ∈K, u1 ∈H.

Lemma 2.2 ([3]) For any u1, u2 ∈ H and � ∈ R. Then the following conditions are satis-
fied:

(i)

∥∥�u1 + (1 – �)u2
∥∥2 = �‖u1‖2 + (1 – �)‖u2‖2 – �(1 – �)‖u1 – u2‖2;

(ii)

‖u1 + u2‖2 ≤ ‖u1‖2 + 2〈u2, u1 + u2〉.

A normal cone of K at u1 ∈K is defined as follows:

NK(u1) =
{

u3 ∈H : 〈u3, u2 – u1〉 ≤ 0,∀u2 ∈K
}

.

Let � : K →R be a convex function and subdifferential of � at u1 ∈K is defined by

∂�(u1) =
{

u3 ∈H : �(u2) – �(u1) ≥ 〈u3, u2 – u1〉,∀u2 ∈K
}

.

Lemma 2.3 ([25], Proposition 3.61) Let � : K →R∪ {+∞} be a proper, convex and lower
semicontinuous function on H. Assume either that � is continuous at some point of K, or
that there is an interior point of K where � is finite. An element u ∈ K is a minimizer of a
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function � if and only if

0 ∈ ∂�(u) + NK(u),

while ∂�(u) represent subdifferential of � at u ∈ K, and NK(u) is the normal cone of K
at u.

Lemma 2.4 ([2]) Suppose that bk , ck, and dk are three sequences in [0, +∞) that meet the
inequality below

bk+1 ≤ bk + dk(bk – bk–1) + ck ,

for all k ≥ 1 and
∑+∞

k=1 ck < +∞. Thus, there exists number d satisfying 0 ≤ dk ≤ d < 1,
∀k ∈ N. Then

(i)
∑+∞

k=1[bk – bk–1]+ < +∞, while [t]+ := max{t, 0};
(ii) there exists b∗ ∈ [0, +∞) such that limk→+∞ bk = b∗.

Lemma 2.5 ([24]) Let K be a nonempty subset of H and {uk} be a sequence in H satisfying
(i) for each u ∈K, limk→∞ ‖uk – u‖ exists;

(ii) each weak sequentially cluster point of {uk} inside K.
Then, sequence {uk} weakly converges to an element in K.

3 Main results
In this section, we provide a numerical iterative method that comprises two strong con-
vex optimization problems linked by an inertial term to accelerate the rate of convergence
of an iterative sequence. We offer the following method for solving equilibrium prob-
lems.

Lemma 3.1 From Algorithm 1, can derive the following useful inequality

κkF (vk , v) – κkF (vk , uk+1) ≥ kג〉 – uk+1, v – uk+1〉, ∀v ∈Hk .

Proof Due to the use of Lemma 2.3, we have

0 ∈ ∂2

{
κkF (vk , ·) +

1
2
kג‖ – ·‖2

}
(uk+1) + NHk (uk+1).

Thus, υ ∈ ∂F (vk , uk+1), and there exists a vector υ ∈ NHk (uk+1) such that

κkυ + uk+1 – kג + υ = 0.

As a result, we have

kג〉 – uk+1, v – uk+1〉 = κk〈υ, v – uk+1〉 + 〈υ, v – uk+1〉, ∀v ∈Hk .

Due to υ ∈ NHk (uk+1), ensure that 〈υ, v – uk+1〉 ≤ 0 for all v ∈Hk . Thus, we have

kג〉 – uk+1, v – uk+1〉 ≤ κk〈υ, v – uk+1〉, ∀v ∈Hk . (3.1)
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Since υ ∈ ∂F (vk , uk+1), we have

F (vk , v) – F (vk , uk+1) ≥ 〈υ, v – uk+1〉, ∀v ∈H. (3.2)

Combining the formulas (3.1) and (3.2), we obtain

κkF (vk , v) – κkF (vk , uk+1) ≥ kג〉 – uk+1, v – uk+1〉, ∀v ∈Hk . �

Algorithm 1 Explicit Popov’s subgradient method using the monotone stepsize rule
STEP 0: Select κ0 = κ1 > 0, u–1, u0, v0 ∈ H, � ∈ (0, 1), θ ∈ (0, 2 –

√
2) and αk to be a de-

creasing sequence such that 0 ≤ α ≤ αk ≤ α <
√

5 – 2. First, we have to compute

u1 = arg min
v∈K

{
κ0F (v0, v) +

1
2
0ג‖ – v‖2

}
,

v1 = arg min
v∈K

{
κ1F (v0, v) +

1
2
1ג‖ – v‖2

}
,

where 0ג = u0 + α0(u0 – u–1) and 1ג = u1 + α1(u1 – u0).
STEP 1: Given uk–1, vk–1, uk , vk . Firstly choose ωk–1 ∈ ∂2F (vk–1, vk) satisfying kג –κkωk–1 –
vk ∈ NK(vk) and generate a half-space

Hk =
{

z ∈H : kג〉 – κkωk–1 – vk , z – vk〉 ≤ 0
}

.

Compute

uk+1 = arg min
v∈Hk

{
κkF (vk , v) +

1
2
kג‖ – v‖2

}
,

where kג = uk + αk(uk – uk–1).
STEP 2: Compute

κk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{κk , (2–
√

2–θ ) 1
2 �‖vk–1–vk‖2+(2–

√
2–θ )�‖uk+1–vk‖2

2[F (vk–1,uk+1)–F (vk–1,vk )–F (vk ,uk+1)] },
if F (vk–1, uk+1) – F (vk–1, vk) – F (vk , uk+1) > 0,

κk , otherwise.

(3.3)

STEP 3: Compute

vk+1 = arg min
v∈K

{
κk+1F (vk , v) +

1
2
k+1ג‖ – v‖2

}
,

where k+1ג = uk+1 + αk+1(uk+1 – uk).
STEP 4: If uk+1 = kג and vk = vk–1, then complete the computation. Otherwise, set k := k +1
and go back STEP 1.
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Lemma 3.2 From Algorithm 1, can derive the following useful inequality

κkF (vk–1, v) – κkF (vk–1, vk) ≥ kג〉 – vk , v – vk〉, ∀v ∈K.

