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Abstract
In this paper, with the help of Green’s function and Hermite interpolating polynomial,
an extension of Jensen’s functional for n-convex functions is deduced from Jensen’s
inequality involving diamond integrals. Special Hermite conditions, including Taylor
two point formula and Lagrange’s interpolation, are also deployed to find the further
extensions of Jensen’s functional. This paper also includes discussion on bounds for
Grüss inequality, Ostrowski inequality, and Čebyšev functional associated to the newly
defined Jensen’s functional.
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1 Introduction
Johan Jensen proved Jensen’s inequality in [9]. It serves as a tool in discrete and continu-
ous analysis for generating classical and new inequalities. The discrete version of Jensen’s
inequality is given below as

ζ

(∑n
m=1 gmzm∑n

m=1 gm

)
≤

∑n
m=1 gmζ (zm)∑n

m=1 gm
, (1)

where (z1, . . . , zn) ∈ S, S is an interval in R, (g1, . . . , gn) ∈ R
n
+ (i.e., nonnegative weights are

taken into account) and the function ζ : S → R is convex on S. Steffensen in [16] extended
it by using negative weights.

The integral representation of Jensen’s inequality (1) is as follows: Let τ ∈ C([a1, a2],
(a3, a4)). If ζ ∈ C((a3, a4),R) is convex, then

ζ

(∫ a2
a1

τ (s) ds
a2 – a1

)
≤

∫ a2

a1

ζ (τ (s)) ds
a2 – a1

.

The researchers have devised several new functions for the refinements of Jensen’s dis-
crete (or integral) inequality. For instance, in [7, 8, 11, 13] improvements of the operated

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-022-02785-1
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-022-02785-1&domain=pdf
mailto:emaorr@gmail.com
http://creativecommons.org/licenses/by/4.0/


Bibi et al. Journal of Inequalities and Applications         (2022) 2022:50 Page 2 of 15

version of Jensen’s inequality are given. In [5] Čuljak et al. generalized Jensen’s inequality
via Hermite polynomial. Several researchers discussed and applied these inequalities on
time scales. In [1], Anwar et al. proved Jensen’s inequality for delta integrals:

Suppose a1, a2 ∈ T are such that a1 < a2 and F ∈ Crd([a1, a2]T,R) assures
∫ a2

a1
|F(s)|�s > 0.

If ζ ∈ C(S,R) is convex on an interval S ⊂R and τ ∈ Crd([a1, a2]T, S), then

ζ

(∫ a2
a1

|F(s)|τ (s)�s∫ a2
a1

|F(s)|�s

)
≤

∫ a2
a1

|F(s)|ζ (τ (s))�s∫ a2
a1

|F(s)|�s
.

Under a similar hypothesis, in [12], by replacing the delta integral with the nabla integral,
same results are obtained.

Sheng et al. in [14] presented a convex combination of the delta and nabla integrals
named as diamond-α integral, where α ∈ [0, 1]. In [15] the following Jensen’s inequality
for diamond-α integral is given:

Suppose a time scale T, and a1, a2 ∈ T are such that a1 < a2, S ⊆ R is an interval, τ ∈
Crd([a1, a2]T, S), and F ∈ C([a1, a2],R) is such that

∫ a2

a1

∣∣F(s)
∣∣♦αs > 0.

If ζ ∈ C(S,R) is convex, then

ζ

(∫ a2
a1

|F(s)|τ (s)♦αs∫ a2
a1

|F(s)|♦αs

)
≤

∫ a2
a1

|F(s)|ζ (τ (s))♦αs∫ a2
a1

|F(s)|♦αs
.

In [6] the authors introduced a more generalized version of the diamond-α integral,
termed as diamond integral having a special interest even for T = R. These integrals get
us nearer to building a true symmetric integral on time scales.

