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1 Introduction

Suppose thatp > 1, 117 + é =1, a0, >0,0<Y > ah <o00,and0< Y > bl < co. We have
the following well-known Hardy—Hilbert inequality with the best possible constant factor
—Z— (cf. [1], Theorem 315):

sin(rt /p)
amb, T ? 1
3 < (Y a) (). (1)
m=1 n=1 m+n sm(r[/p) m=1 n=1

In 2006, by introducing multi parameters A; € (0,2] (i = 1,2), A1 + A, = A € (0,4],an ex-

tension of (1) was provided by Krni¢ et al. [2] as follows:
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[SSIee] a b e8] }7 o0
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where the constant factor B(Aj, 1) is the best possible and

e8] tu—l
B(u,v) = /0 W dt  (u,v>0) (3)
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is the beta function. For p = ¢ = 2, A = A, = , inequality (2) reduces to Yang’s inequality

in [3] as follows:

00 0 mbn A A 00 )
;g—(;+n))‘<B(§’§)<;m A 22}71 )Lb2> . (4)

Recently, by using inequality (2), Adiyasuren et al. [4] gave a new Hardy—Hilbert in-
equality with the best possible constant factor A;A,B(A1, A2) involving two partial sums as
follows: For A; € (0,11 N (0,A) (i =1,2), A1 + A = A € (0,2], we have

1 1
[ ) p [ o© q
>3 e chmani(Sorocta) (Dreem) . @
=1 n= m=1 n=1

where, for a,,, b, > 0, two partial sums A,, = Y ", a; B, = >_;_; by are indicated, satisfying

[09] [e¢]
0< E mPNIAL <00 and 0< E n?271B1 < oo,
m=1 n=1

Inequalities (1) and (2) with their integral analogues and the reverses play an important
role in the analysis and its applications (cf. [5-16]).

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [1], Theo-
rem 351): If K(¢) (¢ > 0) is a decreasing function, p > 1, }7 + % =1,0<e(s) = [, K@) tdt <

00, ay >0,0< Y >, al < oo, then we have

~

fwxp2<§:1<(nx)a ) dx<¢p( )Za” (6
0 n=1

Some new extensions of (6) with their reverses were provided by [17-22].

In 2016, Hong et al. [23] obtained some equivalent statements of the extensions of (1)
with the best possible constant factor related to several parameters. The other similar
works were given by [24—31]. In 2019-2020, Luo et al. [32] considered a new inequality of
the extension of (2) with the general decreasing kernel as k, (m%, n?) (A, a, 8 > 0); Huang
et al. [33] also gave a reverse of (2) by using the Euler—Maclaurin summation formula.

In this paper, following the way of [2, 23], by virtue of the symmetry principle, by means
of the weight coefficients, the idea of introduced parameters, and the techniques of real
analysis, we apply the Euler—Maclaurin summation formula to provide a reverse Hardy—

Hilbert inequality with the kernel as follows:

1
—— (2€(0,6],a,8 €(0,1]),
oy e06hwp )
which is an extension of [33]’s work. The equivalent forms, some equivalent statements
of the best possible constant factor related to several parameters, and some particular

inequalities are also obtained.
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2 Some lemmas
In what follows, we suppose that 0 < p < 1 (g < 0), 1% + % =1,2€(0,6],,8€(0,1], A1 €
(07 %] N (O:)‘-); )‘-2 € (Or %] N (0:)\)7

k)»()‘-i) = B()\.l,)\ - )\.l) (l = 1, 2).

Ay by, >0 (m,neN={1,2,...}) such that

A)»Q

TP ¢ oo, 7)

0<2:m‘y[1 ol

“a” <00 and O<Zn

n=1

Lemma 1 For A, € (0,2]N(0,1) (A1 € (0, 1)), define the following weight coefficient:

Broy-1
7 (hay ) = 1) Z(VZZW (m N, ®)

We have the following inequalities:

1
0< kA(A2)<1 - O(mOMz )) <w(hy,m) <ky(Ay) (meN), 9)
where O( Mz) = M) fo'”a (”lizul du > 0.