Proof The proof is identical to the proof of Lemma 3.1. By substituting v = uk+1, we have

κk
{
F (vk–1, uk+1) – F (vk–1, vk)

} ≥ kג〉 – vk , uk+1 – vk〉. (3.4)
�

Lemma 3.3 Suppose that F : K×K → R satisfies the conditions (F1)–(F5). For any ð∗ ∈
Sol(F ,K), we have

∥∥uk+1 – ð
∗∥∥2 ≤ kג∥∥ – ð

∗∥∥2 –
(

1 –
(2 –

√
2 – θ )�κk

κk+1

)
kג‖ – vk‖2

–
(

1 –
(2 –

√
2 – θ )�κk

κk+1

)
‖uk+1 – vk‖2

+
(2 –

√
2 – θ )�κk

κk+1
kג‖ – vk–1‖2.

Proof By letting v = ð
∗ in Lemma 3.1, we have

κkF
(
vk ,ð∗) – κkF (vk , uk+1) ≥ 〈

kג – uk+1,ð∗ – uk+1
〉
. (3.5)

Using condition (F2), we obtain

〈
kג – uk+1, uk+1 – ð

∗〉 ≥ κkF (vk , uk+1). (3.6)

From expression (3.3), we obtain

F (vk–1, uk+1)–F (vk–1, vk)–F (vk , uk+1) ≤ (2 –
√

2 – θ )�( 1
2‖vk–1 – vk‖2 + ‖uk+1 – vk‖2)

2κk+1

with κk > 0 gives that

κkF (vk , uk+1) ≥ κkF (vk–1, uk+1) – κkF (vk–1, vk)

–
(2 –

√
2 – θ )κk�( 1

2‖vk–1 – vk‖2 + ‖uk+1 – vk‖2)
2κk+1

. (3.7)

Combining expressions (3.6) and (3.7), we obtain

〈
kג – uk+1, uk+1 – ð

∗〉 ≥ κk
{
F (vk–1, uk+1) – F (vk–1, vk)

}

–
(2 –

√
2 – θ )κk�( 1

2‖vk–1 – vk‖2 + ‖uk+1 – vk‖2)
2κk+1

. (3.8)

Using expression (3.4), we have

κk
{
F (vk–1, uk+1) – F (vk–1, vk)

} ≥ kג〉 – vk , uk+1 – vk〉. (3.9)
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Combining expressions (3.8) and (3.9), we have

〈
kג – uk+1, uk+1 – ð

∗〉 ≥ kג〉 – vk , uk+1 – vk〉

–
(2 –

√
2 – θ )κk�( 1

2‖vk–1 – vk‖2 + ‖uk+1 – vk‖2)
2κk+1

. (3.10)

The following facts are available to us:

2
〈
kג – uk+1, uk+1 – ð

∗〉 =
∥
kג∥ – ð

∗∥∥2 – ‖uk+1 – k‖2ג –
∥
∥uk+1 – ð

∗∥∥2,

2〈vk – kג , vk – uk+1〉 = kג‖ – vk‖2 + ‖uk+1 – vk‖2 – kג‖ – uk+1‖2.

As a result, we have

∥
∥uk+1 – ð

∗∥∥2 ≤ ∥
kג∥ – ð

∗∥∥2 – kג‖ – vk‖2 – ‖uk+1 – vk‖2

+
(2 –

√
2 – θ )κk�( 1

2‖vk–1 – vk‖2 + ‖uk+1 – vk‖2)
κk+1

. (3.11)

There are additional inequities to consider

‖vk–1 – vk‖2 ≤ (‖vk–1 – ‖kג + kג‖ – vk‖
)2 ≤ 2‖vk–1 – k‖2ג + kג‖2 – vk‖2.

The above expressions implies that

∥
∥uk+1 – ð

∗∥∥2 ≤ ∥
kג∥ – ð

∗∥∥2 – kג‖ – vk‖2 – ‖uk+1 – vk‖2

+
(2 –

√
2 – θ )κk�(‖vk–1 – k‖2ג + kג‖ – vk‖2 + ‖uk+1 – vk‖2)

κk+1
. (3.12)

Finally, the previous expression implies that

∥
∥uk+1 – ð

∗∥∥2

≤ kג∥∥ – ð
∗∥∥2 –

(
1 –

(2 –
√

2 – θ )�κk

κk+1

)
kג‖ – vk‖2

–
(

1 –
(2 –

√
2 – θ )�κk

κk+1

)
‖uk+1 – vk‖2 +

(2 –
√

2 – θ )�κk

κk+1
kג‖ – vk–1‖2. (3.13)

�

Let us now establish the main convergence result for the Algorithm 1.

Theorem 3.4 Let {uk} be a sequence generated by Algorithm 1 and

0 < � <
1
2 – 2α – 1

2α2

(2 –
√

2 – θ )(1 – 1
2α + α2 + 1

2α3)
and 0 ≤ αk ≤ α <

√
5 – 2.

