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Abstract
Some topological and geometric behavior of the space of all sequences whose
generalized mean transforms are in Nakano sequence space, the multiplication
mappings acting on it, and the eigenvalue distribution of mappings ideal generated
by this space and s-numbers are discussed. We construct the existence of a fixed
point of Kannan contraction mapping on these spaces. Several numerical
experiments are presented to illustrate our results. Moreover, some successful
applications to the existence of solutions of nonlinear difference equations are
explained. The strength here is that the current results are constructed under flexible
setups given by controlling the weight and power of these spaces.
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1 Introduction
Since the principle of variable exponent function spaces have built upon the bounded-
ness of the Hardy–Little-wood maximal mapping, this explains its technique in image
processing, differential equations, and approximation theory. We will use the following
conventions in this article, if others are used we will notate them.

Conventions 1.1

Z
+ = {0, 1, 2, . . .}. C : The space of all complex numbers.

[a] : The integral part of a.

R : The set of real numbers.

C
Z

+ : The space of all sequences of complex numbers.

(0,∞)Z
+

: The space of all sequences of positive reals.

�∞ : The space of bounded sequences of complex numbers.
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�r : The space of r-absolutely summable sequences of complex numbers.

c0 : The space of null sequences of complex numbers.

el = (0, 0, . . . , 1, 0, 0, . . .), as 1 lies at the lth coordinate, for all l ∈ Z
+.

F : The space of each sequences with finite nonzero coordinates.

I : The space of all sets with a finite number of elements.

�↗ : The space of all monotonic increasing sequences of positive reals.

B : The ideal of all bounded linear mappings between any arbitrary Banach

spaces.

F : The ideal of finite-rank mappings between any arbitrary Banach spaces.

A : The ideal of approximable mappings between any arbitrary Banach spaces.

K : The ideal of compact mappings between any arbitrary Banach spaces.

B(N ,M) : The space of all bounded linear mappings from a Banach space N

into a Banach space M.

B(N ) : The space of all bounded linear mappings from a Banach space N

into itself.

F(N ,M) : The space of finite-rank mappings from a Banach space N

into a Banach space M.

F(N ) : The space of finite-rank mappings from a Banach space N into itself.

A(N ,M) : The space of approximable mappings from a Banach space N

into a Banach space M.

A(N ) : The space of approximable mappings from a Banach space N into itself.

K(N ,M) : The space of compact mappings from a Banach space N

into a Banach space M.

K(N ) : The space of compact mappings from a Banach space N into itself.

Definition 1.2 ([1]) A mapping s : B(N ,M) → [0,∞)Z+ is named an s-number, if the
sequence (sj(H))∞j=0, for all H ∈B(N ,M), verifies the following conditions:

(a) ‖H‖ = s0(H) ≥ s1(H) ≥ s2(H) ≥ · · · ≥ 0, with H ∈B(N ,M),
(b) sj+l–1(H1 + H2) ≤ sj(H1) + sl(H2), with H1, H2 ∈B(N ,M) and j, l ∈ Z

+,
(c) sj(ZYH) ≤ ‖Z‖sj(Y )‖H‖, for every H ∈B(N0,N ), Y ∈B(N ,M) and

Z ∈B(M,M0), where N0 and M0 are any two Banach spaces,
(d) suppose G ∈B(N ,M) and γ ∈ C, hence sj(γ G) = |γ |sj(G),
(e) assume rank(H) ≤ j, then sj(H) = 0, for all H ∈B(N ,M),
(f ) sl≥j(Ij) = 0 or sl<j(Ij) = 1, where Ij marks the identity mapping on the j-dimensional

Hilbert space �
j
2.
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We explain a few examples of s-numbers as follows:
(1) The jth Kolmogorov number, dj(H), where

dj(H) = infdim J≤j sup‖λ‖≤1 infβ∈J ‖Hλ – β‖.
(2) The jth approximation number, αj(H), where

αj(H) = inf{‖H – Z‖ : Z ∈B(N ,M) and rank(Z) ≤ j}.

Notations 1.3 ([2])

B
s
K :=

{
B

s
K(N ,M);N and M are Banach Spaces

}
, where

B
s
K(N ,M) :=

{
H ∈B(N ,M) : (

(
sj(H)

)∞
j=0 ∈K

}
.

B
α
K :=

{
B

α
K(N ,M);N and M are Banach Spaces

}
, where

B
α
K(N ,M) :=

{
H ∈B(N ,M) : (

(
αj(H)

)∞
j=0 ∈K

}
.

B
d
K :=

{
B

d
K(N ,M)N and M are Banach Spaces

}
, where

B
d
K(N ,M) :=

{
H ∈B(N ,M) : (

(
dj(H)

)∞
j=0 ∈K

}
.

Functional analysis places a high value on the operator ideal theory. Operators ideal
can be constructed using s-numbers, one of the most important ways. The theory of s-
numbers of linear bounded operators between Banach spaces was introduced and investi-
gated by Pietsch [3–6]. He offered and explained some geometric and topological structure
of the quasi-ideals Bα

�b
. Then, Constantin [7] generalized the class of �p-type operators to

the class of cesp-type operators by using Cesàro sequence spaces. Makarov and Faried
[8], showed that for any infinite-dimensional Banach spaces N , M and l > j > 0, then
Bα

�j
(N ,M) � Bα

�l
(N ,M) � B(N ,M). As a generalization of �p-type operators, Stolz

mappings and operators ideal were examined by Tita [9, 10]. In [11], Maji and Srivas-
tava studied the class A(s)

p of s-type cesp operators using s-number sequence and Cesàro
sequence spaces and they introduced a new class A(s)

p,q of s-type ces(p, q) operators by us-
ing a weighted Cesàro sequence space for 1 < p < ∞. In [12], the class of s-type Z(u, v;�p)
operators was defined and some of their properties were explained. Yaying et al. [13], de-
fined and studied the sequence space, χ

η
r , whose r-Cesàro matrix is in �η , with r ∈ (0, 1]

and 1 ≤ η ≤ ∞. They explained the quasi-Banach ideal of type χ
η
r , with r ∈ (0, 1] and

1 < η < ∞. They offered its Schauder basis, α–, β– and γ -duals, and evaluated certain
matrix classes connected to this sequence space. The compact mappings were studied by
many authors for different sequence spaces, for this see [14–20]. Komal et al. [21], ex-
plained the multiplication mappings defined on Cesàro sequence spaces equipped with
the Luxemburg norm. The multiplication mappings acting on Cesàro second-order func-
tion spaces was discussed by İlkhan et al. [22]. The nonabsolute-type sequence spaces
are a generalization of the corresponding absolute type. Hence, there is great interest in
studying these sequence spaces. Recently, many authors in the literature have explained
some nonabsolute-type sequence spaces and published new, exciting papers, for example,
see Mursaleen and Noman [23, 24] and Mursaleen and Başar [25]. In the field of the Ba-
nach fixed-point theorem [26], Kannan [27] discussed an example of a class of mappings
with the same fixed-point actions as contractions, although it failed to be continuous.
Ghoncheh [28] was the only one who investigated Kannan mappings in modular vector
spaces. He proved the existence of a fixed point of Kannan mapping in complete modular
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spaces with the Fatou property. Bakery and Mohamed [29] offered the concept of the pre-
quasinorm on a Nakano sequence space such that its variable exponent is in (0, 1]. They
discussed enough setup on it equipped with the known prequasinorm to form prequasi-
Banach and closed space, and investigated the Fatou property of different prequasinorms
on it. They proved the existence of a fixed point of Kannan prequasinorm contraction
mappings on it and on the prequasi-Banach mappings ideal constructed by s-numbers
that lie in this sequence space.

Lemma 1.4 ([30]) Assume ηj > 0 and λj,βj ∈ C, for all j ∈ Z
+, and � = max{1, supj ηj}, then

|λj + βj|ηj ≤ 2�–1(|λj|ηj + |βj|ηj
)
. (1)

The aim of this article is confirmed as follows: In Sect. 3, we offer the definition and
some inclusion relations of the sequence space (	(ζ ,η))μ equipped with the function μ.
In Sect. 4, we explain the sufficient conditions on 	(ζ ,η) with definite μ to construct
premodular private sequence space (pss). This investigates whether (	(ζ ,η))μ is a pre-
quasinormed pss. In Sect. 5, we examine multiplication mappings on (	(ζ ,η))μ, and in-
troduce the necessity and enough setups on this sequence space so that the multiplication
mapping is bounded, approximable, invertible, Fredholm and closed range. In Sect. 6, first
we introduce the enough conditions (not necessary) on (	(ζ ,η))μ, so that F = Bs

(	(ζ ,η))μ .
This offers a negative answer to Rhoades [31] open problem about the linearity of s-type
(	(ζ ,η))μ spaces. Secondly, we investigate the setups on (	(ζ ,η))μ such that the elements
of prequasi ideal Bs

	(ζ ,η) are complete and closed. Thirdly, we explain the enough condi-
tions on (	(ζ ,η))μ so that Bα

(	(ζ ,η))μ is strictly included for different weights and powers.
We introduce the setups for which the prequasi ideal Bα

(	(ζ ,η))μ is minimum. Fourthly, we
suggest the conditions for which the Banach prequasi ideal Bs

(	(ζ ,η))μ is simple. Fifthly, we
explain the enough conditions on (	(ζ ,η))μ so that the class B which sequence of eigen-
values in (	(ζ ,η))μ equals Bs

(	(ζ ,η))μ . In Sect. 7, the existence of a fixed point of Kannan
prequasinorm contraction mapping on this sequence space and on its prequasi-mappings
ideal generated by (	(ζ ,η))μ and s-numbers with several numerical experiments to illus-
trate our results are presented. Moreover, in Sect. 8, some successful applications to the
existence of solutions of nonlinear difference equations are explained. Finally, we give our
conclusions in Sect. 9.

2 Definitions and preliminaries
Lemma 2.1 ([5]) If H ∈B(N ,M) and H /∈A(N ,M), we have X ∈B(N ) and Y ∈B(M)
so that YHXej = ej, for all j ∈ Z

+.

Definition 2.2 ([5]) A Banach space K is said to be simple if the algebra B(K) contains
one and only one nontrivial closed ideal.

Theorem 2.3 ([5]) Let K be a Banach space with dim(K) = ∞, one has

F(K) �A(K) � K(K) �B(K).

Definition 2.4 ([32]) A mapping U ∈B(K) is said to be Fredholm if dim(Range(U))c < ∞,
dim(ker(U)) < ∞ and Range(U) is closed, where (Range(U))c denotes the complement of
Range(U).
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Definition 2.5 ([33]) A class W ⊆ B is said to be a mappings ideal if every component
W(N ,M) = W∩B(N ,M) satisfies the next setups:

(i) I� ∈ W, if � explains a Banach space of one dimension.
(ii) W(N ,M) is a linear space on C.

(iii) Let X ∈B(N0,N ), Y ∈ W(N ,M) and Z ∈B(M,M0), then ZYX ∈W(N0,M0),
where N0 and M0 are normed spaces.

