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1 Introduction and main results

It is well known that a metric measure space (X, d, 1) equipped with a non-negative dou-
bling measure u is called a space of homogeneous type. p is said to satisfy the dou-
bling condition if there exists a constant C > 0 such that u(B(x,2r)) < Cu(B(x,r)) for all
x € suppp and r > 0. In the case of non-doubling measures, a non-negative measure x
only should satisfy the polynomial growth condition, i.e., for all x € R” and r > 0, there
exists a constant Cy > 0 and k € (0, #] such that

(B, 1)) < Cor*, (1.1)

where B(x,r) = {y € R" : |y — x| < r}. This breakthrough brings rapid development in har-
monic analysis (see [14, 15, 31, 34, 35, 37, 38] and their therein). And the analysis of non-
doubling measures has important applications in solving the long-standing open Painlevé
problem (see [35]).

Hytonen [17] stated that the measure satisfying (1.1) does not include the doubling mea-
sure as a special case. He introduced non-homogeneous metric measure spaces (X, d, i),
satisfying the geometrically and upper doubling measure conditions (see Definition 1.1
and 1.2). The highlight of this kind of spaces is that it includes both the homogeneous and
metric spaces with polynomial growth measures as special cases. From then on, some re-
sults on non-homogeneous metric measure spaces were obtained. Hytonen et al. [20] and
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Bui and Duong [3] independently introduced the atomic Hardy space H'(u) and proved
that the dual space of H'(1) is RBMO(i1). In [3], the authors also proved that the Calderén-
Zygmund operator and commutators of the Calderén-Zygmund operators and RBMO
functions are bounded in L”(u) for 1 < p < +00. Recently, some equivalent characteriza-
tions have been established by Liu et al. [29] for the boundedness of Carderén-Zygmund
operators on LP(u) for 1 < p < +00. In [9], Fu et al. established boundedness of multi-
linear commutators of the Calderén-Zygmund operators on the Orlicz spaces on non-
homogeneous spaces. More results on non-homogeneous metric measure spaces have
also been obtained in [4, 5, 10, 11, 18—24] and the references therein.

Some researchers considered the theory of multilinear singular integral operators; for
example, in [7], Coifman and Meyers firstly established the theory of bilinear Calderén-
Zygmund operators. Later, Grafakos and Torres [12, 13] demonstrated the boundedness
of multilinear singular integral on the product Lebesgue spaces and Hardy spaces. The
boundedness of multilinear singular integrals and commutators on non-doubling mea-
sures spaces (R", i) was established by Xu [38, 39]. Weighted norm inequalities for mul-
tilinear Calderén-Zygmund operators on non-homogeneous metric measure spaces were
also constructed in [16]. The boundedness for commutators of multilinear Calderdn-
Zygmund operators and multilinear fractional integral operators on non-homogeneous
metric measure spaces was also established in [11, 36].

The introduction of the strongly singular integral operator is motivated by a class of
multiplier operators whose symbol is given by €/¥1*/|&|8 away from the origin, where 0 <
a <1 and B > 0. Fefferman and Stein [8] enlarged the multiplier operators onto a class
of convolution operators. Coifman [6] also considered a related class of operators for n =
1. The strongly singular non-convolution operators were introduced and researched by
Alvarez and Milman [1, 2], whose properties are similar to those of Calderén-Zygmund
operators, but the kernel is more singular near the diagonal than those of the standard
case. Furthermore, Lin and Lu [25-28] obtained the boundedness for the strongly singular
integral and its commutators on Lebesgue spaces, Morrey spaces, and Hardy spaces.

In this paper, we first introduce the multilinear strongly singular integral operators on
non-homogeneous metric spaces. Then we will also prove that it is bounded in m-multiple
Lebesgue spaces, provided that multilinear strongly singular integrals are bounded from
m-multiple L* (1) x - - - x L} (i) to LY (1), where L? (1) and L»*° (1) denote the Lebesgue
space and weak Lebesgue space, respectively. As an application, the boundedness in Mor-
rey spaces for multilinear strongly singular integral on non-homogeneous metric spaces
is obtained. A variant of sharp maximal operator M*, Kolmogorov’s theorem and some
good properties of the dominating function A (see Definition 1.2) are the main tools for
proving the results in this paper.