Proof For fixed m € N, we set the real function g(m, t) as follows:

ﬁtﬁkg—l

m (t > 0)

g(m,t) =

By means of the Euler—MaClaurin summation formula (cf. [2, 3]) and the Bernoulli func-
tion of 1-order P;(¢) := ¢t — [t] — 2, we have

o0

Zg(m, n) = /; g(m, t)dt + %g(m, 1)+ /1 Pi(t)g' (m,¢)dt

n=1

= [ gtmoyae - im),
0
1 00
h(m) := /o g(m, t)dt - %g(m, 1) —f Pi(t)g' (m,¢)dt.
1

"‘—é—l))‘ and

We obtain —%g(m, 1) =

B(Bro—1)F222 B2

o ,t - _
g (m,t) (m® + tB)* (m® + tF)r+1
B(Bry— 1)tF2=2  B2A(m® + P — m?) P22
(m® + tﬁ))\ (m“ + tﬂ))u+1

_B(BA—Bro+ 1)tP272 BAm P22
- (me + tP)* (m® + A1
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Integrating by parts, we have

1 1 Bro—1 1 Aa-1
,Bt u:fﬂ/ u
,t) dt = ———dt = ——d
/og(m ) /o (me + £P)" o m v

1 ' du
T a o (mo+u)

1 uh A ! u*?
=5+ — / — _du
Ay (m® + u)* A Jo (m® + u)rl

1 1 by Vo dual
= — +
Ay (m* + 1) Aa(Ay +1) ,/0 (m® + u)*+1
11 A w2t 7!
> o A t [ o A+l]
Ay (m® + 1) Aa(Ag + 1) | (m* + u) 0
+ }‘()‘ + 1) /1 uk2+1 du
Aa(hg + 1)(m* + 1)4+2 |,
1 1 A 1
=— +
)\2 (Wla + 1))L )\2()\.2 + 1) (Wla + 1)}‘+1
AL+ 1) 1
+ .
Aa(ho + 1) (Ao + 2) (m® + 1)*+2

For0<k2§%,O<ﬂ51,A2<A§6,itfollowsthat

d £Bra=2 d hra-2
P o i P Lo (=01,23)
( )dtl|:(m“+t5)’\i|> ( )dt‘|:(m°‘+tﬁ)“1i|> (i )

Still using the Euler—Maclaurin summation formula (cf. [2]), we obtain

o0 Bra—2 B(BA—Bry+1)
ﬁ(ﬁ)\, — By + 1)\/1 Pl(t) (ma i tﬂ))L > lz(ma + 1))» ’
) ) tBra-2
—B*m )»/; Pl(t)m dt

ﬁZma)\ ;32m°‘)L tﬂkz—Z 4
> p—
12(me + 1)M+1 720 [(m“ + tﬁ)’\+1i|
B2m®* +1-1)A  B2m* + 1)A

t=1

12(me + 1)*+1 720
y [(/\ + 1) +2)% BA+1)(5-B-2B) (2-Br)(3- /3)»2)]
(ma + 1)k+3 (mot + 1)A+2 (mot + 1)A+1
B B2 BEILT (L + 1)(A +2)B2
T 120m £ 1)F 12(m® + 1)L %[ (m® + 1)+

s BA+1)(5-B-2BA2) (2—-Br)(3- /3)»2)]

+
(m* + 1)++1 (m* +1)*
and then we have

1 A A+ 1)
(m* +1)» * (me + 1)1 2 + (me + 1)2>

h(m) >
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1 B B-Fh  A2-pR)3- )

h1 =
Ay 2 12 720
1 B2 BEr+1)5-B-2B%r)
hyi= s - - , and
Ao +1) 12 720
N = 1 ,34()\ +2)
3 la+)0n+2) 720
We find that
o LB B-Bh 22— Br)B-Bha) _ g0)
T 2 12 720 7201,

where we indicate a real function g(o) (o € (0, %]) as follows:
g(0) =720 - (4208 + 61B%)0 + (608> + 518°) o> — Ap*c>.
We obtain that, for 8 € (0,1], » € (0,6] and o € (0, %],

g'(0) = —(4208 + 618%) +2(608> + 518%)0 — 38%0>
< -4208 - 6287 +2(608 + 5w3)§

= (1408 — 180)8 <0,

and then it follows that #; > fégi)z > 5;(220/5 2) = % > 0. We also obtain that, for A, € (0, %],

g B M_<1 o+l

Iy - - —-
12 140

2
A )
c 530 )/3 >0 (0<A<6), and

1 A+2
hy>—-"—"21]8%>000<x1<6).
3‘(24 720>ﬂ>(< =6)

Hence, we have /(m) > 0. Setting ¢t = m*/Pu'/ it follows that

[e¢] [o¢]
@ (A, m) = m**=) Zg(m,n) < mau_“)/ g(m,t)dt
0

n=1

a(hmiy) o] ﬁtﬁkz—l [od] ukz—l
= A2 — dt= ———du =By, A — X9).
" /0 (m* + tP)* /0 (1 + u)* u=B0 2)