Then, the sequence {uk} weakly converges to ð
∗ ∈ Sol(F ,K).
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Proof Adding both sides (2–
√

2–θ )�κk+1
κk+2

k+1ג‖ – vk‖2 in Lemma 3.3, we have

∥∥uk+1 – ð
∗∥∥2 +

(2 –
√

2 – θ )�κk+1

κk+2
k+1ג‖ – vk‖2

≤ ∥
kג∥ – ð

∗∥∥2 –
(

1 –
(2 –

√
2 – θ )�κk

κk+1

)
kג‖ – vk‖2

–
(

1 –
(2 –

√
2 – θ )�κk

κk+1

)
‖uk+1 – vk‖2 +

(2 –
√

2 – θ )�κk

κk+1
kג‖ – vk–1‖2

+
(2 –

√
2 – θ )�κk+1

κk+2
k+1ג‖ – vk‖2. (3.14)

Due to the term kג in Algorithm 1, we obtain

kג∥∥ – ð
∗∥∥2 =

∥∥uk + αk(uk – uk–1) – ð
∗∥∥2

=
∥∥(1 + αk)

(
uk – ð

∗) – αk
(
uk–1 – ð

∗)∥∥2

= (1 + αk)
∥∥uk – ð

∗∥∥2 – αk
∥∥uk–1 – ð

∗∥∥2 + αk(1 + αk)‖uk – uk–1‖2. (3.15)

Due to the term kג and using Cauchy inequality, we have

k+1ג‖ – vk‖2 =
∥∥uk+1 + αk+1(uk+1 – uk) – vk

∥∥2

=
∥∥(1 + αk+1)(uk+1 – vk) – αk+1(uk – vk)

∥∥2

= (1 + αk+1)‖uk+1 – vk‖2 – αk+1‖uk – vk‖2

+ αk+1(1 + αk+1)‖uk+1 – uk‖2

≤ (1 + α)‖uk+1 – vk‖2 + α(1 + α)‖uk+1 – uk‖2. (3.16)

Thus, we have

∥∥uk+1 – ð
∗∥∥2 +

(2 –
√

2 – θ )�κk+1

κk+2
k+1ג‖ – vk‖2

≤ (1 + αk)
∥∥uk – ð

∗∥∥2 – αk
∥∥uk–1 – ð

∗∥∥2 + αk(1 + αk)‖uk – uk–1‖2

–
(

1 –
(2 –

√
2 – θ )�κk

κk+1

)
kג‖ – vk‖2

–
(

1 –
(2 –

√
2 – θ )�κk

κk+1

)
‖uk+1 – vk‖2 +

(2 –
√

2 – θ )�κk

κk+1
kג‖ – vk–1‖2

+
(2 –

√
2 – θ )�κk+1

κk+2

[
(1 + α)‖uk+1 – vk‖2 + α(1 + α)‖uk+1 – uk‖2] (3.17)

≤ (1 + αk+1)
∥∥uk – ð

∗∥∥2 – αk
∥∥uk–1 – ð

∗∥∥2 + αk(1 + αk)‖uk – uk–1‖2

+
(2 –

√
2 – θ )�κk

κk+1
kג‖ – vk–1‖2 –

(
1 –

(2 –
√

2 – θ )�κk

κk+1

)
kג‖ – vk‖2
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+
(2 –

√
2 – θ )�κk+1

κk+2
α(1 + α)‖uk+1 – uk‖2

–
(

1 –
(2 –

√
2 – θ )�κk

κk+1
–

(2 –
√

2 – θ )�κk+1

κk+2
(1 + α)

)
‖uk+1 – vk‖2. (3.18)

The above expression implies that

∥
∥uk+1 – ð

∗∥∥2 – αk+1
∥
∥uk – ð

∗∥∥2 +
(2 –

√
2 – θ )�κk+1

κk+2
k+1ג‖ – vk‖2

≤ ∥
∥uk – ð

∗∥∥2 – αk
∥
∥uk–1 – ð

∗∥∥2 +
(2 –

√
2 – θ )�κk

κk+1
kג‖ – vk–1‖2

+
(2 –

√
2 – θ )�κk+1

κk+2
α(1 + α)‖uk+1 – uk‖2 + αk(1 + αk)‖uk – uk–1‖2

–
1
2

(
1 –

(2 –
√

2 – θ )�κk

κk+1
–

(2 –
√

2 – θ )�κk+1

κk+2
(1 + α)

)
‖uk+1 – .k‖2ג (3.19)

By the use k+1ג and using Cauchy inequality, we have

‖uk+1 – k‖2ג =
∥∥uk+1 – uk – αk(uk – uk–1)

∥∥2

= ‖uk+1 – uk‖2 + α2
k‖uk – uk–1‖2 – 2αk〈uk+1 – uk , uk – uk–1〉 (3.20)

≥ ‖uk+1 – uk‖2 + α2
k‖uk – uk–1‖2 – 2αk‖uk+1 – uk‖‖uk – uk–1‖

≥ ‖uk+1 – uk‖2 + α2
k‖uk – uk–1‖2 – αk‖uk+1 – uk‖2 – αk‖uk – uk–1‖2

= (1 – αk)‖uk+1 – uk‖2 +
(
α2

k – αk
)‖uk – uk–1‖2. (3.21)

Furthermore, we have


k+1 ≤ 
k +
(2 –

√
2 – θ )�κk+1

κk+2
α(1 + α)‖uk+1 – uk‖2 + αk(1 + αk)‖uk – uk–1‖2

– ρk
[
(1 – αk)‖uk+1 – uk‖2 +

(
α2

k – αk
)‖uk – uk–1‖2], (3.22)

where


k =
∥
∥uk – ð

∗∥∥2 – αk
∥
∥uk–1 – ð

∗∥∥2 +
(2 –

√
2 – θ )�κk

κk+1
kג‖ – vk–1‖2

and

ρk =
1
2

(
1 –

(2 –
√

2 – θ )�κk

κk+1
–

(2 –
√

2 – θ )�κk+1

κk+2
(1 + α)

)
.

Furthermore, we can write


k+1 ≤ 
k – Qk‖uk+1 – uk‖2 + Rk‖uk – uk–1‖2, (3.23)

where

Qk =
[
ρk(1 – αk) –

(2 –
√

2 – θ )�κk+1

κk+2
α(1 + α)

]
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and

Rk =
[
αk(1 + αk) – ρk

(
α2

k – αk
)]

.

Next, we substitute

�k = 
k + Rk‖uk – uk–1‖2.