In [3] Jensen’s inequality is proved for diamond integrals:
Let a1, a2 ∈ T with a1 < a2, F ∈ C([a1, a2]T,R+), and τ ∈ C([a1, a2]T, S), assuring∫ a2

a1
F(s)♦s > 0. Consider a convex function ζ ∈ C(S,R), where S = [m1, m2] is such that

m1 = mins∈[a1,a2]Tτ (s), m2 = maxs∈[a1,a2]Tτ (s), then

ζ

(∫ a2
a1

F(s)τ (s)♦s∫ a2
a1

F(s)♦s

)
≤

∫ a2
a1

F(s)ζ (τ (s))♦s∫ a2
a1

F(s)♦s
. (2)

Considering the conditions of (2), Jensen’s-type linear functional defined on T is given
below as

J(ζ ) =

∫ a2
a1

|F(s)|ζ (τ (s))♦s∫ a2
a1

|F(s)|♦s
– ζ

(∫ a2
a1

|F(s)|τ (s)♦s∫ a2
a1

|F(s)|♦s

)
. (3)

Remark 1.1 Inequality (2) implies that J(ζ ) ≥ 0 for the family of convex mappings and
J(ζ ) = 0 for identity or constant functions.

The aim of the present study is the extension of (3) for n-convex functions with Green’s
function and some types of interpolations introduced by Hermite. In the next section, after
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defining the diamond derivative and integral, we recall Hermite interpolating polynomial
along with some of its special forms. Section 3 consists of the main results of the paper,
and finally concluding remarks are given in the last section.

2 Preliminaries
2.1 Some essentials from diamond calculus
A time scale T is a nonempty closed subset of R. It may be connected or not. Keeping the
time scale discontinuity under consideration, the forward and backward jump operators
σ ,ρ : T→ T are defined by

σ (s) = inf{u ∈ T : u > s},

and

ρ(s) = sup{u ∈ T : u < s}.

In general, σ (s) ≥ s and ρ(s) ≤ s. The mappings μ,ν : T→ [0, +∞) defined by μ(s) = σ (s)–s
and ν(s) = s – ρ(s) are called in the sequel the forward and backward graininess functions.

The classification of points on time scales is given below:
For any s ∈ T,
• if ρ(s) = s, then s is left dense;
• if σ (s) = s, then s is right dense;
• if ρ(s) < s, then s is left scattered;
• if σ (s) > s, then s is right scattered;
• if ρ(s) = s and σ (s) = s, then s is dense;
• if ρ(s) < s and σ (s) > s, then s is isolated.

A mapping 	 : T →R is said to be rd-continuous if it is continuous ∀s ∈ T such that σ (s) = s
and left-sided limit is finite ∀s ∈ T such that ρ(s) = s. The set of such functions is denoted
by Crd .

Definition 2.1 Let 
 : T →R be a mapping and s ∈ T
k
k . Define 
♦ (assuming it is a finite

positive number) having characteristic that, for a given ε > 0, there exists a neighborhood
W of s such that

∣∣[
σ (s) – 
(u) + 
(2s – u) – 
ρ(s)
]

– 
♦(s)
[
σ (s) + 2s – 2u – ρ(s)

]∣∣
≤ ε

∣∣σ (s) + 2s – 2u – ρ(s)
∣∣

holds for all u ∈ W for which 2s – u ∈ W . Then 
♦(s) is known as the diamond derivative
of 
 at s.

Definition 2.2 Let a1, a2 ∈ T and τ : T → R be a function. The diamond integral of τ

from a1 to a2 is given by

∫ a2

a1

τ (s)♦s :=
∫ a2

a1

γ (s)τ (s)�s +
∫ a2

a1

(
1 – γ (s)

)
τ (s)∇(s)

for all s ∈ T, where γ τ and (1 – γ )τ are delta and nabla integrable on [a1, a2]T, respectively.
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It is to be noted that for u ∈ T
k
k , (

∫ s
b τ (s)♦)♦ �= τ (s), in general. The fundamental theorem

of calculus also does not hold for diamond integrals.
The properties of the diamond integrals are analogous to the properties of the delta,

nabla, and diamond-α integrals, see [6].

Remark 2.3 If T = R, then
∫ a2

a1

τ (s)♦s =
∫ a2

a1

τ (s) ds;

if T = hZ where h > 0, then

∫ a2

a1

τ (s)♦s =
h
2

(a2/h–1∑
m=a1/h

τ (mh) +
a2/h∑

m=a1/h+1

τ (mh)

)
;

if T = qN0 where q > 1, then

∫ a2

a1

τ (s)♦s =
q – 1
q + 1

( logq(a2)–1∑
m=logq(a1)

qm+1τ
(
qm)

+
logq(a2)∑

m=logq(a1)+1

qm–1τ
(
qm))

.