On the other hand, by using the Euler—Maclaurin summation formula, we also have
o0

> glm,n) = /1 glm,t)dt + %g(m, 1)+ /1 Py (t)g (m, t) dt

n=1

= /oog(m, t)dt + H(m),
1

H(m) = %g(m,1)+ / Pi(Og (m, t) dt.
1
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We have obtained that 3 lo(m,1) = W and

B(BA = Bra + P22 pamef?22
(m® + tP)* (m + P+l

g (m,t)=-

For A, € (0, %] N (0,1), 0 < A < 6, by means of the Euler—Maclaurin summation formula,

we obtain
tBr2-2
—B(BL— By + 1)/ Pl(t) R dt>0, and
thr2—2 ﬁzm“k 132)L
2 "A/ Py(t dt>— - .

prm O Gy U T e s 1 T2 1 1)

Hence, we have
2)\‘ 6
H(m) > A - B > p — p =0,

2(m® + 1)*  12(m® + 1)* ~ 2(m* + 1)  12(m* + 1)*

and then we obtain

@ (hy, m) = m*%2) Zg(m,n) > m“(’\_“)/ glm, t)dt

n=1 1

00 1
m%*2) / glm, t) dt — m**=*? / glm, t)dt
0 0

1 o g2l
= M) 1 - 3
k. ( 2)|: k)\()\z)/o sy du] >0

where we indicate O( Mz) o2 )\z) fo’" (”lm du > 0,satisfying

mle w21 m% 1
0</ 7du</ W ldy=———.
0 (1 + lzt)}L 0 )\zm"‘”

Therefore, we obtain inequalities (7).

The lemma is proved. O

Lemma 2 We have the following reverse Hardy—Hilbert inequality with the intermediate
variables:

ST

x {Zn"“‘ﬁ(q*p”"lbz} : (10)
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Proof In the same way, for A1 € (0, 2] N (0,1) (A € (0,1)), n € N, we obtain the following

inequalities for the other weight coefficient:

1 o0 am®1-1
0< kA()\l)(l - O<m>> <w(Ay,n):= Vlﬂ(}‘_h) Z W < ky(A1), (11)
m=1
%;; Ap-1
n 1~
where O(—4- I ):= k;x(lh) o (”H—M)A du > 0.

By the reverse Holder inequality (cf. [34]), we obtain

ZZ (mot + nﬂ)k

n= =1

~
]

m® a(l-2q) /q(ﬁnﬁ l)llp nﬁ(l—Az)/p(ama—l)llq
nBA=22)Ip (qma-1)Va ™ || ppe-r0la(Bpp-1)tp "

1
12> m®(1=21)(p-1) ﬁ—lap r
EZZ( + nP)r pB-22) (pe-1)p-1

m=1 n=1

v
—

1
I e a  nPUR)aD) 11
X a Z Z (Wl“ + nﬁ)k ma(l—kl)(ﬂnﬁ_l)q_l

r

1 ° A-hy A
- {Zw(m, e }

1

q
: 143”-1&7}
1

Then, by (9) and (11) (for 0 < p <1 (g < 0)), we have (10).
The lemma is proved. 0

Remark 1 By (10), for A; + A =1 € (0,6], K, (A1) := 1/qﬁ1,pB(A1,A2) we find

o al1—1
— P2 am
o(ry,m) =n ; o T (12)
0< Zm"“‘“m_laﬁl < 00, 0< Z nd1=Br)-1pd < oo,
m=1 n=1
and the following inequality:
Z Z o A
n=1 m=1 (Wl + nﬁ)
= 1
>I(A(A1)[Z<1 - O(m““ ))mp(l wig)- } |:an1 Br2) 1bq] . (13)
m=1

Lemma 3 The constant factor K; (r1) in (13) is the best possible.

Proof For any 0 < & < pA;, we set

Gy =m0 by =% (e N).