Definition 2.6 ([2]) A mapping � : W → [0,∞) is called a prequasinorm on the mappings
ideal W, if it verifies the next setups:

(1) For all X ∈ W(N ,M), �(X) ≥ 0 and �(X) = 0 ⇐⇒ X = 0,
(2) we have E0 ≥ 1 so that �(κX) ≤ E0|κ|�(X), with X ∈ W(N ,M) and κ ∈ C,
(3) there are G0 ≥ 1 so that �(Z1 + Z2) ≤ G0[�(Z1) + �(Z2)], for all Z1, Z2 ∈W(N ,M),
(4) there are D0 ≥ 1 so that if X ∈B(N0,N ), Y ∈W(N ,M) and Z ∈ B(M,M0), then

�(ZYX) ≤ D0‖Z‖�(Y )‖X‖.

Theorem 2.7 ([2]) Every quasinorm on the ideal W is a prequasinorm on the same ideal.

Definition 2.8 ([34]) The linear space of sequences K is said to be a private sequence
space (pss), if it satisfies the following conditions:

(1) ej ∈K, with j ∈ Z
+,

(2) K is solid, i.e., for f = (fj) ∈ CZ
+ , |g| = (|gj|) ∈K and |fj| ≤ |gj|, with j ∈ Z

+, then
|f | ∈K,

(3) (|f[ j
2 ]|)∞j=0 ∈K, if (|fj|)∞j=0 ∈K.

Theorem 2.9 ([34]) Let the linear sequence space K be a pss, then Bs
K is a mapping ideal.

Definition 2.10 ([34]) A subspace of the pss is said to be a premodular pss, if there is a
mapping μ : K → [0,∞) that satisfies the following conditions:

(i) For every λ ∈K, λ = θ ⇐⇒ μ(|λ|) = 0, and μ(λ) ≥ 0, where θ is the zero vector of K,
(ii) suppose λ ∈K and ρ ∈ C, there are E0 ≥ 1 with μ(ρλ) ≤ |ρ|E0μ(λ),
(iii) μ(λ + β) ≤ G0(μ(λ) + μ(β)) holds for some G0 ≥ 1, with λ,β ∈K,
(iv) if j ∈ Z

+, |λj| ≤ |βj|, we have μ((|λj|)) ≤ μ((|βj|)),
(v) the inequality, μ((|λj|)) ≤ μ((|λ[ j

2 ]|)) ≤ D0μ((|λj|)) holds, for D0 ≥ 1,
(vi) F = Kμ,
(vii) one has � > 0 such that μ(ρ, 0, 0, 0, . . .) ≥ � |ρ|μ(1, 0, 0, 0, . . .), with ρ ∈ C.

Definition 2.11 ([34]) The pssKμ is called a prequasinormed pss, if μ satisfies the setups
(i)–(iii) of Definition 2.10. When K is complete and equipped with μ, then Kμ is called a
prequasi-Banach pss.

Theorem 2.12 ([34]) Every premodular pss Kμ is a prequasinormed pss.

Theorem 2.13 ([34]) The function � is a prequasinorm on Bs
(K)μ , where �(Y ) =

μ(sj(Y ))∞j=0, for every Y ∈Bs
(K)μ (N ,M), if (K)μ is a premodular pss.

Definition 2.14 ([29]) A prequasinorm μ on K satisfies the Fatou property, if for ev-
ery sequence {λa} ⊆ Kμ with lima→∞ μ(λa – λ) = 0 and every β ∈ Kμ then μ(β – λ) ≤
supj infa≥j μ(β – λa).
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Definition 2.15 ([29]) A prequasinorm � on the ideal Bs
K, where �(W ) = μ((sa(W ))∞a=0),

satisfies the Fatou property if for every sequence {Wa}a∈Z+ ⊆ Bs
K(N ,M) with

lima→∞ �(Wa – W ) = 0 and every V ∈Bs
K(N ,M), then

�(V – W ) ≤ sup
a

inf
i≥a

�(V – Wi).

Definition 2.16 ([29]) A mapping W : Kμ → Kμ is called a Kannan μ-contraction, if
there is β ∈ [0, 1

2 ), such that μ(Wp – Wq) ≤ β(μ(Wp – p) + μ(Wq – q)), for every p, q ∈Kμ.

An element p ∈Kμ is called a fixed point of W , if W (p) = p.

Definition 2.17 ([29]) A mapping W : Bs
K(N ,M) → Bs

K(N ,M) is called a Kannan �-
contraction, if there is β ∈ [0, 1

2 ), so that �(WV – WT) ≤ β(�(WV – V ) + �(WT – T)),
for every V , T ∈ Bs

K(N ,M).

Definition 2.18 ([29]) Suppose Kμ is a prequasinormed (sss), W : Kμ → Kμ and b ∈
Kμ. The mapping W is termed μ-sequentially continuous at b, if and only if, when
lima→∞ μ(ta – b) = 0, then lima→∞ μ(Wta – Wb) = 0.

Definition 2.19 ([29]) For the prequasinorm � on the ideal Bs
K, where �(W ) =

μ((sa(W ))∞a=0), G : Bs
K(N ,M) → Bs

K(N ,M) and B ∈ Bs
K(N ,M). The mapping G is

termed �-sequentially continuous at B, if and only if, when limp→∞ �(Wp – B) = 0, then
limp→∞ �(GWp – GB) = 0.

Definition 2.20 ([34]) If ϑ = (ϑj) ∈ CZ
+ and Kμ is a prequasinormed pss. The mapping

Lϑ : Kμ → Kμ is termed a multiplication mapping on Kμ, if Lϑλ = (ϑjλj) ∈ Kμ, with λ ∈
Kμ. The multiplication mapping is termed created by ϑ , if Lϑ ∈B(Kμ).

Theorem 2.21 ([35]) Suppose s-type Kμ := {λ = (sj(X)) ∈ RZ
+ : X ∈ B(N ,M)andμ(λ) <

∞}. If Bs
Kμ

is a mappings ideal, then the following conditions are satisfied:
1. F ⊂ s-type Kμ.
2. Let (sj(X1))∞j=0 ∈ s-type Kμ and (sj(X2))∞j=0 ∈ s-type Kμ, then (sj(X1 + X2))∞j=0 ∈ s-type

Kμ.
3. Suppose ε ∈ C and (sj(X))∞j=0 ∈ s-type Kμ, then |ε|(sj(X))∞j=0 ∈ s-type Kμ.
4. The sequence space Kμ is solid, i.e., if (sj(Y ))∞j=0 ∈ s-type Kμ and sj(X) ≤ sj(Y ), for

every j ∈ Z
+ and X, Y ∈B(N ,M), then (sj(X))∞j=0 ∈ s-type Kμ.

3 The sequence space (�(ζ ,η))μ
In this section, the definition and some inclusion relations of the sequence space (	(ζ ,η))μ
equipped with the function μ are considered.

Definition 3.1 Let (ζj), (ηj) ∈ (0,∞)Z+ . The sequence space (	(ζ ,η))μ with the function
μ is defined by: (	(ζ ,η))μ = {λ = (λj) ∈ CZ

+ : μ(ρλ) < ∞, for some ρ > 0}, where μ(λ) =
∑∞

j=0(ζj|∑j
l=0 λl|)ηj .

Theorem 3.2 Let (ηj) ∈ (0,∞)Z+ ∩ �∞, then we have

(
	(ζ ,η)

)
μ

=
{
λ = (λj) ∈ C

Z
+ : μ(ρλ) < ∞, for any ρ > 0

}
.
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Proof Suppose (ηj) ∈ (0,∞)Z+ ∩ �∞, we have

(
	(ζ ,η)

)
μ

=
{
λ = (λj) ∈ C

Z
+

: μ(ρλ) < ∞, for some ρ > 0
}

=

{

λ = (λj) ∈ C
Z

+
:

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

ρλl

∣∣∣∣∣

)ηj

< ∞, for some ρ > 0

}

=

{

λ = (λj) ∈ C
Z

+
: inf

j
ρηj

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl

∣∣∣∣∣

)ηj

< ∞, for some ρ > 0

}

=

{

λ = (λj) ∈ C
Z

+
:

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl

∣∣∣∣∣

)ηj

< ∞
}

=
{
λ = (λj) ∈ C

Z
+

: μ(ρλ) < ∞, for any ρ > 0
}

. �

Remark 3.3 Assume ηj = η, ζj = 1
j+1 , for every j ∈ Z

+ and η ≥ 1, then 	(ζ ,η) = cesη , as
defined and studied by Ng and Lee [36].

Theorem 3.4 If (ηj) ∈ (0,∞)Z+ ∩ �∞, one has that (	(ζ ,η))μ is a nonabsolute type.

Proof Let λ = (1, –1, 0, 0, 0, . . .), then |λ| = (1, 1, 0, 0, 0, . . .). One has

μ(λ) = ζ
η0
0 �= ζ

η0
0 + (2ζ1)η1 + (2ζ2)η2 + . . . = μ

(|λ|).

Therefore, the sequence space (	(ζ ,η))μ is a nonabsolute type. �

Definition 3.5 ([37]) Assume (ζj), (ηj) ∈ (0,∞)Z+ . The generalized Nakano sequence
space, (�(ζ ,η))ϕ , is defined as: (�(ζ ,η))ϕ = {λ = (λj) ∈ CZ

+ : ϕ(ρλ) < ∞, for someρ > 0},
where ϕ(λ) =

∑∞
j=0(ζj

∑j
l=0 |λl|)ηj .

Theorem 3.6 If (ζj), (ηj) ∈ (0,∞)Z+ ∩ �∞ with (ζj) ∈ �((ηj)) and ((j + 1)ζj) /∈ �(ηj), one has
(�(ζ ,η))ϕ � (	(ζ ,η))μ.

Proof Suppose λ ∈ (�(ζ ,η))ϕ , as

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl

∣∣∣∣∣

)ηj

≤
∞∑

j=0

(

ζj

j∑

l=0

|λl|
)ηj

< ∞.

Therefore, λ ∈ (	(ζ ,η))μ. We take β = ((–1)j)j∈Z+ , we have β ∈ (	(ζ ,η))μ and β /∈
(�(ζ ,η))ϕ . �

4 Premodular private sequence space
In this section, we explain the enough setups on 	(ζ ,η) with definite function μ to be
premodular pss. This implies that 	(ζ ,η) is a prequasinormed pss.

Theorem 4.1 	(ζ ,η) is a pss, if the next setups are verified:
(f 1) (ηj) ∈ �↗ ∩ �∞ with η0 > 0.
(f 2) (ζj)∞j=0 ∈ (0,∞)Z+ ∩ �((ηj)).
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Proof (1-i) Assume λ,β ∈ 	(ζ ,η). One obtains

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl + βl

∣∣∣∣∣

)ηj

≤ 2�–1

( ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl

∣∣∣∣∣

)ηj

+
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

βl

∣∣∣∣∣

)ηj)

< ∞,

hence, λ + β ∈ 	(ζ ,η).
(1-ii) Let ρ ∈ C, λ ∈ 	(ζ ,η) and as (ηj) ∈ �↗ ∩ �∞, we have

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

ρλl

∣∣∣∣∣

)ηj

≤ sup
j

|ρ|ηj
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl

∣∣∣∣∣

)ηj

< ∞.