2.2 Results on Hermite interpolating polynomial
Let –∞ < μ < ν < ∞ and μ = a1 < · · · < ar = ν (r ≥ 2) be given r points. For ζ ∈ Cn[μ,ν],
there exists an (n – 1)th degree polynomial PH (s) defined by

PH (s) =
r∑

v=1

kv∑
u=0

Huv(s)ζ (u)(av). (4)

It satisfies the following Hermite condition:

PH
(u)(av) = ζ (u)(av), 0 ≤ u ≤ kv, 1 ≤ v ≤ r,

r∑
v=1

kv + r = n.

Factors Huv represent essential polynomials of the Hermite basis which satisfy the rela-
tions:

H (p)
uv (ad) = 0, d �= v, p = 0, . . . , kd,

H (p)
uv (av) = δup, p = 0, . . . , kv, for u = 0, . . . , kv,

with d, v = 1, . . . , r and

δup =

⎧⎨
⎩

1, u = p,

0, u �= p.

Also Huv(s) is given by

Huv(s) =
1
u!

ω(s)
(s – av)kv+1–u

kv–u∑
k=0

1
k!

dk

dsk

(
(s – av)kv+1

ω(s)

)∣∣∣∣
s=av

(s – av)k , (5)
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with

ω(s) =
r∏

v=1

(s – av)kv+1.

Hermite conditions encompass the following specific cases:
(Lagrange conditions) Let r = n, kv = 0 for all v, where 1 < v < r. Then we have a
Lagrange polynomial PL(s), satisfying

PL(av) = ζ (av), 1 ≤ v ≤ n.

Conditions for Type (z, n – z): Let r = 2, 1 ≤ z ≤ n–1, k1 = z–1, k2 = n–z–1. Then we
have P(z,n)(s) polynomial, satisfying

P(u)
(z,n)(μ) = ζ (u)(μ), 0 ≤ u ≤ z – 1,

P(u)
(z,n)(ν) = ζ (u)(ν), 0 ≤ u ≤ n – z – 1.

(Conditions for Taylor’s Two-point Formula) For n = 2z, r = 2, k1 = k2 = z – 1, we have
a Taylor two-point interpolating polynomial P2T (s), satisfying

P(u)
2T (μ) = ζ (u)(μ), P(u)

2T (ν) = ζ (u)(ν), 0 ≤ u ≤ z – 1.

The next theorem is useful for our results and is given in [10].

Theorem 2.4 Suppose we have –∞ < μ < ν < ∞, μ = a1 < · · · < ar = ν (r ≥ 2), and ζ ∈
Cn[μ,ν]. Then we have

ζ (s) = PH (s) + RH (ζ , t),

where PH is the Hermite interpolating polynomial as defined in (4) and RH(ζ , s) denotes the
remainder given by

RH (ζ , s) =
∫ ν

μ

GH,n(s, t)ζ (n)(t) dt,

where

GH,n(s, t) =

⎧⎨
⎩

∑b
v=1

∑kv
u=0

(av–h)n–u–1

(n–u–1)! Huv(s), t ≤ s,

–
∑r

v=b+1
∑kv

u=0
(av–h)n–u–1

(n–u–1)! Huv(s), t ≥ s,
(6)

for all ab ≤ t ≤ ab+1, b = 0, . . . , r with a0 = μ and ar+1 = ν .

Remark 2.5 By imposing the Lagrange conditions, Theorem 2.4 takes the form

ζ (s) = PL(s) + RL(ζ , s).
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Here PL(s) represents a Lagrange polynomial, which is

PL(s) =
n∑

v=1

n∏
k=1k �=v

(
s – ak

av – ak

)
ζ (av),

and RL(ζ , s) is the remainder, defined by

RL(ζ , s) =
∫ ν

μ

GL(s, t)ζ (n)(t) dt,

with

GL(s, t) =
1

(n – 1)!

⎧⎨
⎩

∑b
v=1 (av – t)n–1 ∏n

k=1k �=v
( s–ak

av–ak
), t ≤ s,

–
∑b

v=1 (av – t)n–1 ∏n
k=1k �=v

( s–ak
av–ak

), t ≤ s,

ab ≤ t ≤ ab+1, b = 1, . . . , n – 1 along a1 = μ and an = ν .