Thus, we have

�k+1 – �k = 
k+1 + Rk+1‖uk+1 – uk‖2 – 
k – Rk‖uk – uk–1‖2

≤ –(Qk – Rk+1)‖uk+1 – uk‖2. (3.24)

Following that, we must compute

Qk – Rk+1

= ρk(1 – αk) –
(2 –

√
2 – θ )�κk+1

κk+2
α(1 + α) – αk+1(1 + αk+1) + ρk+1

(
α2

k+1 – αk+1
)

≥ ρk(1 – α) –
(2 –

√
2 – θ )�κk+1

κk+2
α(1 + α) – α(1 + α) + ρk+1

(
α2 – α

)

=
[

1
2

–
(2 –

√
2 – θ )�κk

2κk+1
–

(2 –
√

2 – θ )�κk+1

2κk+2
–

(2 –
√

2 – θ )�κk+1

2κk+2
α

]
(1 – α)

–
(2 –

√
2 – θ )�κk+1

κk+2

(
α + α2) – α(1 + α)

+
[

1
2

–
(2 –

√
2 – θ )�κk+1

2κk+2
–

(2 –
√

2 – θ )�κk+2

2κk+3
–

(2 –
√

2 – θ )�κk+2

2κk+3
α

]

× (
α2 – α

)
. (3.25)

It is given that κk → κ with � such that

0 < � <
1
2 – 2α – 1

2α2

(2 –
√

2 – θ )(1 – 1
2α + α2 + 1

2α3)
and 0 ≤ αk ≤ α <

√
5 – 2.

From above arguments with expression (3.25) through k0 ∈N

Qk – Rk+1 ≥ ε > 0, ∀k ≥ k0. (3.26)

From expressions (3.24) and (3.26) with k ≥ k0, the following relation is true

�k+1 – �k ≤ –ε‖uk+1 – uk‖2 ≤ 0. (3.27)
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Therefore, the sequence {�k} is nonincreasing for k ≥ k0. Using �k+1 for k ≥ k0, we have

�k+1 =
∥
∥uk+1 – ð

∗∥∥2 – αk+1
∥
∥uk – ð

∗∥∥2

+
(2 –

√
2 – θ )�κk+1

κk+2
k+1ג‖ – vk‖2 + Rk+1‖uk+1 – uk‖2

≥ –αk+1
∥
∥uk – ð

∗∥∥2. (3.28)

By the definition of �k for k ≥ k0, we obtain

�k =
∥
∥uk – ð

∗∥∥2 – αk
∥
∥uk–1 – ð

∗∥∥2

+
(2 –

√
2 – θ )�κk

κk+1
kג‖ – vk–1‖2 + Rk‖uk – uk–1‖2

≥ ∥
∥uk – ð

∗∥∥2 – αk
∥
∥uk–1 – ð

∗∥∥2. (3.29)

The above expression for k ≥ k0 implies that

∥∥uk – ð
∗∥∥2 ≤ �k + αk

∥∥uk–1 – ð
∗∥∥2

≤ �k0 + α
∥
∥uk–1 – ð

∗∥∥2

≤ · · · ≤ �k0

(
αk–k0 + · · · + 1

)
+ αk–k0

∥
∥uk0 – ð

∗∥∥2

≤ �k0

1 – α
+ αk–k0

∥∥uk0 – ð
∗∥∥2. (3.30)

From expressions (3.28) and (3.30), we obtain

–�k+1 ≤ αk+1
∥
∥uk – ð

∗∥∥2

≤ α
∥
∥uk – ð

∗∥∥2

≤ α
�k0

1 – α
+ αk–k0+1∥∥uk0 – ð

∗∥∥2. (3.31)

It follows from expressions (3.27) and (3.31) that

ε

j∑

k=k0

‖uk+1 – uk‖2 ≤ �k0 – �k+1

≤ �k0 + α
�k0

1 – α
+ αk–k0+1∥∥uk0 – ð

∗∥∥2

≤ �k0

1 – α
+

∥∥uk0 – ð
∗∥∥2. (3.32)

Allowing j → +∞ in (3.32) states that

+∞∑

k=1

‖uk+1 – uk‖ < +∞ implies that ‖uk+1 – uk‖ → 0 as k → +∞. (3.33)
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Due to expressions (3.20) and (3.33), we obtain

‖uk+1 – ‖kג → 0 as k → +∞. (3.34)

Moreover, we obtain

0 ≤ ‖uk – ‖kג ≤ ‖uk – uk+1‖ + ‖uk+1 – ‖kג −→ 0 as k → +∞. (3.35)

We have the following substitution:

�k+1 = 
k+1 + Rk+1‖uk+1 – uk‖2.

From expression (3.31) with above 
k substitution, we have

–
k+1 ≤ α
�k0

1 – α
+ αk–k0+1∥∥uk0 – ð

∗∥∥2 + Rk+1‖uk+1 – uk‖2. (3.36)

By expression (3.18), we can rewrite

(
1 –

(2 –
√

2 – θ )�κk

κk+1
–

(2 –
√

2 – θ )�κk+1

κk+2
(1 + α)

kג‖]( – vk‖2 + ‖uk+1 – vk‖2]

≤ 
k – 
k+1 + αk(1 + αk)‖uk – uk–1‖2 +
(2 –

√
2 – θ )�κk+1

κk+2
α(1 + α)‖uk+1 – uk‖2

≤ 
k – 
k+1 + α(1 + α)‖uk – uk–1‖2

+
(2 –

√
2 – θ )�κ0

κ
α(1 + α)‖uk+1 – uk‖2. (3.37)

Due to the condition on �, we have

(
1 –

(2 –
√

2 – θ )�κk

κk+1
–

(2 –
√

2 – θ )�κk

κk+2
(1 + α)

)

−→ 1 – (2 –
√

2 – θ )�(2 + α) > ε, ∀k ≥ k0.