Before stating the main results of this paper, we first recall some notations and defini-
tions.

Definition 1.1 ([17]) A metric space (X,d) is called geometrically doubling if there ex-
ists some Ny € N such that, for any ball B(x,r) C X, there exists a finite ball covering
{B(x;,7/2)}; of B(x,r) such that the cardinality of this covering is at most Np.

Definition 1.2 ([17]) A metric measure space (X, d, i) is said to be upper doubling if p is
a Borel measure on X and there exists a dominating function X : X x (0, +00) — (0, +00),
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and a constant C; > 0 such that for each x € X, 7 —> (x,r) is non-decreasing, and for all
xeX,r>0,

,u(B(x, r)) < Alx,r) < Cidlx,r/2). (1.2)

Remark 1.3 (i) A space of homogeneous type is a special case of upper doubling spaces,
where one can take the dominating function A(x,7) = u(B(x,7)). On the other hand, a
metric space (X,d, ) satisfying the polynomial growth condition (1.1) (in particular,
(X,d, ) = (R",| - |, u) with u satisfying (1.1) for some k € (0, #])) is also an upper doubling
measure space if we take A(x,r) = Crk.

(ii) Let (X, d, ) be an upper doubling space and A be a dominating function on X x
(0, +00) as in Definition 1.2. In [20], it was showed that there exists another dominating
function A such that for all x,y € X with d(x,y) <7,

A, ) < 65»()/, 7). (1.3)
Thus, in this paper, we suppose that A always satisfies (1.3).

Definition 1.4 ([3]) Let 1 <, < +0o. A ball B C X is called («, 8)-doubling if u(aB) <
B(B).

Remark 1.5 As pointed out in Lemma 2.3 in [3], there exist plenty of doubling balls with
small radii and with large radii. For the rest of this paper, unless o and § are specified
otherwise, by an («, 8) doubling ball, we mean a (6, 8y)-doubling with a fixed number g, >
max{Ci 026, 6"}, where n = log, Ny is viewed as a geometric dimension of the space.

Definition 1.6 ([3]) Let Npq be the smallest integer satisfying 6V5rg > ro denote

Ngq k
w(6¥B)
Kgo=1+ Z T G’ (1.4)

where x5 and rp are center and radius of B, respectively.
Let us first introduce m-linear strongly singular integral kernel.

Definition 1.7 A kernel K(-,...,-) € LL ((X)"™ \{(®%y1-, Y. sIm) & =1 == =y; =
-+ =y,}) is called an m-linear strongly singular integral kernel if it satisfies:

(i)

’K(x,yl, s Yo ..,ym)’ < C|:Zk(x, d(x,yj)):| (1.5)

j=1

forall (%, 31+, ¥js--.,ym) € (X)"*! with x # y; for some ;.
(ii) There exist 0 < < 1 and 0 < § < 1 such that

IK@y1 oo Vm) =K (& Y1500 oo Vm) |
Cd(x,x)?

.6
= TS, dle P> s d )] (10
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provided that Cd(x,x')* < max;<j<,, d(x,y;) and for each j,

|K(x,y1,...,y/,...,ym)—K(x,yl,...,y;-,...,ym)\

3 Cd(y;, )’
= [ijzl d(x,yﬂ]‘”“[Z;Z A, d(x, )™

(1.7)

provided that Cd(y;, /)" < maxi<j<m d(x, ;).