Remark 2.6 Similarly, by imposing (z, n – z) conditions on Theorem 2.4, one gets

ζ (s) = P(z,n)(s) + R(z,n)(ζ , s),

where

P(z,n)(s) =
z–1∑
u=0

ξu(s)ζ (u)(μ) +
n–z–1∑

u=0

ηu(s)ζ (u)(ν),

with

ξu(s) =
1
u!

(s – μ)u
(

s – ν

μ – ν

)(n–z) z–1–u∑
k=0

(
n – z + k – 1

k

)(
s – μ

ν – μ

)k

(7)

and

ηu(s) =
1
u!

(s – ν)u
(

s – μ

ν – μ

)z n–z–1–u∑
k=0

(
z + k – 1

k

)(
s – ν

μ – ν

)k

. (8)

The remainder R(z,n)(ζ , s) is given by

R(z,n)(ζ , s) =
∫ ν

μ

G(m,n)(s, t)ζ (n)(t) dt,

with

G(z,n)(s, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑z–1
v=0 [

∑z–1–v
l=0

( n–z+l–1
l

)
( s–ν
ν–μ

)l]

× (s–μ)v(μ–t)n–v–1

v!(n–v–1)! ( ν–s
ν–μ

)n–z, μ ≤ t ≤ s ≤ ν,

–
∑n–z–1

u=0 [
∑n–z–u–1

l1=0
(
z+l1–1

l1

)
( ν–s
ν–μ

)l
1
]

× (s–ν)u(ν–t)n–u–1

u!(n–u–1)! ( s–μ

ν–μ
)e, μ ≤ s ≤ t ≤ ν.
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Remark 2.7 Theorem 2.4 in the form of Taylor two-point formula becomes

ζ (s) = P2T (s) + R2T (ζ , s),

where Taylor two-point interpolating polynomial, P2T (s), is defined by

P2T (s) =
z–1∑
u=0

z–1–u∑
k=0

(
z + k – 1

k

)[
(s – μ)u

u!

(
s – ν

μ – ν

)z( s – μ

ν – μ

)k

ζ (u)(μ)

+
(s – ν)u

u!

(
s – μ

ν – μ

)z( s – ν

μ – ν

)k

ζ (u)(ν)
]

and R2T (ζ , s) is

R2T (ζ , s) =
∫ ν

μ

G2T (s, t)ζ (n)(t) dt,

with

G2T (s, t) =

⎧⎨
⎩

(–1)z
(2z–1)! l

z(s, t)
∑z–1

v=0
(
z–1+v

v

)
(s – t)z–1–vlv

1(s, t), t ≤ s;
(–1)z

(2z–1)! l
z

1(s, t)
∑z–1

v=0
(
z–1+v

v

)
(t – s)z–1–vlv(s, t), s ≤ t;

where l(s, t) = (t–μ)(ν–s)
ν–μ

, l1(s, t) = l(s, t), for all s, t ∈ [μ,ν].

3 Extension of Jensen’s functional via Green’s function and Hermite
polynomial

This section begins with the proof of our key identity regarding Jensen’s inequality exten-
sion. Green’s function G : [μ,ν] × [μ,ν] →R is defined as

G(s, t) =

⎧⎨
⎩

(s–ν)(t–μ)
ν–μ

, μ ≤ t ≤ s;
(t–ν)(t–μ)

ν–μ
, s ≤ t ≤ ν.

(9)

Because of symmetry, G satisfies the conditions of convexity and continuity with respect
to both s and t.

For h ∈ C2([μ,ν]), we have

h(s) =
ν – s
ν – μ

h(μ) +
s – μ

ν – μ
h(ν) +

∫ ν

μ

G(s, t)h′′(t) dt, (10)

where G(s, t) is defined in (9).

Theorem 3.1 Let –∞ < μ < ν < ∞ and μ = a1 < · · · < ar = ν (r ≥ 2). Assume that ζ ∈
Cn[μ,ν] is a convex function, while Huv, GH,n, and G are defined as in (5), (6), and (9),
respectively. Then

J
(
ζ (s)

)
=

∫ ν

μ

J
(
G(s, t)

) r∑
v=1

kv∑
u=0

Huv(t)ζ (u+2)(av) dt

+
∫ ν

μ

∫ ν

μ

J
(
G(s, t)

)
GH,n–2(t, x)ζ (n)(x) dx dt.