Let fix for some j ≥ k0 with expressions (3.36) and (3.37) for k = 1, 2, . . . , j. Thus, we have

ε

j∑

k=k0

kג‖ – vk‖2 + ε

j∑

k=k0

‖uk+1 – vk‖2

≤ 
k0 – 
j+1 + α(1 + α)
j∑

k=k0

‖uk – uk–1‖2

+
(2 –

√
2 – θ )�κ0

κ
α(1 + α)

j∑

k=k0

‖uk+1 – uk‖2

≤ 
k0 + α
�k0

1 – α
+ αk–k0+1∥∥uk0 – ð

∗∥∥2 + R‖uj – uj–1‖2

+ α(1 + α)
j∑

k=k0

‖uk – uk–1‖2 +
(2 –

√
2 – θ )�κ0

κ
α(1 + α)

j∑

k=k0

‖uk+1 – uk‖2, (3.38)
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where R = α(1 + α) + 1
2α(1 – α), and allowing j → +∞ provides that

+∞∑

k=1

kג‖ – vk‖2 =
+∞∑

k=1

‖uk+1 – vk‖2 < +∞. (3.39)

Thus, we have

lim
k→+∞

kג‖ – vk‖ = lim
k→+∞

‖uk+1 – vk‖ = 0. (3.40)

From expressions (3.33) and (3.40), we can infer that

0 ≤ ‖uk – vk‖ ≤ ‖uk – uk+1‖ + ‖uk+1 – vk‖ −→ 0 as k → +∞, (3.41)

lim
k→+∞

kג‖ – vk–1‖ ≤ lim
k→+∞

‖uk – ‖kג + lim
k→+∞

‖uk – vk–1‖ −→ 0, (3.42)

lim
k→+∞

‖vk – vk–1‖ ≤ lim
k→+∞

‖uk – vk‖ + lim
k→+∞

‖uk – vk–1‖ −→ 0. (3.43)

By definition kג and using Cauchy inequality, we have

kג‖ – vk–1‖2 =
∥∥uk + αk(uk – uk–1) – vk–1

∥∥2

=
∥∥(1 + αk)(uk – vk–1) – αk(uk–1 – vk–1)

∥∥2

= (1 + αk)‖uk – vk–1‖2 – αk‖uk–1 – vk–1‖2 + αk(1 + αk)‖uk – uk–1‖2

≤ (1 + αk)‖uk – vk–1‖2 + αk(1 + αk)‖uk – uk–1‖2

≤ (1 + α)‖uk – vk–1‖2 + α(1 + α)‖uk – uk–1‖2. (3.44)

Now, summing up expression (3.44) for k = k0, . . . , j where j > k0, we obtain

j∑

k=k0

kג‖ – vk–1‖2 ≤ (1 + α)
j∑

k=k0

‖uk – vk–1‖2 + α(1 + α)
j∑

k=k0

‖uk – uk–1‖2. (3.45)

Letting j → +∞ in expression (3.45) implies that

+∞∑

k=1

kג‖ – vk–1‖2 < +∞. (3.46)

Rewriting the expression (3.17), we have

∥
∥uk+1 – ð

∗∥∥2 ≤ (1 + αk)
∥
∥uk – ð

∗∥∥2 – αk
∥
∥uk–1 – ð

∗∥∥2 + α(1 + α)‖uk – uk–1‖2

+
(2 –

√
2 – θ )�κ0

κ
kג‖ – vk–1‖2 –

(
1 –

(2 –
√

2 – θ )�κ0

κ

)
kג‖ – vk‖2

–
(

1 –
(2 –

√
2 – θ )�κ0

κ

)
‖uk+1 – vk‖2. (3.47)
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Thus, the above expression with (3.33), (3.39), (3.45) through Lemma 2.4 provides limit
of ‖uk – ð

∗‖ exists. Hence, all {uk}, {kג} and {vk} sequences are bounded. Consider z to
be a weak cluster point of {uk}, i.e., there is a subsequence that is indicated by {ukm} of
{uk} that is weakly convergent to z. Then {vkm} also weakly convergent to z ∈ K. We re-
quire to prove that z ∈ Sol(F ,K). Using Lemma 3.1 with expressions (3.7) and (3.4), we
have

κkmF (vkm , v) ≥ κkmF (vkm , ukm+1) + kmג〉 – ukm+1, v – ukm+1〉
≥ κkmF (vkm–1, ukm+1 ) – κkmF (vkm–1, vkm )

–
(2 –

√
2 – θ )�κkm

2κkm+1
‖vkm – vkm–1‖2

–
(2 –

√
2 – θ )�κkm

2κkm+1
‖vkm – ukm+1‖2 + kmג〉 – ukm+1, v – ukm+1〉

≥ kmג〉 – vkm , ukm+1 – vkm〉 –
(2 –

√
2 – θ )�κkm

2κkm+1
‖vkm – vkm–1‖2

–
(2 –

√
2 – θ )�κkm

2κkm+1
‖vkm – ukm+1‖2 + kmג〉 – ukm+1, v – ukm+1〉, (3.48)

where v is any member in Hk . It adopts from expressions (3.34) and (3.40)–(3.43) and the
boundedness of {uk} that last inequality turns to zero. By employing κkm ≥ κ > 0 with
item (F4) and vkm ⇀ z, such as

0 ≤ lim sup
m→+∞

F (vkm , v) ≤F (z, v), ∀v ∈Hk .

Since K ⊂ Hk and F (z, v) ≥ 0, ∀v ∈ K. The above illustrates that z ∈ Sol(F ,K). Thus,
Lemma 2.5 guarantees that ,{kג} {uk}, and {vk} weakly converge to ð

∗ as k → +∞. �

We now provide an iterative method (see Algorithm 2) that consists of a variable non-
monotone stepsize rule and two strongly convex minimization problems. The details of
the second main result are presented as follows.

In this section, we solve variational inequalities and fixe point problems using the results
from our main results. The expressions (1.1) and (1.3) are employed to obtain the follow-
ing conclusions. All the methods are based on our main findings, which are interpreted
below.