Then, ρλ ∈ 	(ζ ,η). From setups (1-i) and (1-ii), we have that 	(ζ ,η) is a linear space.
As (ηj) ∈ �↗ ∩ �∞ and η0 > 0, one has

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

(eb)l

∣∣∣∣∣

)ηj

=
∞∑

j=b

ζ
ηj
j < ∞.

Therefore, eb ∈ 	(ζ ,η), for every b ∈ Z
+.

(2) Suppose |λb| ≤ |βb|, with b ∈ Z
+ and |β| ∈ 	(ζ ,η). One has

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

|λl|
∣∣∣∣∣

)ηj

≤
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

|βl|
∣∣∣∣∣

)ηj

< ∞,

hence |λ| ∈ 	(ζ ,η).
(3) Let (|λj|) ∈ 	(ζ ,η), with (ηj) ∈ �↗ ∩ �∞, we have

∞∑

j=0

(

ζj

j∑

l=0

|λ[ l
2 ]|

)ηj

=
∞∑

j=0

(

ζ2j

2j∑

l=0

|λ[ l
2 ]|

)η2j

+
∞∑

j=0

(

ζ2j+1

2j+1∑

l=0

|λ[ l
2 ]|

)η2j+1

≤
∞∑

j=0

(

ζj

(

|λj| +
j∑

l=0

2|λl|
))ηj

+
∞∑

j=0

(

ζj

( j∑

l=0

2|λl|
))ηj

≤ 2�–1

( ∞∑

j=0

(

ζj

j∑

l=0

|λl|
)ηj

+
∞∑

j=0

(

2ζj

j∑

l=0

|λl|
)ηj)

+
∞∑

j=0

(

2ζj

j∑

l=0

|λl|
)ηj

≤ (
22�–1 + 2�–1 + 2�

) ∞∑

j=0

(

ζj

j∑

l=0

|λl|
)ηj

< ∞,

therefore (|λ[ j
2 ]|) ∈ 	(ζ ,η). �

In view of Theorem 2.9, we conclude the next Theorem.

Theorem 4.2 Suppose the setups (f 1) and (f 2) are verified, one has Bs
	(ζ ,η) is a mappings

ideal.
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Theorem 4.3 (	(ζ ,η))μ is a premodular pss, if the setups (f 1) and (f 2) are confirmed.

Proof (i) Definitely, μ(λ) ≥ 0 and μ(|λ|) = 0 ⇔ λ = θ .
(ii) There are E0 = max{1, supj |ρ|ηj–1} ≥ 1 with μ(ρλ) ≤ E0|ρ|μ(λ), for each λ ∈ 	(ζ ,η)

and ρ ∈ C.
(iii) The inequality μ(λ + β) ≤ 2�–1(μ(λ) + μ(β)) explains this, with λ,β ∈ 	(ζ ,η).
(iv) Clearly, from the proof part (2) of Theorem 4.1.
(v) Obviously, from the proof part (3) of Theorem D0 ≥ 22�–1 + 2�–1 + 2� ≥ 1.
(vi) It is clear that F = 	(ζ ,η).
(vii) One has 0 < � ≤ supj |ρ|ηj–1 with μ(ρ, 0, 0, 0, . . .) ≥ � |ρ|μ(1, 0, 0, 0, . . .), for each ρ �=

0 and � > 0, if ρ = 0. �

Theorem 4.4 Assume the setups (f 1) and (f 2) are satisfied, then (	(ζ ,η))μ is a prequasi-
Banach pss.

Proof According to Theorem 4.3, the space (	(ζ ,η))μ is a premodular pss. According to
Theorem 2.12, the space (	(ζ ,η))μ is a prequasinormed pss. To show that (	(ζ ,η))μ is a
prequasi-Banach pss, assume λa = (λa

j )∞j=0 is a Cauchy sequence in (	(ζ ,η))μ, one has for
all ε ∈ (0, 1) that there is a0 ∈ Z

+ so that for all a, b ≥ a0, one has

μ
(
λa – λb) =

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λa
l – λb

l

∣∣∣∣∣

)ηj

< ε�.

Hence, for a, b ≥ a0 and j ∈ Z
+, we have |λa

j – λb
j | < ε. Hence, (λb

j ) is a Cauchy sequence in
C, for fixed j ∈ Z

+, which gives limb→∞ λb
j = λ0

j , for fixed j ∈ Z
+. Therefore, μ(λa – λ0) < ε�,

for all a ≥ a0. Moreover, to show that λ0 ∈ (	(ζ ,η))μ, one obtains μ(λ0) ≤ 2�–1(μ(λa –
λ0) + μ(λa)) < ∞, then λ0 ∈ (	(ζ ,η))μ, which implies that (	(ζ ,η))μ is a prequasi-Banach
pss. �

In view of Theorem 2.21, we conclude the following behaviors of the s-type (	(ζ ,η))μ.

Theorem 4.5 Let s-type (	(ζ ,η))μ := {λ = (sj(V )) ∈ RZ
+ : V ∈ B(N ,M)andμ(λ) < ∞}.

The next conditions are confirmed:
1. One has s-type (	(ζ ,η))μ ⊃ F.
2. Suppose (sj(V1))∞j=0 ∈ s-type (	(ζ ,η))μ and (sj(V2))∞j=0 ∈ s-type (	(ζ ,η))μ, then

(sj(V1 + V2))∞j=0 ∈ s-type (	(ζ ,η))μ.
3. For every r ∈ C and (sj(V ))∞j=0 ∈ s-type (	(ζ ,η))μ, then |r|(sj(V ))∞j=0 ∈ s-type (	(ζ ,η))μ.
4. The s-type (	(ζ ,η))μ is solid.

5 Multiplication mappings on (�(ζ ,η))μ
In this section, we perform the multiplication mapping on pss, (	(ζ ,η))μ, and explain the
necessity and enough setups on (	(ζ ,η))μ so that the multiplication mapping is bounded,
invertible, approximable, Fredholm, and closed range.

Theorem 5.1 Fix ϑ ∈ CZ
+ , the setups (f 1) and (f 2) are satisfied, and one has

ϑ ∈ �∞ ⇐⇒ Lϑ ∈B
((

	(ζ ,η)
)
μ

)
.
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Proof Let ϑ ∈ �∞. Hence, there is ν > 0 so that |ϑj| ≤ ν , for every j ∈ Z
+. Assume λ ∈

(	(ζ ,η))μ, one obtains

μ(Lϑλ) = μ(ϑλ)

=
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

ϑlλl

∣∣∣∣∣

)ηj

≤
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

νλl

∣∣∣∣∣

)ηj

≤ sup
j

νηj
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl

∣∣∣∣∣

)ηj

= sup
j

νηjμ(λ).

Therefore, Lϑ ∈B((	(ζ ,η))μ).
Next, assume Lϑ ∈ B((	(ζ ,η))μ) and ϑ /∈ �∞. Hence, for all b ∈ Z

+, there are jb ∈ Z
+ so

that ϑjb > b. We have

μ(Lϑejb ) = μ(ϑejb ) =
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

ϑl(ejb )l

∣∣∣∣∣

)ηj

=
∞∑

j=jb

(
ζj|ϑjb |

)ηj >
∞∑

j=jb

(ζjb)ηj > bη0μ(ejb ).

Then, Lϑ /∈B((	(ζ ,η))μ). Hence, ϑ ∈ �∞. �

Theorem 5.2 Suppose ϑ ∈ CZ
+ and (	(ζ ,η))μ is a prequasinormed pss. Hence ϑj = g , for

every j ∈ Z
+ and g ∈ C with |g| = 1, if and only if, Lϑ is an isometry.

Proof Let the enough setup be confirmed. One obtains

μ(Lϑλ) = μ(ϑλ) =
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

k=0

ϑkλk

∣∣∣∣∣

)ηj

=
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

k=0

|g|λk

∣∣∣∣∣

)ηj

= μ(λ),

for every λ ∈ (	(ζ ,η))μ. Therefore, Lϑ is an isometry.
Suppose the necessity setup is verified and |ϑj| < 1, for some j = j0. We obtain

μ(Lϑej0 ) = μ(ϑej0 ) =
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

k=0

ϑk(ej0 )k

∣∣∣∣∣

)ηj

=
∞∑

j=j0

(
ζj|ϑj0 |

)ηj <
∞∑

j=j0

ζ
ηj
j = μ(ej0 ).

Also, when |ϑj0 | > 1, obviously, μ(Lϑej0 ) > μ(ej0 ). This gives a contradiction for the two
cases. Therefore, |ϑj| = 1, for all j ∈ Z

+. �

Theorem 5.3 Assume ϑ ∈ CZ
+ , the setups (f 1) and (f 2) are confirmed. Hence, Lϑ ∈

A((	(ζ ,η))μ), if and only if, (ϑb)∞b=0 ∈ c0.

Proof Let Lϑ ∈ A((	(ζ ,η))μ), then Lϑ ∈ K((	(ζ ,η))μ). Assume limj→∞ ϑj �= 0. Therefore,
we have � > 0 such that the set K� = {j ∈ Z

+ : |ϑj| ≥ �} � I. Let {αj}j∈Z+ ⊂ K� . Hence,
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{eαj : αj ∈ K�} ∈ �∞ is an infinite set in (	(ζ ,η))μ. Since

μ(Lϑeαa – Lϑeαb ) = μ(ϑeαa – ϑeαb )

=
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

k=0

ϑk
(
(eαa )k – (eαb )k

)
∣∣∣∣∣

)ηj

≥
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

k=0

�
(
(eαa )k – (eαb )k

)
∣∣∣∣∣

)ηj

≥ inf
j

�ηjμ(eαa – eαb ),

for every αa,αb ∈ K� . Therefore, {eαb : αb ∈ K�} ∈ �∞, which cannot have a convergent
subsequence under Lϑ . Hence, Lϑ /∈ K((	(ζ ,η))μ). This gives Lϑ /∈ A((	(ζ ,η))μ), hence
suggesting a contradiction. Hence, limj→∞ ϑj = 0. On the contrary, assume limj→∞ ϑj = 0.
Then, for all � > 0, one has K� = {j ∈ Z

+ : |ϑj| ≥ �} ⊂ I. Then, for every � > 0, we obtain
dim(((	(ζ ,η))μ)K� ) = dim(CK� ) < ∞. Hence, Lϑ ∈ F(((	(ζ ,η))μ)K� ). Let ϑa ∈ CZ

+ , for every
a ∈ Z

+, where

(ϑa)b =

⎧
⎨

⎩
ϑb, b ∈ K 1

a+1
,

0, otherwise.

Obviously, Lϑa ∈ F(((	(ζ ,η))μ)B 1
a+1

) such as dim(((	(ζ ,η))μ)B 1
a+1

) < ∞, for all a ∈ Z
+.