(11)
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Proof Substituting (10) into (3), we have

J
(
ζ (s)

)
= J

(
ν – s
ν – μ

ζ (μ) +
s – μ

ν – μ
ζ (ν) +

∫ ν

μ

G(s, t)ζ ′′(t) dt
)

.

Since J is linear, we have

J
(
ζ (s)

)
= ζ (μ)J

(
ν – s
ν – μ

)
+ ζ (ν)J

(
s – μ

ν – μ

)
+

∫ ν

μ

J
(
G(s, t)

)
ζ ′′(t) dt.

Remark 1.1 implies that

J
(
ζ (s)

)
=

∫ ν

μ

J
(
G(s, t)

)
ζ ′′(t) dt, (12)

where

ζ ′′(t) =
r∑

v=1

kv∑
u=0

Huv(t)ζ (u+2)(av) +
∫ ν

μ

GH,n–2(t, x)ζ (n)(x) dx. (13)

Substituting (13) into (12) we have

J
(
ζ (s)

)
=

∫ ν

μ

J
(
G(s, t)

)[ r∑
v=1

kv∑
u=0

Huv(t)ζ (u+2)(av) +
∫ ν

μ

GH,n–2(t, x)ζ (n)(x) dx

]
dt

=
∫ ν

μ

J
(
G(s, t)

) r∑
v=1

kv∑
u=0

Huv(t)ζ (u+2)(av) dt

+
∫ ν

μ

∫ ν

μ

J
(
G(s, t)

)
GH,n–2(t, x)ζ (n)(x) dx dt,

as required. �

Remark 3.2 For different time scales, special cases of inequality (11) can be deduced. For
example, when T = R, inequality (11) holds with the Jensen’s functional

J(ζ ) =

∫ a2
a1

|F(s)|ζ (τ (s)) ds∫ a2
a1

|F(s)|ds
– ζ

(∫ a2
a1

|F(s)|τ (s) ds∫ a2
a1

|F(s)|ds

)
.

Similarly, for T = hZ where h > 0, inequality (11) holds with the Jensen’s functional

J(ζ ) =
∑a2/h–1

m=a1/h |F(mh)|ζ (τ (mh)) +
∑a2/h

m=a1/h+1 |F(mh)|ζ (τ (mh))∑a2/h–1
m=a1/h |F(mh)| +

∑a2/h
m=a1/h+1 |F(mh)|

– ζ

(∑a2/h–1
m=a1/h |F(mh)|τ (mh) +

∑a2/h
m=a1/h+1 |F(mh)|τ (mh)∑a2/h–1

m=a1/h |F(mh)| +
∑a2/h

m=a1/h+1 |F(mh)|
)

;
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for T = qN0 , where q > 1, inequality (11) holds with the Jensen’s functional

J(ζ ) =

∑logq(a2)–1
m=logq(a1) qm|F(qm)|ζ (τ (qm)) +

∑logq(a2)
m=logq(a1)+1 qm|F(qm)|ζ (τ (qm))

∑logq(a2)–1
m=logq(a1) qm|F(qm)| +

∑logq(a2)
m=logq(a1)+1 qm|F(qm)|

– ζ

(∑logq(a2)–1
m=logq(a1) qm|F(qm)|τ (qm) +

∑logq(a2)
m=logq(a1)+1 qm|F(qm)|τ (qm)

∑logq(a2)–1
m=logq(a1) qm|F(qm)| +

∑logq(a2)
m=logq(a1)+1 qm|F(qm)|

)
.

Theorem 3.3 Under the assumptions of Theorem 3.1, if ζ : [μ,ν] →R is n-convex and

∫ ν

μ

J
(
G(s, t)

)
GH,n–2(t, x) dt ≥ 0, s ∈ [μ,ν],

then

J(ζ ) ≥
∫ ν

μ

J
(
G(s, t)

) r∑
v=1

kv∑
u=0

Huv(t)ζ (u+2)(av) dt. (14)

Proof As ζ is n-convex, ζ n(s) ≥ 0 for all s ∈ [μ,ν], hence

∫ ν

μ

∫ ν

μ

J
(
G(s, t)

)
GH,n–2(t, x) dtζ (n)(x) dx ≥ 0. (15)

Substituting (15) into (11), we have

J(ζ ) ≥
∫ ν

μ

J
(
G(s, t)

) r∑
v=1

kv∑
u=0

Huv(t)ζ (u+2)(av) dt,

as required. �

Theorem 3.4 Under the assumptions of Theorem 3.1, if ζ : [μ,ν] →R is n-convex and

J(ζ ) ≥
∫ ν

μ

J
(
G(s, t)

)
B(·) dt, (16)

where

B(·) =
r∑

v=1

kv∑
u=0

ζ (u+2)(av)Huv(·) (17)

is nonnegative, then

J(ζ ) ≥ 0.