Corollary 3.5 Assume that A : K → H is a pseudomonotone, weakly continuous and
L-Lipschitz continuous operator and the solution set Sol(A,K) �= ∅. Choose κ0 = κ1 > 0,
u–1, u0, v0 ∈ H, � ∈ (0, 1), θ ∈ (0, 2 –

√
2) and αk to be a decreasing sequence such that

0 ≤ α ≤ αk ≤ α <
√

5 – 2. First, we have to compute

⎧
⎨

⎩
u1 = PK(0ג – κ0A(v0)),

v1 = PK(1ג – κ1A(v0)),
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Algorithm 2 Explicit Popov’s subgradient method using the non-monotone stepsize rule
STEP 0: Choose κ0 = κ1 > 0, u–1, u0, v0 ∈ H, � ∈ (0, 1), θ ∈ (0, 2 –

√
2) and let αk be a

decreasing sequence such that 0 ≤ α ≤ αk ≤ α <
√

5 – 2. Choose a non-negative real se-
quence {pk} such that

∑+∞
k=1 pk < +∞. First, we have to compute

u1 = arg min
v∈K

{
κ0F (v0, v) +

1
2
0ג‖ – v‖2

}
,

v1 = arg min
v∈K

{
κ1F (v0, v) +

1
2
1ג‖ – v‖2

}
,

where 0ג = u0 + α0(u0 – u–1) and 1ג = u1 + α1(u1 – u0).
STEP 1: Given uk–1, vk–1, uk , vk . Firstly choose ωk–1 ∈ ∂2F (vk–1, vk) satisfying kג –κkωk–1 –
vk ∈ NK(vk) and generate a half-space

Hk =
{

z ∈H : kג〉 – κkωk–1 – vk , z – vk〉 ≤ 0
}

.

Compute

uk+1 = arg min
v∈Hk

{
κkF (vk , v) +

1
2
kג‖ – v‖2

}
,

where kג = uk + αk(uk – uk–1).
STEP 2: Calculate

κk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{κk + pk , (2–
√

2–θ ) 1
2 �‖vk–1–vk‖2+(2–

√
2–θ )�‖uk+1–vk‖2

2[F (vk–1,uk+1)–F (vk–1,vk )–F (vk ,uk+1)] },
if F (vk–1, uk+1) – F (vk–1, vk) – F (vk , uk+1) > 0,

κk + pk , otherwise.

(3.49)

STEP 3: Compute

vk+1 = arg min
v∈K

{
κk+1F (vk , v) +

1
2
k+1ג‖ – v‖2

}
,

where k+1ג = uk+1 + αk+1(uk+1 – uk).
STEP 4: If uk+1 = kג and vk = vk–1, then complete the computation. Otherwise, set k := k +1
and go back STEP 1.

where 0ג = u0 +α0(u0 – u–1) and 1ג = u1 +α1(u1 – u0). Given uk–1, vk–1, uk , vk , and construct
a half-space

Hk =
{

z ∈H :
〈
kג – κkA(vk–1) – vk , z – vk

〉 ≤ 0
}

for each k ≥ 0.

Compute

⎧
⎨

⎩
kג = uk + αk(uk – uk–1),

uk+1 = PHk kג) – κkA(vk)).
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The stepsize should be updated as follows:

κk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{κk , (2–
√

2–θ ) 1
2 �‖vk–1–vk‖2+(2–

√
2–θ )�‖uk+1–vk‖2

2〈A(vk–1)–A(vk ),uk+1–vk〉 },
if 〈A(vk–1) – A(vk), uk+1 – vk〉 > 0,

κk , otherwise.

Compute

⎧
⎨

⎩
k+1ג = uk+1 + αk+1(uk+1 – uk),

vk+1 = PK(גk+1 – κk+1A(vk)).

Then, the sequences {uk} converge weakly to ð
∗ ∈ Sol(A,K).

Corollary 3.6 Assume that A : K → H is a pseudomonotone, weakly continuous and
L-Lipschitz continuous operator and the solution set Sol(A,K) �= ∅. Choose κ0 = κ1 > 0,
u–1, u0, v0 ∈ H, � ∈ (0, 1), θ ∈ (0, 2 –

√
2) and αk to be a decreasing sequence such that

0 ≤ α ≤ αk ≤ α <
√

5 – 2. Select a real sequence that is {pk} such that
∑+∞

k=1 pk < +∞. First,
we have to compute

⎧
⎨

⎩
u1 = PK(0ג – κ0A(v0)),

v1 = PK(1ג – κ1A(v0)),

where 0ג = u0 +α0(u0 – u–1) and 1ג = u1 +α1(u1 – u0). Given uk–1, vk–1, uk , vk , and construct
a half-space

Hk =
{

z ∈H :
〈
kג – κkA(vk–1) – vk , z – vk

〉 ≤ 0
}

for each k ≥ 0.

Compute

⎧
⎨

⎩
kג = uk + αk(uk – uk–1),

uk+1 = PHk kג) – κkA(vk)).

Update the stepsize in the following way:

κk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{κk + pk , (2–
√

2–θ ) 1
2 �‖vk–1–vk‖2+(2–

√
2–θ )�‖uk+1–vk‖2

2〈A(vk–1)–A(vk ),uk+1–vk 〉 },
if 〈A(vk–1) – A(vk), uk+1 – vk〉 > 0,

κk + pk , otherwise.

Compute

⎧
⎨

⎩
k+1ג = uk+1 + αk+1(uk+1 – uk),

vk+1 = PK(גk+1 – κk+1A(vk)).

Then, {uk} sequence weakly converges to ð
∗ ∈ Sol(A,K).
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Corollary 3.7 Let B : K →H be a weakly continuous and κ-strict pseudocontraction with
the solution set Sol(B,K) �= ∅. Choose κ0 = κ1 > 0, u–1, u0, v0 ∈H, � ∈ (0, 1), θ ∈ (0, 2 –

√
2)

and αk to be a decreasing sequence such that 0 ≤ α ≤ αk ≤ α <
√

5 – 2. First, we have to
compute

⎧
⎨

⎩
u1 = PK[0ג – κ0(v0 – B(v0))],

v1 = PK[1ג – κ1(v0 – B(v0))],

where 0ג = u0 + α0(u0 – u–1) and 1ג = u1 + α1(u1 – u0). Given uk–1, vk–1, uk , vk , construct a
half-space

Hk =
{

z ∈ E :
〈
(1 – κk)גk + κkB(vk–1) – vk , z – vk

〉 ≤ 0
}

.