Since (ηj) ∈ �↗ ∩ �∞ with η0 > 0, we obtain

μ
(
(Lϑ – Lϑa )λ

)

= μ
(((

ϑb – (ϑa)b
)
λb

)∞
b=0

)

=
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

b=0

(
ϑb – (ϑa)b

)
λb

∣∣∣∣∣

)ηj

=
∞∑

j=0,j∈K 1
a+1

(

ζj

∣∣∣∣∣

j∑

b=0

(
ϑb – (ϑa)b

)
λb

∣∣∣∣∣

)ηj

+
∞∑

j=0,j /∈K 1
a+1

(

ζj

∣∣∣∣∣

j∑

b=0

(
ϑb – (ϑa)b

)
λb

∣∣∣∣∣

)ηj

=
∞∑

j=0,j /∈K 1
a+1

(

ζj

∣∣∣∣∣

j∑

b=0

ϑbλb

∣∣∣∣∣

)ηj

≤ 1
(a + 1)η0

∞∑

j=0,j /∈K 1
a+1

(

ζj

∣∣∣∣∣

j∑

b=0

λb

∣∣∣∣∣

)ηj

<
1

(a + 1)η0

∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

b=0

λb

∣∣∣∣∣

)ηj

=
1

(a + 1)η0
μ(λ).

Hence, ‖Lϑ – Lϑa‖ ≤ 1
(a+1)η0 , which explains Lϑ is a limit of finite-rank mappings. Then,

Lϑ ∈A((	(ζ ,η))μ). �

Theorem 5.4 Suppose ϑ ∈ CZ
+ , the setups (f 1) and (f 2) are verified. Hence, Lϑ ∈

K((	(ζ ,η))μ), if and only if, (ϑj)∞j=0 ∈ c0.

Proof Obviously, since A((	(ζ ,η))μ) � K((	(ζ ,η))μ). �
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Corollary 5.5 If the setups (f 1) and (f 2) are confirmed, then K((	(ζ ,η))μ) �

B((	(ζ ,η))μ).

Proof As ϑ = (1, 1, . . .) creates the multiplication mapping I on (	(ζ ,η))μ, which gives
I /∈ K((	(ζ ,η))μ) and I ∈ B((	(ζ ,η))μ). �

Theorem 5.6 If (	(ζ ,η))μ is a prequasi-Banach pss and Lϑ ∈ B((	(ζ ,η))μ). Hence, there
is p > 0 and q > 0 such that p < |ϑj| < q, with j ∈ (ker(ϑ))c, if and only if, Range(Lϑ ) is closed.

Proof Suppose the enough set-up is verified. Hence, there is � > 0 so that |ϑj| ≥ �, for all
j ∈ (ker(ϑ))c. To show that Range(Lϑ ) is closed, assume g is a limit point of Range(Lϑ ). We
have Lϑλj ∈ (	(ζ ,η))μ, for every j ∈ Z

+ so that limj→∞ Lϑλj = g . Obviously, the sequence
Lϑλj is a Cauchy sequence. As (ηj) ∈ �↗ ∩ �∞ with η0 > 0, one has

μ(Lϑλa – Lϑλb)

=
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

k=0

(
ϑk(λa)k – ϑk(λb)k

)
∣∣∣∣∣

)ηj

=
∞∑

j=0,j∈(ker(ϑ))c

(

ζj

∣∣∣∣∣

j∑

k=0

(
ϑk(λa)k – ϑk(λb)k

)
∣∣∣∣∣

)ηj

+
∞∑

j=0,j /∈(ker(ϑ))c

(

ζj

∣∣∣∣∣

j∑

k=0

(
ϑk(λa)k – ϑk(λb)k

)
∣∣∣∣∣

)ηj

≥
∞∑

j=0,j∈(ker(ϑ))c

(

ζj

∣∣∣∣∣

j∑

k=0

(
ϑk(λa)k – ϑk(λb)k

)
∣∣∣∣∣

)ηj

=
∞∑

j=0

(

ζj

∣∣∣∣
∣

j∑

k=0

(
ϑk(ua)k – ϑk(ub)k

)
∣∣∣∣∣

)ηj

>
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

k=0

�
(
(ua)k – (ub)k

)
∣∣∣∣∣

)ηj

≥ inf
j

�ηjμ(ua – ub),

where

(ua)j =

⎧
⎨

⎩
(λa)j, j ∈ (ker(ϑ))c,

0, j /∈ (ker(ϑ))c.

Hence, {ua} is a Cauchy sequence in (	(ζ ,η))μ. As (	(ζ ,η))μ is complete, there is λ ∈
(	(ζ ,η))μ so that limj→∞ uj = λ. Since Lϑ ∈ B((	(ζ ,η))μ), we have limj→∞ Lϑuj = Lϑλ.
However, limj→∞ Lϑuj = limj→∞ Lϑλj = g . Then, Lϑλ = g . Hence, g ∈ Range(Lϑ ). Hence,
Range(Lϑ ) is closed. Then, assume the necessity setup is satisfied. Hence, there is � > 0 so
that μ(Lϑλ) ≥ �μ(λ), with λ ∈ ((	(ζ ,η))μ)(ker(ϑ))c . If K = {j ∈ (ker(ϑ))c : |ϑj| < �} �= ∅, then
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for a0 ∈ K , one obtains

μ(Lϑea0 ) = μ
((

ϑb(ea0 )b
))∞

b=0)

=
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

b=0

ϑb(ea0 )b

∣∣∣∣∣

)ηj

<
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

b=0

(ea0 )b�

∣∣∣∣∣

)ηj

≤ sup
j

�ηjμ(ea0 ),

which gives a contradiction. Hence, K = φ, and we have |ϑj| ≥ �, with j ∈ (ker(ϑ))c. This
proves the theorem. �

Theorem 5.7 Assume ϑ ∈ CZ
+ and (	(ζ ,η))μ is a prequasi-Banach pss. Hence, there are

p > 0 and q > 0 so that p < |ϑj| < q, for all j ∈ Z
+, if and only if, Lϑ ∈B((	(ζ ,η))μ) is invert-

ible.

Proof Assume the enough setup is verified. Let κ ∈ CZ
+ with κj = 1

ϑj
. In view of Theo-

rem 5.1, the mappings Lϑ and Lκ are bounded linear. Hence, Lϑ .Lκ = Lκ .Lϑ = I . Hence, Lκ =
L–1

ϑ . Now, assume Lϑ is invertible. Hence, Range(Lϑ ) = ((	(ζ ,η))μ)Z+ . Hence, Range(Lϑ )
is closed. From Theorem 5.6, there is p > 0 so that |ϑj| ≥ p, for every j ∈ (ker(ϑ))c. We
have ker(ϑ) = ∅, when ϑj0 = 0, with j0 ∈ Z

+, which explains ej0 ∈ ker(Lϑ ), this gives an in-
consistency, as ker(Lϑ ) is trivial. Therefore, |ϑj| ≥ p, for every j ∈ Z

+. Since Lϑ ∈ �∞. From
Theorem 5.1, there is q > 0 so that |ϑj| ≤ q, for every j ∈ Z

+. Therefore, one has p ≤ |ϑj| ≤ q,
with j ∈ Z

+. �

Theorem 5.8 Let (	(ζ ,η))μ be a prequasi-Banach pss and Lϑ ∈ B((	(ζ ,η))μ). Hence,
Lϑ is a Fredholm mapping, if and only if, (i) ker(ϑ) � Z

+ is finite and (ii) |ϑj| ≥ �, with
j ∈ (ker(ϑ))c.

Proof Suppose the enough condition is confirmed. Assume ker(ϑ) �Z
+ is infinite, hence

ej ∈ ker(Lϑ ), for every j ∈ ker(ϑ). Since ejs are linearly independent, one obtains that
dim(ker(Lϑ )) = ∞, which suggests an inconsistency. Hence, ker(ϑ) � Z

+ must be finite.
The condition (ii) follows from Theorem 5.6. Next, suppose the conditions (i) and (ii) are
verified. From Theorem 5.6, the condition (ii) implies that Range(Lϑ ) is closed. The con-
dition (i) gives that dim(ker(Lϑ )) < ∞ and dim((Range(Lϑ ))c) < ∞. Therefore, Lϑ is Fred-
holm. �

6 Prequasi ideal behavior
In this section, first we investigate the enough (not necessary) setups on (	(ζ ,η))μ such
that F = Bs

(	(ζ ,η))μ . This gives a negative answer to Rhoades [31] open problem about the
linearity of s-type (	(ζ ,η))μ spaces. Secondly, we ask for which conditions on (	(ζ ,η))μ,
are Bs

(	(ζ ,η))μ complete and closed? Thirdly, we explain the enough setups on (	(ζ ,η))μ
such that Bα

(	(ζ ,η))μ is strictly contained for different weights and powers. We offer the
setups so that Bα

(	(ζ ,η))μ is minimum. Fourthly, we explain the conditions so that the class
Bs

(	(ζ ,η))μ is simple. Fifthly, we introduce the enough conditions on (	(ζ ,η))μ such that the
space of all bounded linear mappings which sequence of eigenvalues in (	(ζ ,η))μ equals
Bs

(	(ζ ,η))μ .
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6.1 Finite rank prequasi ideal
Theorem 6.1 Bs

(	(ζ ,η))μ (N ,M) = F(N ,M), if the setups (f 1) and (f 2) are verified. But the
converse is not necessarily true.

Proof To show that F(N ,M) ⊆ Bs
(	(ζ ,η))μ (N ,M). As ej ∈ (	(ζ ,η))μ, for every j ∈ Z

+

and (	(ζ ,η))μ is a linear space. Suppose Z ∈ F(N ,M), one has (sj(Z))∞j=0 ∈ F. To show
that Bs

(	(ζ ,η))μ (N ,M) ⊆ F(N ,M), assume Z ∈ Bs
(	(ζ ,η))μ (N ,M), we have (sj(Z))∞j=0 ∈

(	(ζ ,η))μ. As μ(sj(Z))∞j=0 < ∞, assume ρ ∈ (0, 1), then there is q0 ∈ Z
+ – {0} with

μ((sq(Z))∞q=q0 ) < ρ

2�+3ηd , for some d ≥ 1, where η = max{1,
∑∞

q=q0
ζ

ηq
q }. Since sj(Z) is de-

creasing, we have

2q0∑

q=q0+1

(

ζq

q∑

j=0

s2q0 (Z)

)ηq

≤
2q0∑

q=q0+1

(

ζq

q∑

j=0

sj(Z)

)ηq

≤
∞∑

q=q0

(

ζq

q∑

j=0

sj(Z)

)ηq

<
ρ

2�+3ηd
. (2)

Hence, there is Y ∈ F2q0 (N ,M) so that rank(Y ) ≤ 2q0 and

3q0∑

q=2q0+1

(

ζq

q∑

j=0

‖Z – Y‖
)ηq

≤
2q0∑

q=q0+1

(

ζq

q∑

j=0

‖Z – Y‖
)ηq

<
ρ

2�+3ηd
, (3)

since (ηq) ∈ �↗ ∩ �∞, we have

∞
sup
q=q0

( q0∑

j=0

‖Z – Y‖
)ηq

<
ρ

22�+2η
. (4)

Therefore, one has

q0∑

q=0

(

ζq

q∑

j=0

‖Z – Y‖
)ηq

<
ρ

2�+3ηd
. (5)

In view of inequalities (1)–(5), one has

d(Z, Y ) = μ
(
sj(Z – Y )

)∞
j=0

=
3q0–1∑

q=0

(

ζq

q∑

j=0

sj(Z – Y )

)ηq

+
∞∑

q=3q0

(

ζq

q∑

j=0

sj(Z – Y )