Proof Substituting (17) into (16), we get

J(ζ ) ≥
∫ ν

μ

J
(
G(s, t)

) r∑
v=1

kv∑
u=0

Huv(t)ζ (u+2)(av) dt ≥ 0. �
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The use of type (z, n – z) condition yields the result given below.

Corollary 3.5 Suppose that ξu, ηu are defined as in (7) and (8), respectively. If n – z is even,
then for every n-convex function ζ : [μ,ν] →R and

J(ζ ) ≥
∫ ν

μ

J
(
G(s, t)

)
B(t) dt, (18)

where

B(t) =

(
z–1∑
u=0

ξu(·)ζ (u+2)(μ) +
n–z–1∑

u=0

ηu(·)ζ (u+2)(ν)

)
(19)

is nonnegative, we have

J(ζ ) ≥ 0.

Proof Substituting (19) into (18), we get

J(ζ ) ≥
∫ ν

μ

J
(
G(s, t)

)( z–1∑
u=0

ξu(t)ζ (u+2)(μ) +
n–z–1∑

u=0

ηu(t)ζ (u+2)(ν)

)
dt ≥ 0. �

Application of two-point Taylor conditions gives the following result.

Corollary 3.6 Let ζ : [μ,ν] →R be n-convex. If

J(ζ ) ≥
∫ ν

μ

J
(
G(x, t)

)
B(t) dt, (20)

where

B(t) =
z–1∑
u=0

z–1–u∑
k=0

(
z + k – 1

k

)

×
[

(t – μ)u

u!

(
t – ν

μ – ν

)z( t – μ

ν – μ

)k

φ(u+2)(μ)

+
(t – ν)u

u!

(
t – μ

ν – μ

)z( t – ν

μ – ν

)k

φ(u+2)(ν)
]

(21)

is nonnegative, then

J(ζ ) ≥ 0.

Proof Substituting (21) into (20), we get

J(ζ ) ≥
∫ ν

μ

J
(
G(s, t)

) z–1∑
u=0

z–1–u∑
k=0

(
z + k – 1

k

)

×
[

(t – μ)u

u!

(
t – ν

μ – ν

)z( t – μ

ν – μ

)k

φ(u+2)(μ)
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+
(t – ν)u

u!

(
t – μ

ν – μ

)e( t – ν

μ – ν

)k

φ(u+2)(ν)
]

dt.

As the right-hand side is nonnegative, we have

J(ζ ) ≥ 0. �

Remark 3.7 As mentioned in Remark 3.2, we can deduce special cases for the results of
this section for different time scales.

4 Bounds for identities associated to the extension of Jensen’s functional
Here we use Čebyšev functional and Grüss-type inequalities to present a few important
results. The Čebyšev functional is given by

ϒ(g1, g2) =
1

ν – μ

∫ ν

μ

g1(s)g2(s) ds –
1

ν – μ

∫ ν

μ

g1(s) ds · 1
ν – μ

∫ ν

μ

g2(s) ds.

The next two theorems are given in [4].

Theorem 4.1 If g1, g2 : [μ,ν] →R are functions such that g1 is Lebesgue integrable and g2

is absolutely continuous, along with (· – μ)(ν – ·)[g ′
2]2 ∈ L[μ,ν], then we have

∣∣ϒ(g1, g2)
∣∣ ≤ 1√

2
[
ϒ(g1, g1)

] 1
2 1√

ν – μ

(∫ ν

μ

(s – μ)(ν – s)
[
g2

′(s)
]2 ds

) 1
2

,

where 1√
2 is the best possible constant.