Compute

⎧
⎨

⎩
kג = uk + αk(uk – uk–1),

uk+1 = PHk kג] – κk(vk – B(vk))].

Evaluate stepsize rule for the next iteration is evaluated as follows:

κk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{κk , (2–
√

2–θ ) 1
2 �‖vk–1–vk‖2+(2–

√
2–θ )�‖uk+1–vk‖2

2〈(vk–1–vk )–[B(vk–1)–B(vk )],uk+1–vk〉 },
if 〈(vk–1 – vk) – [B(vk–1) – B(vk)], uk+1 – vk〉 > 0,

κk , otherwise.

Compute

⎧
⎨

⎩
k+1ג = uk+1 + αk+1(uk+1 – uk),

vk+1 = PK[גk+1 – κk+1(vk – B(vk))].

Then, the sequence {uk} converges weakly to ð
∗ ∈ Sol(B,K).

Corollary 3.8 Let B : K →H be a weakly continuous and κ-strict pseudocontraction with
the solution set Sol(B,K) �= ∅. Choose κ0 = κ1 > 0, u–1, u0, v0 ∈H, � ∈ (0, 1), θ ∈ (0, 2 –

√
2)

and αk to be a decreasing sequence such that 0 ≤ α ≤ αk ≤ α <
√

5–2. Select a real sequence
that is {pk} such that

∑+∞
k=1 pk < +∞. First, we have to compute

⎧
⎨

⎩
u1 = PK[0ג – κ0(v0 – B(v0))],

v1 = PK[1ג – κ1(v0 – B(v0))],

where 0ג = u0 + α0(u0 – u–1) and 1ג = u1 + α1(u1 – u0). Given uk–1, vk–1, uk , vk , and

Hk =
{

z ∈ E :
〈
(1 – κk)גk + κkB(vk–1) – vk , z – vk

〉 ≤ 0
}

.
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Compute

⎧
⎨

⎩
kג = uk + αk(uk – uk–1),

uk+1 = PHk kג] – κk(vk – B(vk))].

Evaluate stepsize rule for the next iteration is evaluated as follows:

κk+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{κk + pk , (2–
√

2–θ ) 1
2 �‖vk–1–vk‖2+(2–

√
2–θ )�‖uk+1–vk‖2

2〈(vk–1–vk )–[B(vk–1)–B(vk )],uk+1–vk 〉 },
if 〈(vk–1 – vk) – [B(vk–1) – B(vk)], uk+1 – vk〉 > 0,

κk + pk , otherwise.

Compute

⎧
⎨

⎩
k+1ג = uk+1 + αk+1(uk+1 – uk),

vk+1 = PK[גk+1 – κk+1(vk – B(vk))].

Then, the sequence {uk} converges weakly to ð
∗ ∈ Sol(B,K).

4 Numerical illustrations
This section describes a number of computational experiments conducted to demonstrate
the efficacy of the proposed methods. Some of these numerical illustrations provide a thor-
ough understanding of how to select effective control parameters. Some of them demon-
strate how proactive approaches outperform current ones in the literature. All MATLAB
codes were run in MATLAB 9.5 (R2018b) on an Intel(R) Core(TM) i5-6200 Processor
CPU at 2.30 GHz, 2.40 GHz, and 8.00 GB RAM.

Example 4.1 The first test problem here is taken from the Nash-Cournot Oligopolistic
Equilibrium model in [28]. In this case, the bifunction F can be defined as follows:

F (u, v) = 〈Pu + Qv + c, v – u〉,

where c ∈ R
M , and P, Q are matrices of order M. The matrix Q – P is symmetric negative

semidefinite, and the matrix P is symmetric positive semidefinite, having Lipschitz-type
constants that are k1 = k2 = 1

2‖P – Q‖ (see [28] for more details).

Experiment 1: In the first experiment, we take an Example 4.1 to examine how Algo-
rithm 2 performs numerically when alternative control sequence � options are used. This
experiment assisted us in determining the best potential control parameter �. The starting
points for these numerical studies are u–1 = v–1 = u0 = (1, 1, . . . , 1), M = 5, and error term
Dk = ‖uk+1 – uk‖. Two matrices P, Q, and vector c are written as

P =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

, Q =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

, c =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

1
–2
–1
2

–1

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

.
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Figure 1 Computational performance of Algorithm 2 for different values of � = 0.22, 0.43, 0.63, 0.84, 0.98,
respectively

Figure 2 Computational performance of Algorithm 2 for different values of � = 0.22, 0.43, 0.63, 0.84, 0.98,
respectively

The feasible set K ⊂R
M is defined by

K :=
{

u ∈R
M : –2 ≤ ui ≤ 5

}
.

Figures 1 and 2 demonstrate a numerical results using an error Dk = ‖uk+1 – uk‖ ≤ 10–5.
The following information about control settings should be considered: (i) Algorithm 2
(shortly, IEgM):

κ0 =
1
2c

, θ = 0.050, αk = 0.210, pk =
100

(k + 1)2 .

Experiment 2: In the second experiment, we look at Example 4.1 to examine how Al-
gorithm 2 performs numerically when alternative control sequence θ options are used.
This experiment assisted us in determining the best potential control parameter θ . The
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Figure 3 Computational performance of Algorithm 2 using different values of θ = 0.45, 0.35, 0.25, 0.15, 0.05,
respectively

Figure 4 Computational performance of Algorithm 2 using different values of θ = 0.45, 0.35, 0.25, 0.15, 0.05,
respectively

starting points for these numerical studies are u–1 = v–1 = u0 = (1, 1, . . . , 1), M = 5, and er-
ror term Dk = ‖uk+1 – uk‖. Figures 3 and 4 show a number of results for the error term
Dk = ‖uk+1 – uk‖ ≤ 10–5. Information concerning the control parameters shall be consid-
ered as follows: (i) Algorithm 2 (shortly, IEgM):

κ0 =
1
2c

, � = 0.55, αk = 0.20, pk =
100

(k + 1)2 .