Page 7 of 16
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If there exists a constant M > K; (A1) such that (13) is valid when we replace K; (A1) with
M, then in particular, by substitution of a,, = a,, and b, = En in (13), we have

> M[;(l-O(miM))m”“ o) ] [anl pr2) lbq} :

In the following, we show that M < K (11),from which it follows that M = K; (1;) is the
best possible constant factor of (13). By the decreasingness property of series, we obtain

1

» S 1 117 x q
I>M Z(l - O(mw2 ))mp(l —ahy)-1, pad-as-p an(l-ﬁxz)—lnqﬁxz-ﬁs-q

n=1

] 0 é o %
M[Zmae 1 ZO a(hy+e)— 1 :| (1 + Znﬁ81>
n=2
f e dx - O(l)) (1 +/ ypet dy)
1
1
(o) (e+5)
——-e0(1 e+—1] .
e\« B
By (12), setting A1 = 21 — £ € (0,2) N (0,4) (0< A2 = hs + £ = 2 — 1 < 1), we find

oo o0

. . 1 .

I= nﬁkg mot}q—l n—ﬁe—l
Z|: Z (mvt + nﬂ)k

n=1 m=1

I & 1 >
= Zw(kl,n)n_‘%_l < ak)\(kl)Zn_‘%_l
n=1 n=1

1 ~ >0 1 R o0
Ekx()»l)(l + Zn_ﬁ8_1> < ;kx()hl)(l + / Pl dx)
n=2 1

i/q(il)(sﬂ +1).
saf

By virtue of the above results, we have

1 - 1 Pl 1\3
—B )»1——)»2+ (eB+1)>el>M| ——e0(1) e+—| .
ap V4 p o B
For ¢ — 0%, in view of the continuity of the beta function, it follows that

1
K(A) = WB(M,M) > M.

Hence, M = K; ()1) is the best possible constant factor of (13).
The lemma is proved. O

Page 8 of 16
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Remark 2 Setting A= A;z + M s g 1= A2 M + ’\2 in (10), we find

- - A=A A )\ A )\ )\. )\.
M+ Ay = 2,1 Ly 2.z =X, and
q q P P q
o0 (o]
I= ZZ - ( k. Az)) ( ki (A1) )
bt £ (m* + nﬁ
S 1 [77 S . %
x [Z(hO(mm))mP(lw1111;;} [an(lﬂ““bz} : (14)
m=1 n=1

(i) For A — A1 — Ao € (=A1p, (A — A1)p), we have

—-A

- A=Ay M - -
O<Ar= +— <A, O<Ay=A—-A1<A;
q

(if) For A =1 =22 € [(A =1 = 2)p, (2 = 2)p] ( < min{6, 2 + 2}), we have

™| N

>KA()~1)|:Z<1—O(m;z))mp(l ahy)- j| |:an1 BAa) 1bq] ) (15)

m=1

Lemma 4 [f the constant factor (%/q()»z))l% (ék,\()\l))% in (10) (or (14)) is the best possible,
then for 0 < A < min{6, % + %} and

A=A —Ay € (=ip, (A= A1)p) N [(A k- %)p, (; - M)p} (>{0)), (16)

we have A + Ay = A.

Proof If the constant factor (%k,\(kg))ll’ (ék)\ (Al))‘ll in (10) (or (14)) is the best possible, then
in view of (16) and (15), we have the following inequality:

(%h(h))lz(ékx(h))q > K (A) = g l/qk/\()\l)

1 1 -
namely, k{; ()\,z)kf ()\1) > kk()"l)
By the reverse Holder inequality (cf. [34]), we obtain

- A=A A
ks (A1) = k)\( 2 4 —1)
p q
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R S P * 1 hogsl kL
1 1
~ 1 A—hp—1 g /OO 1 A-1 q
—_ d = d
Z[/o L art

_ R SR T 1 A-1 K
_[/o TP dv} Uo Crup " d”}

= k7 (k) (1) (17)

1 1

Hence, we have kf (Az)k;7 (A1) = ky(%1), from which it follows that (17) keeps the form of
equality.

We observe that (17) keeps the form of equality if and only if there exist constants A and
B such that they are not both zero and (cf. [34])

A2 =Byl ae inR,.