)ηq

≤
3q0∑

q=0

(

ζq

q∑

j=0

‖Z – Y‖
)ηq

+
∞∑

q=q0

(

ζq+2q0

q+2q0∑

j=0

sj(Z – Y )

)ηq+2q0

≤
3q0∑

q=0

(

ζq

q∑

j=0

‖Z – Y‖
)ηq

+
∞∑

q=q0

(

ζq

q+2q0∑

j=0

sj(Z – Y )

)ηq

≤ 3
q0∑

q=0

(

ζq

i∑

j=0

‖Z – Y‖
)ηq

+
∞∑

q=q0

(

ζq

(2q0–1∑

j=0

sj(Z – Y ) +
q+2q0∑

j=2q0

sj(Z – Y )

))ηq
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≤ 3
q0∑

q=0

(

ζq

q∑

j=0

‖Z – Y‖
)ηq

+ 2�–1

[ ∞∑

q=q0

(

ζq

2q0–1∑

j=0

sj(Z – Y )

)ηq

+
∞∑

q=q0

(

ζq

q+2q0∑

j=2q0

sj(Z – Y )

)ηq]

≤ 3
q0∑

q=0

(

ζq

q∑

j=0

‖Z – Y‖
)ηq

+ 2�–1

[ ∞∑

q=q0

(

ζq

2q0–1∑

j=0

‖Z – Y‖
)ηq

+
∞∑

q=q0

(

ζq

q∑

j=0

sj+2q0 (Z – Y )

)ηq]

≤ 3
q0∑

q=0

(

ζq

q∑

j=0

‖Z – Y‖
)ηq

+ 2�–1 ∞
sup
q=q0

(2q0–1∑

j=0

‖Z – Y‖
)ηq ∞∑

q=q0

ζ
ηq
q

+ 2�–1
∞∑

q=q0

(

ζq

q∑

j=0

sj(Z)

)ηq

< ρ.

Contrarily, one has a counter example as I4 ∈Bs
(�(ζ ,(0)))μ (N ,M), but η0 > 0 is not verified.

This implies the proof. �

6.2 Banach and closed prequasi ideal
Theorem 6.2 Let the setups (f 1) and (f 2) be confirmed, hence (Bs

(	(ζ ,η))μ ,�) is a prequasi-
Banach ideal, where �(X) = μ((sj(X))∞j=0).

Proof As (	(ζ ,η))μ is a premodular pss, from Theorem 2.13, � is a prequasinorm on
Bs

(	(ζ ,η))μ . Assume (Xj)j∈Z+ is a Cauchy sequence in Bs
(	(ζ ,η))μ (N ,M). As B(N ,M) ⊇

Bs
(	(ζ ,η))μ (N ,M), one has

�(Xa – Xb) =
∞∑

j=0

(

ζj

j∑

l=0

sl(Xa – Xb)

)ηj

≥ (
ζ0‖Xa – Xb‖

)η0 ,

hence (Xb)b∈Z+ is a Cauchy sequence in B(N ,M). Since B(N ,M) is a Banach space, then
there is X ∈ B(N ,M) with limb→∞ ‖Xb – X‖ = 0. Since (sj(Xb))∞j=0 ∈ (	(ζ ,η))μ, for every
b ∈ Z

+. In view of Definition 2.10, setups (ii), (iii), and (v), one obtains

�(X) =
∞∑

j=0

(

ζj

j∑

l=0

sl(X)

)ηj

≤ 2�–1
∞∑

j=0

(

ζj

j∑

l=0

s[ l
2 ](X – Xb)

)ηj

+ 2�–1
∞∑

j=0

(

ζj

j∑

l=0

s[ l
2 ](Xb)

)ηj

≤ 2�–1
∞∑

j=0

(

ζj

j∑

l=0

‖X – Xb‖
)ηj

+ 2�–1D0

∞∑

j=0

(

ζj

j∑

l=0

sl(Xb)

)ηj

< ∞.

Therefore, (sj(X))∞j=0 ∈ (	(ζ ,η))μ, then X ∈Bs
(	(ζ ,η))μ (N ,M). �
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Theorem 6.3 Assume N and M are normed spaces, the setups (f 1) and (f 2) are verified,
hence (Bs

(	(ζ ,η))μ ,�) is a prequasi closed ideal, where �(X) = μ((sj(X))∞j=0).

Proof As (	(ζ ,η))μ is a premodular pss, by using Theorem 2.13, then � is a prequasinorm
on Bs

(	(ζ ,η))μ . Suppose Xb ∈Bs
(	(ζ ,η))μ (N ,M), for every b ∈ Z

+ and limb→∞ �(Xb – X) = 0.
As B(N ,M) ⊇Bs

(	(ζ ,η))μ (N ,M), we have

�(X – Xb) =
∞∑

j=0

(

ζj

j∑

l=0

sl(X – Xb)

)ηj

≥ (
ζ0‖X – Xb‖

)η0 ,

hence (Xb)b∈Z+ is a convergent sequence in B(N ,M). Since (sj(Xb))∞j=0 ∈ (	(ζ ,η))μ, for
every b ∈ Z

+. By using Definition 2.10, setups (ii), (iii), and (v), one obtains

�(X) =
∞∑

j=0

(

ζj

j∑

l=0

sl(X)

)ηj

≤ 2�–1
∞∑

j=0

(

ζj

j∑

l=0

s[ l
2 ](X – Xb)

)ηj

+ 2�–1
∞∑

j=0

(

ζj

j∑

l=0

s[ l
2 ](Xb)

)ηj

≤ 2�–1
∞∑

j=0

(

ζj

j∑

l=0

‖X – Xb‖
)ηj

+ 2�–1D0

∞∑

j=0

(

ζj

j∑

l=0

sl(Xb)

)ηj

< ∞.

Then, (sj(X))∞j=0 ∈ (	(ζ ,η))μ, and hence X ∈Bs
(	(ζ ,η))μ (N ,M). �

6.3 Minimum prequasi ideal
Theorem 6.4 Suppose N and M are Banach spaces with dim(N ) = dim(M) = ∞, and
the setups (f 1) and (f 2) are confirmed with 0 < η

(1)
j < η

(2)
j and 0 < ζ

(2)
j ≤ ζ

(1)
j , for all j ∈ Z

+,
then

B
s
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M) �B
s
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M) �B(N ,M).

Proof Let Z ∈Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M), hence (sj(Z)) ∈ (�((ζ (1)
j ), (η(1)

j )))μ. One obtains

∞∑

j=0

(

ζ
(2)
j

j∑

q=0

sq(Z)

)η
(2)
j

<
∞∑

j=0

(

ζ
(1)
j

j∑

q=0

sq(Z)

)η
(1)
j

< ∞,

then Z ∈Bs
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M). Now, if we choose (sj(Z))∞j=0 with
∑j

q=0 sq(Z) = 1

ζ
(1)
j

η
(1)
j
√

j+1
,

we have Z ∈B(N ,M) such that

∞∑

j=0

(

ζ
(1)
j

j∑

q=0

sq(Z)

)η
(1)
j

=
∞∑

j=0

1
j + 1

= ∞,
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and

∞∑

j=0

(

ζ
(2)
j

j∑

q=0

sq(Z)

)η
(2)
j

≤
∞∑

j=0

(

ζ
(1)
j

j∑

q=0

sq(Z)

)η
(2)
j

=
∞∑

j=0

(
1

j + 1

) η
(2)
j

η
(1)
j < ∞.

Then, Z /∈Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M) and Z ∈Bs
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M).

Clearly, Bs
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M) ⊂ B(N ,M). Next, if we put (sj(Z))∞j=0 such that
∑j

q=0 sq(Z) = 1

ζ
(2)
j

η
(2)
j
√

j+1
. We have Z ∈B(N ,M) such that Z /∈Bs

(�((ζ (2)
j ),(η(2)

j )))μ
(N ,M). This

finishes the proof. �

Theorem 6.5 Assume N and M are Banach spaces with dim(N ) = dim(M) = ∞, and the
setups (f 1) and (f 2) are satisfied with ((j + 1)ζj)j∈Z+ /∈ �((ηj)), hence Bα

(	(ζ ,η))μ is minimum.

Proof Assume the enough setups are confirmed. Then, (Bα
	(ζ ,η),�), where �(Z) =

∑∞
j=0(ζj

∑j
q=0 αq(Z))ηj , is a prequasi-Banach ideal. Suppose Bα

	(ζ ,η)(N ,M) = B(N ,M),
then there is η > 0 with �(Z) ≤ η‖Z‖, for every Z ∈ B(N ,M). By using Dvoretzky’s theo-
rem [38], for every b ∈ Z

+, one has quotient spaces N /Yb and subspaces Mb of M that can
be mapped onto �b

2 by isomorphisms Vb and Xb with ‖Vb‖‖V –1
b ‖ ≤ 2 and ‖Xb‖‖X–1

b ‖ ≤ 2.
If Ib is the identity mapping on �b

2, Tb is the quotient mapping from N onto N /Yb, and Jb

is the natural embedding mapping from Mb into M. Suppose mq is the Bernstein number
[4] then

1 = mq(Ib) = mq
(
XbX–1

b IbVbV –1
b

)

≤ ‖Xb‖mq
(
X–1

b IbVb
)∥∥V –1

b
∥∥

= ‖Xb‖mq
(
JbX–1

b IbVb
)∥∥V –1

b
∥∥

≤ ‖Xb‖dq
(
JbX–1

b IbVb
)∥∥V –1

b
∥∥

= ‖Xb‖dq
(
JbX–1

b IbVbTb
)∥∥V –1

b
∥∥

≤ ‖Xb‖αq
(
JbX–1

b IbVbTb
)∥∥V –1

b
∥∥,

for 0 ≤ j ≤ b. We have

ζj(j + 1) ≤ ζj

j∑

q=0

‖Xb‖αq
(
JbX–1

b IbVbTb
)∥∥V –1

b
∥∥

⇒ (
ζj(j + 1)

)ηj ≤ (‖Xb‖
∥∥V –1

b
∥∥)ηj

(

ζj

j∑

q=0

αq
(
JbX–1

b IbVbTb
)
)ηj

.

Hence, for some � ≥ 1, one obtains

b∑

j=0

(
ζj(j + 1)

)ηj ≤ �‖Xb‖
∥∥V –1

b
∥∥

b∑

j=0

(

ζj

j∑

q=0

αq
(
JbX–1

b IbVbTb
)
)ηj

⇒
b∑

j=0

(
ζj(j + 1)

)ηj ≤ �‖Xb‖
∥∥V –1

b
∥∥�

(
JbX–1

b IbVbTb
)
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⇒
b∑

j=0

(
ζj(j + 1)

)ηj ≤ �η‖Xb‖
∥∥V –1

b
∥∥∥∥JbX–1

b IbVbTb
∥∥

⇒
b∑

j=0

(
ζj(j + 1)

)ηj ≤ �η‖Xb‖
∥∥V –1

b
∥∥∥∥JbX–1

b
∥∥‖Ib‖‖VbTb‖

= �η‖Xb‖
∥∥V –1

b
∥∥∥∥X–1

b
∥∥‖Ib‖‖Vb‖ ≤ 4�η.