Theorem 4.2 If g1, g2 : [μ,ν] → R are functions such that g1 is absolutely continuous to-
gether g ′

1 ∈ L∞[μ,ν] and g2 is monotonically nondecreasing on [μ,ν], then we have

∣∣ϒ(g1, g2)
∣∣ ≤ 1

2(ν – μ)
∥∥g ′

1
∥∥∞

∫ ν

μ

(s – μ)(ν – s) ds,

where 1
2 is the best possible constant.

Let

ψ̃(x) =
∫ ν

μ

J
(
G(s, t)

)
GH,n–2(t, x) dt. (22)

Then Čebyšev functional becomes

ϒ(ψ̃ , ψ̃) =
1

ν – μ

∫ ν

μ

ψ̃2(x) dx –
(

1
ν – μ

∫ ν

μ

ψ̃(x) dx
)2

. (23)

Theorem 4.3 Let ζ : [μ,ν] → R be such that ζ ∈ Cn[μ,ν] for n ∈ N with (· – μ) ×
(ν – ·)[ζ (n+1)]2 ∈ L[μ,ν] and t ∈ [μ,ν]. Suppose GH,n, ψ̃ and ϒ are defined as in (6), (22),
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and (23), respectively, then we have

J(ζ ) =
∫ ν

μ

J
(
G(s, t)

) r∑
v=1

kv∑
u=0

ζ (u+2)(av)Huv(t) dt

+
ζ (n–1)(ν) – ζ (n–1)(μ)

ν – μ

∫ ν

μ

ψ̃(x) dx + Rn(μ,ν; ζ ),

(24)

where the remainder Rn(μ,ν; ζ ) satisfies the estimate

∣∣Rn(μ,ν; ζ )
∣∣ ≤ [

ϒ(ψ̃ , ψ̃)
] 1

2

√
ν – μ

2

∣∣∣∣
∫ ν

μ

(x – μ)(ν – x)
[
ζ (n+1)(x)

]2 dx
∣∣∣∣

1
2

. (25)

Proof We use Theorem 4.1 for g1 → ψ̃ and g2 → ζ n to obtain

∣∣∣∣ 1
ν – μ

∫ ν

μ

ψ̃(x)ζ n(x) dx –
1

ν – μ

∫ ν

μ

ψ̃(x) dx · 1
ν – μ

∫ ν

μ

ζ n(x) dx
∣∣∣∣

≤ 1√
2
[
ϒ(ψ̃ , ψ̃)

] 1
2 1√

ν – μ

∣∣∣∣
∫ ν

μ

(x – μ)(ν – x)
[
ζ (n+1)(x)

]2 dx
∣∣∣∣

1
2

.

Therefore we have,

1
ν – μ

∫ ν

μ

ψ̃(x)ζ n(x) dx =
1

(ν – μ)2
(
ζ (n–1)(ν) – ζ (n–1)(μ)

)∫ ν

μ

ψ̃(x) dx.

Hence

∫ ν

μ

ψ̃(x)ζ n(x) dx =
ζ (n–1)(ν) – ζ (n–1)(μ)

ν – μ

∫ ν

μ

ψ̃(x) dx + Rn(μ,ν; ζ ),

where the remainder Rn(μ,ν; ζ ) satisfies the estimate (25). Now from identity (11) we ob-
tain (24). �

Grüss-type inequality given below can be obtained by using Theorem 4.2.

Theorem 4.4 Assume that ζ : [μ,ν] → R is such that ζ n is absolutely continuous and
ζ (n+1) ≥ 0 on [μ,ν]. Suppose ψ̃ and ϒ are defined as in (22) and (23), respectively. Then we
have (24) and the remainder R(μ,ν : ζ ) satisfies the bound

∣∣R(μ,ν; ζ )
∣∣ ≤ (ν – μ)

∥∥ψ̃ ′∥∥∞

[
ζ (n–1)(ν) + ζ (n–1)(μ)

2
–

ζ (n–2)(ν) – ζ (n–2)(μ)
ν – μ

]
. (26)

Proof Applying Theorem 4.2, for g1 → ψ̃ and g2 → ζ (n), we have

∣∣∣∣ 1
ν – μ

∫ ν

μ

ψ̃(x)ζ n(x) dx –
1

ν – μ

∫ ν

μ

ψ̃(x) dx · 1
ν – μ

∫ ν

μ

ζ n(x) dx
∣∣∣∣

≤ 1
2(ν – μ)