Assuming that A # 0, we have y**27*1 = :? a.e.in R,, and then A — A, — A1 = 0. Hence, we
have A1 + A, = A.
The lemma is proved. g

3 Main results
Theorem 1 Inequality (14) is equivalent to the following inequalities:

e Eome])

> (%kk(xz)) ’ (émm) ' [Z<1 - o<miAz ))mpm—ah)-laf;} ; (18)
m=1
q
mZ —1))a-! |:Z (m® + nP)* "j| }

> (%kx(lz))( k}L )\,1) |:Zl’lql pi2) lbq:| . (19)

If the constant factor in (14) is the best possible, then so is the same constant factor in (18)
and (19).

q

{ o mqm\l 1

Proof Suppose that (18) is valid. By the reverse Holder inequality (cf. [34]), we have

1
- o0 . q
1= E |:n P +Bha § mﬂ :| (n},—ﬂkzbn) > ]|:§ :nq(l—ﬁkz)—lsz| . (20)

n=1
Then, by (18), we obtain (14). On the other hand, assuming that (14) is valid, we set

o]

p-1
= 1
o pBia-1
b, := nP* |:§ Wﬂm} , meN.

m=1
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If ] = oo, then (18) is naturally valid; if / = 0, then it is impossible that makes (18) valid,
namely, / > 0. Suppose that 0 < J < co. By (14), we have

i : 1 5 1 i
0> ntt-P-lpt = =1> (E/q(xz)) <5kk(xl)>

n=1
1
o 1 . r
[Elolg ]
%0 ) P L .
]: |:Z nq(l—ﬂkz)—lbz:| > <Ek)h()\.2)> (;k)\()\.l))
n=1
1
00 1 . p
o]

namely, (18) follows, which is equivalent to (14).
Suppose that (19) is valid. By the reverse Holder inequality (cf. [34]), we have

~ [e°] 1 }7 %_ail m%mil (o] 1
13 (1-0()) “’”][(l—m I ))UPZ(munﬂ)*b"]

m=1 mer2 n=1

1
0o 1 - 7
> |:Z (1 _ O<max2 ))mp(laA 1)1a€n:| 1. (21)

m=1

Then, by (19), we obtain (14). On the other hand, assuming that (14) is valid, we set

- -1
-1 o0 1 1
m = bn ) N.
“ (1-0(=k))a1 [Z (m* + nP)* :| e

mer2 n=1

If 1 = oo, then (19) is naturally valid; if /; = 0, then it is impossible that makes (19) valid,
namely, /; > 0. Suppose that 0 < J; < 0co. By (14), we have

[o¢]
1 ~
00 > Z(l - O<makz >)mp(1‘°‘“)_lafn =Ji=1
m=1
1 Pl I . g
> <Ekk(x2)> (—k)\(kl)) a1 [Z nq(l‘“2)‘1bz:| >0,
o
n=1

1
[ee] 1 - q
Ji = |:Z<1 _ O<max2 ))mp(l—akl)—ldfn:|
m=1

> (%kx()&z)) ’ (ékx()»l)) ! |:Z nq(lﬂiz)lbzi| ! ,
n=1

namely, (19) follows, which is equivalent to (14).

Hence, inequalities (14), (18), and (19) are equivalent.

Page 11 0of 16
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If the constant factor in (14) is the best possible, then so is the constant factor in (18)
and (19). Otherwise, by (20) (or (21)), we would reach a contradiction that the constant
factor in (14) is not the best possible.

The theorem is proved. d

Theorem 2 The following statements (i), (ii), (iii), and (iv) are equivalent:
1 1

(i) Both kf ()»z)kf (A1) and kk(’\;% + }‘71) are independent of p, q;

1

1 1
(i) &7 (A2)k, (A1) is expressible as the following single integral:

A=A A ~ o 1 z
k;‘< 2, —1> =k (A1) :/ Auklfl du;
p q o (1+u)

(iii) (%k,\()»g))ll“ (é/q()\l))% in (14) is the best possible constant factor;
(iv) Ifo<r < min{6,§ + %} and

2 2
A=d1=A € (=Ap, (A= A1)p) N [(k -A - E)P, (; - M)P:|»

then we have M1 + Ay = A.

If statement (iv) follows, namely, 1 + 1, = A, then we have (13) and the following equiv-
alent inequalities with the best possible constant factor K; (A;):

%) ) oo 1 p
i;mfﬁxz 1[; (mi"‘ N Vlﬁ)}‘am:| ]

1
00 1 »
> K (A1) |:Z<1 = O(ma)\Z ))mp(l—akl)—lafn:| , (22)
m=1

= mqa}q—l i 1 q % o0 . %
{;(I—O(ﬁ))%l [Z (ma+nﬂ)xb"] } >Kk(*1)[2"”’“ “”“b‘z} . (@3)

n=1 n=1

S

Proof (i) = (ii). By (i), in view of the continuity of the beta function, we have