Hence, there is a contradiction, if b → ∞. Therefore, N and M both cannot be infinite
dimensional if Bα

	(ζ ,η)(N ,M) = B(N ,M). This completes the proof. �

Theorem 6.6 Suppose N and M are Banach spaces with dim(N ) = dim(M) = ∞, and
the setups (f 1) and (f 2) are confirmed with (ζj(j + 1))j∈Z+ /∈ �((ηj)), then Bd

	(ζ ,η) is minimum.

6.4 Simple Banach prequasi ideal
Theorem 6.7 Let N and M be Banach spaces with dim(N ) = dim(M) = ∞, and the se-
tups (f 1) and (f 2) be confirmed with 0 < η

(1)
j < η

(2)
j and 0 < ζ

(2)
j ≤ ζ

(1)
j , for all j ∈ Z

+, hence

B
(
B

s
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M),Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M)
)

= A
(
B

s
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M),Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M)
)
.

Proof Assume X ∈ B(Bs
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M),Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M)) and X /∈
A(Bs

(�((ζ (2)
j ),(η(2)

j )))μ
(N ,M),Bs

(�((ζ (1)
j ),(η(1)

j )))μ
(N ,M)). By using Lemma 2.1, we have Y ∈

B(Bs
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M)) and Z ∈ B(Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M)) with ZXYIb = Ib. Hence,

for every b ∈ Z
+, we obtain

‖Ib‖Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M) =
∞∑

j=0

(

ζ
(1)
j

j∑

q=0

sq(Ib)

)η
(1)
j

≤ ‖ZXY‖‖Ib‖Bs
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M)

≤
∞∑

j=0

(

ζ
(2)
j

j∑

q=0

sq(Ij)

)η
(2)
j

.

This fails Theorem 6.4. Hence, X ∈ A(Bs
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M),Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M)),

which completes the proof. �

Corollary 6.8 Assume N and M are Banach spaces with dim(N ) = dim(M) = ∞, and
the setups (f 1) and (f 2) are satisfied with 0 < η

(1)
j < η

(2)
j and 0 < ζ

(2)
j ≤ ζ

(1)
j , for all j ∈ Z

+,
then

B
(
B

s
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M),Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M)
)

= K
(
B

s
(�((ζ (2)

j ),(η(2)
j )))μ

(N ,M),Bs
(�((ζ (1)

j ),(η(1)
j )))μ

(N ,M)
)
.
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Proof Evidently, as A ⊂ K. �

Theorem 6.9 Let N and M be Banach spaces with dim(N ) = dim(M) = ∞, and the se-
tups (f 1) and (f 2) are satisfied, hence Bs

(	(ζ ,η))μ is simple.

Proof Assume the closed ideal K(Bs
(	(ζ ,η))μ (N ,M)) includes a mapping X /∈

A(Bs
(	(ζ ,η))μ (N ,M)). From Lemma 2.1, there exist Y , Z ∈ B(Bs

(	(ζ ,η))μ (N ,M)) with
ZXYIb = Ib, which gives that IBs

(	(ζ ,η))μ (N ,M) ∈ K(Bs
(	(ζ ,η))μ (N ,M)). Then, B(Bs

(	(ζ ,η))μ (N ,
M)) = K(Bs

(	(ζ ,η))μ (N ,M)). Hence, Bs
(	(ζ ,η))μ is a simple Banach space. �

6.5 Eigenvalues of s-type mappings
Notation 6.10

(
B

s
K

)ρ :=
{(
B

s
K

)ρ(N ,M);N and M are Banach Spaces
}

, where
(
B

s
K

)ρ(N ,M) :=
{

X ∈B(N ,M) : (
(
ρj(X)

)∞
j=0 ∈K and

∥∥X – ρj(X)I
∥∥

is not invertible, for all j ∈ Z
+}

.

Theorem 6.11 Assume N and M are Banach spaces with dim(N ) = dim(M) = ∞, and
the setups (f 1) and (f 2) are confirmed with infj(ζj(j + 1))ηj > 0, hence

(
B

s
(	(ζ ,η))μ

)ρ(N ,M) = B
s
(	(ζ ,η))μ (N ,M).

Proof Suppose X ∈ (Bs
(	(ζ ,η))μ )ρ(N ,M), hence (ρj(X))∞j=0 ∈ (	(ζ ,η))μ and ‖X – ρj(X)I‖ =

0, for all j ∈ Z
+. We have X = ρj(X)I , for all j ∈ Z

+, so sj(X) = sj(ρj(X)I) = |ρj(X)|, for every
j ∈ Z

+. Therefore, (sj(X))∞j=0 ∈ (	(ζ ,η))μ, hence X ∈ Bs
(	(ζ ,η))μ (N ,M). Next, suppose X ∈

Bs
(	(ζ ,η))μ (N ,M). Then, (sj(X))∞j=0 ∈ (	(ζ ,η))μ. Hence, we have

∞∑

j=0

(

ζj

j∑

q=0

sq(X)

)ηj

≥ inf
j

(
ζj(j + 1)

)ηj
∞∑

j=0

[
sj(X)

]ηj .

Then, limj→∞ sj(X) = 0. Assume ‖X – sj(X)I‖–1 exists, for every j ∈ Z
+. Hence, ‖X –

sj(X)I‖–1 exists and is bounded, for every j ∈ Z
+. Then, limj→∞ ‖X – sj(X)I‖–1 = ‖X‖–1

exists and is bounded. As (Bs
(	(ζ ,η))μ ,�) is a prequasi-operator ideal, we have

I = XX–1 ∈B
s
(	(ζ ,η))μ (N ,M) ⇒ (

sj(I)
)∞

j=0 ∈ 	(ζ ,η) ⇒ lim
j→∞ sj(I) = 0.

This gives a contradiction, as limj→∞ sj(I) = 1. Hence ‖X – sj(X)I‖ = 0, for every j ∈ Z
+,

which explains X ∈ (Bs
(	(ζ ,η))μ )ρ(N ,M). This completes the proof. �

7 Kannan contraction mapping
Theorem 7.1 Suppose the setups (f 1) and (f 2) are confirmed, then the function μ(λ) =
[
∑∞

j=0(ζj|∑j
l=0 λl|)ηj ]

1
� satisfies the Fatou property, for all λ ∈ 	(ζ ,η).
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Proof Assume {βb} ⊆ (	(ζ ,η))μ with limb→∞ μ(βb – β) = 0. As the space (	(ζ ,η))μ is a
prequasiclosed space, then β ∈ (	(ζ ,η))μ. Hence, for all λ ∈ (	(ζ ,η))μ, we have

μ(λ – β) =

[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl – βl

∣∣∣∣∣

)ηj] 1
�

≤
[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl – βb
l

∣∣∣∣∣

)ηj] 1
�

+

[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

βb
l – βl

∣∣∣∣∣

)ηj] 1
�

≤ sup
j

inf
b≥j

μ
(
λ – βb). �

Theorem 7.2 Suppose the setups (f 1) and (f 2) are confirmed with ηj > 1, for all j ∈ Z
+,

then the function μ(λ) =
∑∞

j=0(ζj|∑j
l=0 λl|)ηj does not satisfy the Fatou property, for every

λ ∈ 	(ζ ,η).

Proof Assume {βb} ⊆ (	(ζ ,η))μ with limb→∞ μ(βb – β) = 0. As the space (	(ζ ,η))μ is a
prequasiclosed space, then β ∈ (	(ζ ,η))μ. Hence, for all λ ∈ (	(ζ ,η))μ, we have

μ(λ – β) =
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl – βl

∣∣∣∣∣

)ηj

≤ 2�–1

[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

λl – βb
l

∣∣∣∣∣

)ηj

+
∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

βb
l – βl

∣∣∣∣∣

)ηj]

≤ 2�–1 sup
j

inf
b≥j

μ
(
λ – βb).

Therefore, μ does not satisfy the Fatou property.
Next, we offer enough setups on (	(ζ ,η))μ equipped with μ so that there is only a fixed

point of the Kannan contraction mapping. �

Theorem 7.3 Suppose the setups (f 1) and (f 2) are satisfied, and W : (	(ζ ,η))μ →
(	(ζ ,η))μ is a Kannan μ-contraction mapping, where μ(λ) = [

∑∞
j=0(ζj|∑j

l=0 λl|)ηj ]
1
� , for

every λ ∈ 	(ζ ,η), then W has a unique fixed point.

Proof Let λ ∈ 	(ζ ,η), then W rλ ∈ 	(ζ ,η). Since W is a Kannan μ-contraction mapping,
we have

μ
(
W r+1λ – W rλ

) ≤ β
(
μ

(
W r+1λ – W rλ

)
+ μ

(
W rλ – W r–1λ

))

⇒ μ
(
W r+1λ – W rλ

) ≤ β

1 – β
μ

(
W rλ – W r–1λ

)

≤
(

β

1 – β

)2

μ
(
W r–1λ – W r–2λ

) ≤ · · ·

≤
(

β

1 – β

)r

μ(Wλ – λ).
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Therefore, for every r, q ∈ Z
+ with q > r, we obtain

μ
(
W rλ – W qλ

) ≤ β
(
μ

(
W rλ – W r–1λ

)
+ μ

(
W qλ – W q–1λ

))

≤ β

((
β

1 – β

)r–1

+
(

β

1 – β

)q–1)
μ(Wλ – λ).

Hence, {W rλ} is a Cauchy sequence in (	(ζ ,η))μ. Since the space (	(ζ ,η))μ is a prequasi-
Banach space. Then, there exists g ∈ (	(ζ ,η))μ so that limr→∞ W rλ = g . To show that
Wg = g , as μ has the Fatou property, we obtain

μ(Wg – g) ≤ sup
i

inf
r≥i

μ
(
W r+1λ – W rλ

) ≤ sup
i

inf
r≥i

(
β

1 – β

)r

μ(Wλ – λ) = 0,

hence Wg = g . So, g is a fixed point of W . To prove that the fixed point is unique, suppose
we have two different fixed points b, g ∈ (	(ζ ,η))μ of W . Then, one has

μ(b – g) ≤ μ(Wb – Wg) ≤ ξ
(
μ(Wb – b) + μ(Wg – g)

)
= 0.

Therefore, b = g . �

Corollary 7.4 Assume the setups (f 1) and (f 2) are confirmed, and W : (	(ζ ,η))μ →
(	(ζ ,η))μ is a Kannan μ-contraction mapping, where μ(λ) = [

∑∞
j=0(ζj|∑j

l=0 λl|)ηj ]
1
� , for

all λ ∈ 	(ζ ,η), then W has a unique fixed point b with μ(W rλ – b) ≤ β( β

1–β
)r–1μ(Wλ – λ).