Experiment 3: In the third experiment, we consider Example 4.1 to see the computational
performance of Algorithm 2 with Algorithm 3.1 in [36] using different choices for the
dimension M. Two P, Q matrices are taken randomly [Two diagonal matrices randomly
A1 and A2 with elements from [0, 2] and [–2, 0], respectively. Two random orthogonal
matrices O1 = RandOrthMat(M) and O2 = RandOrthMat(M) are generated. Thus, a positive
semi-definite matrix B1 = O1A1OT

1 and a negative semi-definite matrix B2 = O2A2OT
2 are
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achieved. Finally, set Q = B1 + BT
1 , S = B2 + BT

2 and P = Q – S]. A set of constraints K ⊂R
M

is illustrated by

K :=
{

u ∈R
M : –10 ≤ ui ≤ 10

}
.

For these numerical studies, starting points are u–1 = v–1 = u0 = (1, 1, . . . , 1), and error term
Dk = ‖uk+1 –uk‖. Figures 5, 6, 7, 8, 9 and Table 1 show a number of results for the error term

Figure 5 Computational comparability of Algorithm 2 with Algorithm 3.1 in [36] for M = 5

Figure 6 Computational comparability of Algorithm 2 with Algorithm 3.1 in [36] for M = 10

Figure 7 Computational comparability of Algorithm 2 with Algorithm 3.1 in [36] for M = 20
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Figure 8 Computational comparability of Algorithm 2 with Algorithm 3.1 in [36] for M = 50

Figure 9 Computational comparability of Algorithm 2 with Algorithm 3.1 in [36] for M = 100

Table 1 Numerical data for Figs. 5, 6, 7, 8, 9

M Number of iterations Execution time in seconds

Algorithm 2 Algorithm 3.1 in [36] Algorithm 2 Algorithm 3.1 in [36]

5 34 24 0.719490100000000 0.506414100000000
10 34 25 0.498847400000000 0.392540700000000
20 42 33 0.520615800000000 0.384156300000000
50 55 36 0.573747200000000 0.428239300000000
100 59 42 1.45613430000000 1.00880530000000

Dk = ‖uk+1 –uk‖ ≤ 10–5. Information regarding the control parameters shall be considered
as follows:

(i) Algorithm 3.1 in [36] (shortly, EgM):

κ0 =
1
2c

, � = 0.45, θ = 0.05, pk =
100

(k + 1)2 ;

(ii) Algorithm 2 (shortly, IEgM):

κ0 =
1
2c

, � = 0.45, αk = 0.18, θ = 0.05, pk =
100

(k + 1)2 .
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Example 4.2 Let a bifunction F is defined by

F (ŭ, v̆) =
〈
I(ŭ), v̆ – ŭ

〉
, ∀ŭ, v̆ ∈K,

where

K =
{

(u1, . . . , uM) ∈R
M : ui ≥ 1, i = 1, 2, . . . , M

}
.

Consider that I(ŭ) = G(ŭ) + H(ŭ) in the following manner:

G(ŭ) =
(
g1(ŭ), g2(ŭ), . . . , gM(ŭ)

)
, H(ŭ) = Eŭ + c,

where c = (–1, –1, . . . , –1) and

gi(ŭ) = ŭ2
i–1 + ŭ2

i + ŭi–1ŭi + ŭiŭi+1, i = 1, 2, . . . , M, ŭ0 = ŭM+1 = 0.

The matrix E entries are taken as follows:

ei,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4, j = i,

1, i – j = 1,

–2, i – j = –1,

0, otherwise.

In this experiment, we consider Example 4.2 to see the numerical illustration of Algo-
rithm 2 in comparison with Algorithm 3.1 in [36] using different choices for different
values of the dimension M. For these numerical studies, starting points are u–1 = v–1 =
u0 = (1, 1, . . . , 1), M = 5, and the error term Dk = ‖uk+1 – uk‖. Figures 10, 11, 12, 13 and
Table 2 show a number of results for the error term Dk = ‖uk+1 – uk‖ ≤ 10–5. Information
concerning the control parameters shall be considered as follows:

(i) Algorithm 3.1 in [36] (shortly, EgM):

κ0 =
1
2c

, � = 0.45, θ = 0.05, pk =
100

(k + 1)2 .

Figure 10 Computational comparability of Algorithm 2 with Algorithm 3.1 in [36] for M = 20
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Figure 11 Computational comparability of Algorithm 2 with Algorithm 3.1 in [36] for M = 50

Figure 12 Computational comparability of Algorithm 2 with Algorithm 3.1 in [36] for M = 100

Figure 13 Computational comparability of Algorithm 2 with Algorithm 3.1 in [36] for M = 200

Table 2 Numerical data for Figs. 10, 11, 12, 13

M Number of iterations Execution time in seconds

Algorithm 2 Algorithm 3.1 in [36] Algorithm 2 Algorithm 3.1 in [36]

20 62 40 0.702655300000000 0.466009800000000
50 66 41 1.07402510000000 0.684056100000000
100 68 42 2.06877200000000 1.25467120000000
200 71 43 15.4223303000000 9.76697390000000
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(ii) Algorithm 2 (shortly, IEgM):

κ0 =
1
2c

, � = 0.45, αk = 0.18, θ = 0.05, pk =
100

(k + 1)2 .

5 Conclusion
This research presents two explicit extragradient-like methods for solving an equilibrium
problem in a real Hilbert space, which include a pseudomonotone and a Lipschitz-type bi-
function. A novel stepsize rule has been given that does not become reliant on the informa-
tion provided by Lipschitz-type constants. For the given methods, convergence theorems
have been established. Several experiments are detailed in order to show the numerical
behavior of algorithms and compare them to other well-known methods in the literature.
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