1 1

1 1 1 1
ki G2k () = Tim - lim k7 (2)k () = ki (R2),
gq—>—-0p—>17

A—A A A—A A
k)h< 2 + —1> = lim lim k)L< 2 + —1> = k)\()» —)»2) = k}L(A,z),
p q q——-00p—>1~ p q

1 1
namely, k& (A2)k; (1) is expressible as the following single integral:

A=A A ~ o0 1 N
kx( 25 —1> =K. (A1) =/ 7“!11—1 du.
p q o (L+u)

1 1 ~
(i) = (iv). If & (A2)k (A1) = kp (A1), then (17) keeps the form of equality. In view of the
proof of Lemma 4, it follows that A1 + A5 = A.
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1 1
(iv) = (i). If A1 + A2 = A, then both & (A2)k; (A1) and kk(% + %1) are equal to k; (A1),
which is independent of p, g. Hence, it follows that (i) < (ii) < (iv).
(iii) = (iv). By the assumption and Lemma 4, we have A; + A, = A.

(iv) = (iii). By Lemma 3, for A = A1 + Ay,

(%/Q(Aﬂ)p (ékx(xl))% K.(0))

is the best possible constant factor of (14). Therefore, we have (iii) < (iv).
Hence, statements (i), (ii), (iii), and (iv) are equivalent.
O

The theorem is proved.

Remark 3 (i) Fora = 8 =1, A1, Ay € (0,2] (A1 + Ay = A € (0,4]) in (13), (22), and (23), we

have the following equivalent inequalities with the best possible constant factor B(11, A;)

>3 gt

m=1 n=1
> B(A1,A2) |:Z<1 - O<ﬁ>)m"(l_m_lafn:| ’ |:Z nq(l_“)_lbﬁi| q, (24)
m=1 n=1
N
= S]]
>B()\1,)\,2) |:Z(1 - O(#))mp(lh)lﬂfn}z’, (25)
m=1

1

o) qul—l 00 1 q % 00 e
Z I \\q-1 Z (m+n)xbn > K; (A1) ;Vl bl . (26)

m=1 (1 - O(W))q n=1

Inequality (24) is the reverse of (2) (cf. [33]).
(ii) Fora = 8 = %, A A2 € (0,4] (A1 + Ay =X € (0,6]) in (13), (22), and (23), we have the

following equivalent inequalities with the best possible constant factor 2B(A1, A5):

e~ = (Jm+ /n)*
. s ;
> 2B(A1, A2) |:Z( ( A2/2)>mp(121)1ﬂ1:ni| |:Z,,ﬂ(1 lbqi| , (27)
m
m=1 n=1

P 1
{Z" [Z(f Jny ””“
>ZB(A1,A2)|:Z(1 o( i&))mpu-%)-l%}”’ (28)

m=1
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1
00 00 9\ 7
mq}q/Z 1 1 q
Z 22 b
—~ ( — )it | S (Vm+ /)
1
o0 12 q
>2B(hy, k)| Ym0 B | (29)
n=1

(iii) Fora = B = %, A, A2 €(0,3] (A1 + A = A € (0,6]) in (13), (22), and (23), we have the

following equivalent inequalities with the best possible constant factor %B(Al, A):

XY Tt
3
—B(A1, A
>3 B(A1, 12)
1 1
00 1 2y p[ o q
X Z(l ( 2A2/3>>mp( "3 Z”( AN (30)
m=1 n=1
1
00 00 PYp
Wy 1
n 3 m
,12_1: ;(\/3 NI
1
ind 1 2 g
=B(A1,12) Z(l O( - /3))14’11’(1_) et |, (31)
m=1
i ar1/3-1 i b, 9 %
m:l( - 2){2/3))q71 n=1 (VS }/”2-"\3/”_2))L
1
q
> B(Al,kg) an Hpa | (32)

4 Conclusions

In this paper, by virtue of the symmetry principle, by means of the techniques of real anal-
ysis and Euler—Maclaurin summation formula, we construct proper weight coefficients
and use them to establish a reverse Hardy—Hilbert inequality with the power function
as intermediate variables and the equivalent forms in Lemma 2 and Theorem 1. Then,
we obtain some equivalent statements of the best possible constant factor related to sev-
eral parameters in Theorem 2. Finally, we illustrate how the obtained results can generate
some particular reverse Hardy—Hilbert inequalities in Remark 3. The lemmas and theo-

rems provide an extensive account of this type of inequalities.
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