Proof By using Theorem 7.3, there is a unique fixed point b of W . Then, one has

μ
(
W rλ – b

)
= μ

(
W rλ – Wb

)

≤ β
(
μ

(
W rλ – W r–1λ

)
+ μ(Wb – b)

)

= β

(
β

1 – β

)r–1

μ(Wλ – λ). �

Theorem 7.5 If the setups (f 1) and (f 2) are satisfied with ηj > 1, for all j ∈ Z
+, and W :

(	(ζ ,η))μ → (	(ζ ,η))μ, where μ(λ) =
∑∞

j=0(ζj|∑j
l=0 λl|)ηj , for all λ ∈ 	(ζ ,η). The point

g ∈ (	(ζ ,η))μ is the unique fixed point of W , if the next setups are verified:
(a) W is a Kannan μ-contraction mapping,
(b) W is μ-sequentially continuous at g ∈ (	(ζ ,η))μ,
(c) we have λ ∈ (	(ζ ,η))μ such that the sequence of iterates {W rλ} has a subsequence

{W riλ} that converges to g .

Proof Assume the enough setups are confirmed. Let g be not a fixed point of W , then
Wg �= g . By using the setups (b) and (c), one has

lim
ri→∞μ

(
W riλ – g

)
= 0 and lim

ri→∞μ
(
W ri+1λ – Wg

)
= 0.

Since the mapping W is a Kannan μ-contraction, we have

0 < μ(Wg – g)
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= μ
((

Wg – W ri+1λ
)

+
(
W riλ – g

)
+

(
W ri+1λ – W riλ

))

≤ 22�–2μ
(
W ri+1λ – Wg

)
+ 22�–2μ

(
W riλ – g

)
+ 2�–1β

(
β

1 – β

)ri–1

μ(Wλ – λ).

Since ri → ∞, one has a contradiction. Hence, g is a fixed point of W . To show that the
fixed point g is unique, assume one has two different fixed points g, b ∈ (	(ζ ,η))μ of W .
Therefore, we have

μ(g – b) ≤ μ(Wg – Wb) ≤ β
(
μ(Wg – g) + μ(Wb – b)

)
= 0.

Hence, g = b. �

Example 7.6 If T : (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ → (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ, where μ(p) =√
∑∞

m=0(
|∑m

j=0 pj|
m+5 ) 2m+3

m+2 , with p ∈ 	(( m+2
m+1 )∞m=0, ( 2m+3

m+2 )∞m=0) and

T(p) =

⎧
⎨

⎩

p
4 , μ(p) ∈ [0, 1),
p
5 , μ(p) ∈ [1,∞).

Since for all p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with μ(p),μ(q) ∈ [0, 1), we have

μ(Tp – Tq) = μ

(
p
4

–
q
4

)

≤ 1
4√27

(
μ

(
3p
4

)
+ μ

(
3q
4

))
=

1
4√27

(
μ(Tp – p) + μ(Tq – q)

)
.

For all p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with μ(p),μ(q) ∈ [1,∞), we obtain

μ(Tp – Tq) = μ

(
p
5

–
q
5

)

≤ 1
4√64

(
μ

(
4p
5

)
+ μ

(
4q
5

))
=

1
4√64

(
μ(Tp – p) + μ(Tq – q)

)
.

For every p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with μ(p) ∈ [0, 1) and μ(q) ∈ [1,∞), we obtain

μ(Tp – Tq) = μ

(
p
4

–
q
5

)

≤ 1
4√27

μ

(
3p
4

)
+

1
4√64

μ

(
4q
5

)

≤ 1
4√27

(
μ

(
3p
4

)
+ μ

(
4q
5

))

=
1

4√27
(
μ(Tp – p) + μ(Tq – q)

)
.

Therefore, the mapping T is a Kannan μ-contraction. Since μ satisfies the Fatou prop-
erty, by using Theorem 7.3, the mapping T has a unique fixed point θ ∈ (	(( 1

m+5 )∞m=0,
( 2m+3

m+2 )∞m=0))μ.
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Suppose {p(a)} ⊆ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with lima→∞ μ(p(a) – p(0)) = 0, where p(0) ∈
(	(( 1

m+5 )∞m=0, ( 2m+3
m+2 )∞m=0))μ with μ(p(0)) = 1. Since the prequasinorm μ is continuous, we

obtain

lim
a→∞μ

(
Tp(a) – Tp(0)) = lim

a→∞μ

(
p(a)

4
–

p(0)

5

)
= μ

(
p(0)

20

)
> 0.

Hence, T is not μ-sequentially continuous at p(0). Therefore, the mapping T is not con-
tinuous at p(0).

Suppose μ(p) =
∑∞

m=0(
|∑m

j=0 pj|
m+5 ) 2m+3

m+2 , for every p ∈ 	(( m+2
m+1 )∞m=0, ( 2m+3

m+2 )∞m=0).
Since for all p, q ∈ (	(( 1

m+5 )∞m=0, ( 2m+3
m+2 )∞m=0))μ with μ(p),μ(q) ∈ [0, 1), we obtain

μ(Tp – Tq) = μ

(
p
4

–
q
4

)

≤ 2√
27

(
μ

(
3p
4

)
+ μ

(
3q
4

))
=

2√
27

(
μ(Tp – p) + μ(Tq – q)

)
.

Suppose p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with μ(p),μ(q) ∈ [1,∞), we have

μ(Tp – Tq) = μ

(
p
5

–
q
5

)
≤ 1

4

(
μ

(
4p
5

)
+ μ

(
4q
5

))
=

1
4
(
μ(Tp – p) + μ(Tq – q)

)
.

For every p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with μ(p) ∈ [0, 1) and μ(q) ∈ [1,∞), we obtain

μ(Tp – Tq) = μ

(
p
4

–
q
5

)
≤ 2√

27
μ

(
3p
4

)
+

1
4
μ

(
4q
5

)
≤ 2√

27

(
μ

(
3p
4

)
+ μ

(
4q
5

))

=
2√
27

(
μ(Tp – p) + μ(Tq – q)

)
.

Therefore, the mapping T is a Kannan μ-contraction and

Tr(p) =

⎧
⎨

⎩

p
4r , μ(p) ∈ [0, 1),
p
5r , μ(p) ∈ [1,∞).

Evidently, T is μ-sequentially continuous at θ ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ and {Trp}
has a subsequence {Trj p} that converges to θ . By using Theorem 7.5, the element θ ∈
(	(( 1

m+5 )∞m=0, ( 2m+3
m+2 )∞m=0))μ is the only fixed point of T .

Example 7.7 Assume T : (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ → (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ, with

μ(p) =
∑∞

m=0(
|∑m

j=0 pj|
m+5 ) 2m+3

m+2 , for all p ∈ 	(( m+2
m+1 )∞m=0, ( 2m+3

m+2 )∞m=0) and

T(p) =

⎧
⎪⎪⎨

⎪⎪⎩

1
4 (e1 + p), p0 ∈ (–∞, 1

3 ),
1
3 e1, p0 = 1

3 ,
1
4 e1, p0 ∈ ( 1

3 ,∞).
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Since for all p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with p0, q0 ∈ (–∞, 1
3 ), we have

μ(Tp – Tq) = μ

(
1
4

(p0 – q0, p1 – q1, p2 – q2, . . .)
)

≤ 2√
27

(
μ

(
3p
4

)
+ μ

(
3q
4

))

≤ 2√
27

(
μ(Tp – p) + μ(Tq – q)

)
.

For all p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with p0, q0 ∈ ( 1
3 ,∞), then for all ε > 0 we obtain

μ(Tp – Tq) = 0 ≤ ε
(
μ(Tp – p) + μ(Tq – q)

)
.

For all p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with p0 ∈ (–∞, 1
3 ) and q0 ∈ ( 1

3 ,∞), we have

μ(Tp – Tq) = μ

(
p
4

)

≤ 1√
27

μ

(
3p
4

)
=

1√
27

μ(Tp – p) ≤ 1√
27

(
μ(Tp – p) + μ(Tq – q)

)
.

Therefore, the mapping T is a Kannan μ-contraction.
Obviously, T is μ-sequentially continuous at 1

3 e1 ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ and
there is p ∈ (	(( 1

m+5 )∞m=0, ( 2m+3
m+2 )∞m=0))μ with p0 ∈ (–∞, 1

3 ) such that the sequence of it-
erates {Trp} = {∑r

a=1
1

4a e1 + 1
4r p} includes a subsequence {Trj p} = {∑rj

a=1
1

4a e1 + 1
4rj p}

that converges to 1
3 e1. By using Theorem 7.5, the mapping T has a unique fixed point

1
3 e1 ∈ (	(( 1

m+5 )∞m=0, ( 2m+3
m+2 )∞m=0))μ. Note that T is not continuous at 1

3 e1 ∈ (	(( 1
m+5 )∞m=0,

( 2m+3
m+2 )∞m=0))μ.

Suppose μ(p) =
√

∑∞
m=0(

|∑m
j=0 pj|

m+5 ) 2m+3
m+2 , for all p ∈ 	(( m+2

m+1 )∞m=0, ( 2m+3
m+2 )∞m=0). Since for all

p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with p0, q0 ∈ (–∞, 1
3 ), we have

μ(Tp – Tq) = μ

(
1
4

(p0 – q0, p1 – q1, p2 – q2, . . .)
)

≤ 1
4√27

(
μ

(
3p
4

)
+ μ

(
3q
4

))

≤ 1
4√27

(
μ(Tp – p) + μ(Tq – q)

)
.

For all p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with p0, q0 ∈ ( 1
3 ,∞), hence for all ε > 0, one has

μ(Tp – Tq) = 0 ≤ ε
(
μ(Tp – p) + μ(Tq – q)

)
.

For all p, q ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ with p0 ∈ (–∞, 1
3 ) and q0 ∈ ( 1

3 ,∞), we have

μ(Tp – Tq) = μ

(
p
4

)

≤ 1
4√27

μ

(
3p
4

)
=

1
4√27

μ(Tp – p) ≤ 1
4√27

(
μ(Tp – p) + μ(Tq – q)

)
.
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Therefore, the mapping T is a Kannan μ-contraction. Since μ satisfies the Fatou property,
by using Theorem 7.3, the mapping T has one fixed point 1

3 e1 ∈ (	(( 1
m+5 )∞m=0, ( 2m+3

m+2 )∞m=0))μ.

We investigate the existence of a fixed point of a Kannan contraction mapping in the
prequasi-Banach mappings ideal generated by (	(ζ ,η))μ and s-numbers.

Theorem 7.8 If the setups (f 1) and (f 2) are satisfied, then the prequasinorm �(W ) =
[
∑∞

j=0(ζj|∑j
l=0 sl(W )|)ηj ]

1
� does not satisfy the Fatou property, for every W ∈ Bs

(	(ζ ,η))μ (N ,
M).

Proof Let the conditions be verified and {Wr}r∈Z+ ⊆ Bs
(	(ζ ,η))μ (N ,M) with

limr→∞ �(Wr – W ) = 0. As the space Bs
(	(ζ ,η))μ is a prequasiclosed ideal. Hence, W ∈

Bs
(	(ζ ,η))μ (N ,M). Therefore, for all V ∈Bs

(	(ζ ,η))μ (N ,M), one has

�(V – W ) =

[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

sl(V – W )

∣∣∣∣∣

)ηj] 1
�

≤
[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

s[ l
2 ](V – Wi)

∣∣∣∣∣

)ηj] 1
�

+

[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

s[ l
2 ](W – Wi)

∣∣∣∣∣

)ηj] 1
�

≤ 2
1
� sup

r
inf
i≥r

[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

sl(V – Wi)

∣∣∣∣∣

)ηj] 1
�

.