∥∥ψ̃ ′∥∥∞

∫ ν

μ

(x – μ)(ν – x)ζ (n+1)(x) dx.
(27)
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Since
∫ ν

μ

(x – μ)(ν – x)ζ (n+1)(x) dx

=
∫ ν

μ

[
2x – (μ + ν)

]
ζ (n)(x) dx

= (ν – μ)
[
ζ (n–1)(ν) + ζ (n–1)(μ)

]
– 2

[
ζ (n–2)(ν) + ζ (n–2)(μ)

]
,

using (11) and (27), we get (26). �

Theorem 4.5 Let all the assumptions of Theorem 3.1 be satisfied. Suppose (i, j) is a couple
of numbers such that 1 ≤ i, j ≤ ∞, 1

i + 1
j = 1. Suppose |ζ (n)|i : [μ,ν] →R is a function which

is R-integrable for some n ≥ 2. Then we have

∣∣∣∣∣J(ζ ) –
∫ ν

μ

J
(
G(s, t)

) r∑
v=1

kv∑
u=0

ζ (u+2)(av)Huv(t) dt

∣∣∣∣∣

≤ ∥∥ζ (n)∥∥
i

(∫ ν

μ

∣∣∣∣
∫ ν

μ

J
(
G(s, t)

)
GH,n–2(t, x) dt

∣∣∣∣
j

dx
) 1

j
. (28)

For i ∈ [1,∞], the constant on the right-hand side of (28) is sharp when i = 1.

Proof Assume W (x) =
∫ ν

μ
J(G(s, t))GH,n–2(t, x) dt. Hölder’s inequality and identity (11) give

us

∣∣∣∣∣J(ζ ) –
∫ ν

μ

J
(
G(s, t)

) r∑
v=1

kv∑
u=0

ζ (u+2)(av)Huv(t) dt

∣∣∣∣∣ =
∣∣∣∣
∫ ν

μ

W (x)ζ (n)(x) dx
∣∣∣∣

≤ ∥∥ζ (n)∥∥
i

(∫ ν

μ

∣∣W (x)
∣∣j dx

) 1
j
.

For i ∈ (1,∞), let ζ n(x) = sgn W (x)|W (x)| 1
i–1 and, in case of i = ∞, let ζ (n)(x) = sgn W (x).

We prove that, for i = 1,

∫ ν

μ

W (x)ζ (n)(x) dx ≤ max
x∈[μ,ν]

∣∣W (x)
∣∣(∫ ν

μ

∣∣ζ (n)(x)
∣∣dx

)
(29)

cannot be improved. Let |W (x)| achieve its maximum at d ∈ [μ,ν]. We suppose firstly that
W (d) > 0. We define ζ (x) for small enough δ, by

ζδ(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0, μ ≤ x ≤ d,
1

εn! (x – d)n, d ≤ x ≤ d + δ,
1
n! (x – d)n–1, d + δ ≤ x ≤ ν.

Then, for δ small enough,

∣∣∣∣
∫ ν

μ

W (x)ζ (n)(x) dx
∣∣∣∣ =

∣∣∣∣
∫ d+δ

d
W (x)

1
δ

dx
∣∣∣∣ =

1
δ

∫ d+δ

d
W (x) dx.
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Now from inequality (29) we have

1
δ

∫ d+δ

d
W (x) dx ≤ W (d)

∫ d+δ

d

1
δ

dx = W (d).

For W (d) < 0, we define ζδ(x) as

ζδ(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1
n! (x – d – δ)n–1, μ ≤ x ≤ d,

– 1
εn! (x – d – δ)n, d ≤ x ≤ d + δ,

0, d + δ ≤ x ≤ ν.

Rest of the proof is same as above. �

5 Conclusion
Jensen’s functional for the diamond integral (3) is generalized for n-convex functions using
Green’s function and Hermite polynomial in the present article. Different conditions of
Hermite polynomial are utilized to describe respective refinements of the functional. As
applications, bounds for the quantities associated to the constructed functional are also
discussed. Moreover, by defining the functional as the difference of the right- and left-
hand sides of the extended inequality (14), it is possible to study n-exponential convexity,
exponential convexity, and applications to Stolarsky-type means as discussed by Aras-
Gazič et al. in [2, Sects. 5, 6]. This article extends the results of [5] on time scales.
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