Hence, � does not satisfy the Fatou property. �

Theorem 7.9 Let the setups (f 1) and (f 2) be satisfied and G : Bs
(	(ζ ,η))μ (N ,M) →

Bs
(	(ζ ,η))μ (N ,M), where �(W ) = [

∑∞
j=0(ζj|∑j

l=0 sl(W )|)ηj ]
1
� , for all W ∈Bs

(	(ζ ,η))μ (N ,M).
The element A ∈ Bs

(	(ζ ,η))μ (N ,M) is the unique fixed point of G, if the next setups are
confirmed:

(a) G is a Kannan �-contraction mapping,
(b) G is �-sequentially continuous at a point A ∈Bs

(	(ζ ,η))μ (N ,M),
(c) one has B ∈Bs

(	(ζ ,η))μ (N ,M) so that the sequence of iterates {GrB} has a
subsequence {Gri B} that converges to A.

Proof Let the enough setups be satisfied. Assume A is not a fixed point of G, then GA �= A.
By using the conditions (b) and (c), one has

lim
ri→∞�

(
Gri B – A

)
= 0 and lim

ri→∞�
(
Gri+1B – GA

)
= 0.

As G is a Kannan �-contraction mapping, we obtain

0 < �(GA – A)

= �
((

GA – Gri+1B
)

+
(
Gri B – A

)
+

(
Gri+1B – Gri B

))

≤ 2
1
� �

(
Gri+1B – GA

)
+ 2

2
� �

(
Gri B – A

)
+ 2

2
� β

(
β

1 – β

)ri–1

�(GB – B).



Bakery and El Dewaik Journal of Inequalities and Applications         (2022) 2022:55 Page 26 of 30

Since ri → ∞, this implies a contradiction. Hence, A is a fixed point of G. To prove that the
fixed point A is unique, assume we have two different fixed points A, D ∈Bs

(	(ζ ,η))μ (N ,M)
of G. Then, we have

�(A – D) ≤ �(GA – GD) ≤ β
(
�(GA – A) + �(GD – D)

)
= 0.

So, A = D. �

Example 7.10 Suppose M : S(	(( 1
m+4 )∞m=0,( 2m+3

m+2 )∞m=0))μ (N ,M) → S(	(( 1
m+4 )∞m=0,( 2m+3

m+2 )∞m=0))μ (N ,

M), where �(H) =
√

∑∞
m=0(

|∑m
j=0 sj|

m+4 ) 2m+3
m+2 , for all H ∈ S(	(( 1

m+4 )∞m=0,( 2m+3
m+2 )∞m=0))μ (N ,M) and

M(H) =

⎧
⎨

⎩

H
6 , �(H) ∈ [0, 1),
H
7 , �(H) ∈ [1,∞).

Since for all H1, H2 ∈ S(	(( 1
m+4 )∞m=0,( 2m+3

m+2 )∞m=0))μ with �(H1),�(H2) ∈ [0, 1), we obtain

�(MH1 – MH2) = �

(
H1

6
–

H2

6

)

≤
√

2
4√125

(
�

(
5H1

6

)
+ �

(
5H2

6

))

=
√

2
4√125

(
�(MH1 – H1) + �(MH2 – H2)

)
.

For all H1, H2 ∈ S(	(( 1
m+4 )∞m=0,( 2m+3

m+2 )∞m=0))μ with �(H1),�(H2) ∈ [1,∞), we have

�(MH1 – MH2) = �

(
H1

7
–

H2

7

)

≤
√

2
4√216

(
�

(
6H1

7

)
+ �

(
6H2

7

))

=
√

2
4√216

(
�(MH1 – H1) + �(MH2 – H2)

)
.

For all H1, H2 ∈ S(	(( 1
m+4 )∞m=0,( 2m+3

m+2 )∞m=0))μ with �(H1) ∈ [0, 1) and �(H2) ∈ [1,∞), we have

�(MH1 – MH2) = �

(
H1

6
–

H2

7

)

≤
√

2
4√125

�

(
5H1

6

)
+

√
2

4√216
�

(
6H2

7

)

≤
√

2
4√125

(
�(MH1 – H1) + �(MH2 – H2)

)
.

Therefore, the mapping M is a Kannan �-contraction and

Mr(H) =

⎧
⎨

⎩

H
6r , �(H) ∈ [0, 1),
H
7r , �(H) ∈ [1,∞).
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Evidently, the operator M is �-sequentially continuous at the zero mapping � ∈
S(	(( 1

m+4 )∞m=0,( 2m+3
m+2 )∞m=0))μ and {MrH} has a subsequence {Mrj H} that converges to �. By us-

ing Theorem 7.9, the zero mapping � ∈ S(	(( 1
m+4 )∞m=0,( 2m+3

m+2 )∞m=0))μ is the unique fixed point of
M. Suppose {H (a)} ⊆ S(	(( 1

m+4 )∞m=0,( 2m+3
m+2 )∞m=0))μ is such that lima→∞ �(H (a) – H (0)) = 0, where

H (0) ∈ S(	(( 1
m+4 )∞m=0,( 2m+3

m+2 )∞m=0))μ with �(H (0)) = 1. Since the prequasinorm � is continuous,
we obtain

lim
a→∞�

(
MH (a) – MH (0)) = lim

a→∞�

(
H (0)

6
–

H (0)

7

)
= �

(
H (0)

42

)
> 0.

Hence, M is not �-sequentially continuous at H (0). Therefore, the mapping M is not con-
tinuous at H (0).

8 The existence of solutions of nonlinear difference equations
Summable equations such as (6) were discussed by Salimi et al. [39], Agarwal et al. [40], and
Hussain et al. [41]. In this section, we search for a solution to (6) in (	(ζ ,η))μ, where the
setups (f 1) and (f 2) are confirmed and μ(λ) = [

∑∞
j=0(ζj|∑j

l=0 λl|)ηj ]
1
� , for every λ ∈ 	(ζ ,η).

Evaluate the summable equations:

λl = yl +
∞∑

m=0

A(l, m)g(m,λm), (6)

and assume W : (	(ζ ,η))μ → (	(ζ ,η))μ is defined by

W (λl)l∈Z+ =

(

yl +
∞∑

m=0

A(l, m)g(m,λm)

)

l∈Z+

. (7)

Theorem 8.1 The summable equation (6) contains a unique solution in (	(ζ ,η))μ, when
A : Z+2 → R, g : Z+ ×C → C, y : Z+ → C, λ : Z+ → C, γ : Z+ → C, assume there exists β ∈ R
so that supj β

ηj
� ∈ [0, 1

2 ) and for all j ∈ Z
+, we have

∣∣∣∣∣

j∑

l=0

∑

m∈Z+

A(l, m)
[
g(m,λm) – g(m,γm)

]
∣∣∣∣∣

≤ β

[∣∣∣∣∣

j∑

l=0

yl – λl +
∑

m∈Z+

A(l, m)g(m,λm)

∣∣∣∣∣
+

∣∣∣∣∣

j∑

l=0

yl – γl +
∑

m∈Z+

A(l, m)g(m,γm)

∣∣∣∣∣

]

.

Proof Suppose the conditions are confirmed. Assume the mapping W : (	(ζ ,η))μ →
(	(ζ ,η))μ defined by equation (7). We have

μ(Wλ – Wγ ) =

[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

Wλl – Wγl

∣∣∣∣∣

)ηj] 1
�

=

[ ∞∑

j=0

(

ζj

∣∣
∣∣∣

j∑

l=0

∑

m∈Z+

A(l, m)
[
g(m,λm) – g(m,γm)

]
∣∣∣∣∣

)ηj] 1
�

≤ sup
j

β
ηj
�

[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

yl – λl +
∑

m∈Z+

A(l, m)g(m,λm)

∣∣∣∣∣

)ηj] 1
�
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+ sup
j

β
ηj
�

[ ∞∑

j=0

(

ζj

∣∣∣∣∣

j∑

l=0

yl – γl +
∑

m∈Z+

A(l, m)g(m,γm)

∣∣∣∣∣

)ηj] 1
�

= sup
j

β
ηj
�

(
μ(Wλ – λ) + μ(Wγ – γ )

)
.

By using Theorem 7.3, we obtain a unique solution of equation (6) in (	(ζ ,η))μ. �

Example 8.2 Suppose the sequence space (	(( 1
p+1 )∞p=0, ( 2p+3

p+2 )∞p=0))μ, where μ(λ) =
√

∑∞
p=0(

|∑p
j=0 λj|

p+1 )
2p+3
p+2 , for every λ ∈ (	(( 1

p+1 )∞p=0, ( 2p+3
p+2 )∞p=0))μ.

Examine the nonlinear difference equations:

λl = e–(3l+6) +
∑

m∈Z+

(–1)l+m λr
l–2

λ
q
l–1 + m2 + 1

, (8)

with r, q,λ–2,λ–1 > 0 and suppose

W :
(

	

((
1

p + 1

)∞

p=0
,
(

2p + 3
p + 2

)∞

p=0

))

μ

→
(

	

((
1

p + 1

)∞

p=0
,
(

2p + 3
p + 2

)∞

p=0

))

μ

,

defined by

W (λl)∞l=0 =
(

e–(3l+6) +
∑

m∈Z+

(–1)l+m λr
l–2

λ
q
l–1 + m2 + 1

)∞

l=0
. (9)

Clearly, there is a number β such that supj β
2j+3
2j+4 ∈ [0, 1

2 ) and for all j ∈ Z
+, we obtain

∣∣∣∣∣

j∑

l=0

∑

m∈Z+

(–1)l λr
l–2

λ
q
l–1 + m2 + 1

(
(–1)m – (–1)m)

∣∣∣∣∣

≤ λ

∣∣∣∣∣

j∑

l=0

e–(3l+6) – λl +
∑

m∈Z+

(–1)l+m λr
l–2

f q
l–1 + m2 + 1

∣∣∣∣∣

+ λ

∣∣∣∣∣

j∑

l=0

e–(3l+6) – γl +
∑

m∈Z+

(–1)l+m λr
l–2

λ
q
l–1 + m2 + 1

∣∣∣∣∣
.

By using Theorem 8.1, the nonlinear difference equations (8) include a unique solution in
(	(( 1

p+1 )∞p=0, ( 2p+3
p+2 )∞p=0))μ.

9 Conclusion
In this article, we discuss some topological and geometric structure of (	(ζ ,η))μ, of the
multiplication mappings defined on (	(ζ ,η))μ, of the class Bs

(	(ζ ,η))μ , and of the class
(Bs

(	(ζ ,η))μ )ρ . We explain the existence of a fixed point of the Kannan contraction mapping
acting on these spaces. Interestingly, several numerical experiments are presented to illus-
trate our results. Additionally, some successful applications to the existence of solutions
of nonlinear difference equations are introduced. This article has many advantages for re-
searchers, such as studying the fixed points of any contraction mappings on this prequasi-
normed sequence space that is a generalization of the quasinormed sequence spaces, a new
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general space of solutions for many difference equations, the spectrum of any bounded lin-
ear operators between any two Banach spaces with s-numbers in this sequence space and
recall that the closed mappings ideal are sure to play an influential function in the principle
of Banach lattices.
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