A multilinear operator T is called a multilinear strongly singular integral operator with
the above kernel K, satisfying (1.5), (1.6), and (1.7), if for fi,...f,, are L*° functions with
compact support and x ¢ ﬂ;ﬁl suppf;

T(f,.. . fm)(x) =/ K@®y1- - ym)h 1) -+ S ) A1) - - - die(ym)- (1.8)
Xm
Definition 1.8 ([4]) Let k>1and 1 <gq < p < +00. The Morrey spaces are defined by

Mlé(k, W)= {f € quoc(ﬂ) : ”f”M{;(k,u) < +OO},

where

1

1.1 a

"f”M'q’(k,u) =sup u(kB)r 4 (/ If1? d,u) .
BeX B

Remark 1.9 The definition of the Morrey spaces are independent of the constant & > 1,
and the norms are equivalent for different k > 1, see [4, 30, 32, 33, 40].

Definition 1.10 ([10]) Let € € (0,00). A dominating function A is said to satisfy the -
weak reverse doubling condition if, for all » € (0,2 diam(X)) and € (1,2 diam(X)/r), there
exists a number C(a) € [1,00), depending only on  and X, such that for all x € X,

Ax,ar) > Cla)\(x,1) (1.9)
and

i 1 <00 (1.10)

2 c@r = ‘

For the sake of simplicity and without loss of generality, we only consider the case of
m = 2 in this paper. Let us state the main result as follows.

Theorem 1.11 Let T be defined by (1.8). Assume 1 < p1,p2,q < +00 and fi € LP*(u), fr €
L2 (w) with [, T(f,f)®x) du(x) = 0 if | ]l := n(X) < 0. If T is bounded from L' (1) x L' (1)
to LV>%°(), then there exists a constant C > 0 such that

1T, 2)HLq(#) < CllAller wllfallze s (1.11)

where L = L 4
9" p

1
p2’
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As an application of the main result in this paper, we obtain the following result.

Theorem 1.12 Let T be defined by (1.8). Assume that1 < q; < p1 < +00,1 < gy < p3 < +00,
and fi € LP1 (), fo € LP2(u) with fx T(f1,2)(x)dp(x) = 0if || || < oo. Assume that ) satisfies
the e-weak reverse doubling condition. If T is bounded from L' (1) x L* (1) to LV** (1), then
there exists a constant C > 0 such that

where £ = L
a4 @

+ +

1 1_1 .1
@’'p  p1op2t

Throughout the paper, C denotes a positive constant independent of the main parame-
ters involved, but it may be different in different places.

2 Proof of main results
To prove Theorem 1.11, we first give some notations and lemmas.
Letf € Lt (u), the sharp maximal operator is defined as follows

loc

N S batf) = moffl
MEp) = s [ 170) -t dny) +sup , eRY

BQEA, Kgq

where A, := {(B,Q) :x € BC Q and B, Q are doubling balls}. And the non-centered dou-
bling maximal operator is denoted as follows

1
NG = s s [ 0] duo),

Bax,
B doubling

For any 0 < § < 1, we define that

Mif@x) = (M (FP) @), Nf@) = (N(IF1P) 0}

We can obtain that for any f € L} (u),

loc
[f(x)| < Naf (%) (2.2)

for u —a.e. x € X (see [36]).

Let p > 1 and 1 < p < 00, the non-centered maximal operator M,,f is defined as follows

1
Mt )= o s [ ol @3
The operator M,,)f is bounded on L? () for p > 5 and p > 1 (see [3]).

Lemma 2.1 ([3, 36]) Letf € LL (u) with fo(x) dux) =0 if ||u]l < co. For 1 < p < 0o and

loc

0< 8 <1, ifinf(1, Nsf) € LP(u), then there exists a constant C > 0 such that

N5 () ”u’(u) = C||M§ () “LP(;L)' (2.4)
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Lemma 2.2 ([38]) Let (X,d, 1) be probability measure spaces and let 0 < s < t < +00, then

there exists a constant C such that for any measurable function f,

W llzsuy < CIF lztoo (- (2.5)

Lemma 2.3 Suppose that T is defined by (1.8),0 <8 < 1/2,1 < p1,p2,q < 00.If T is bounded
from L*(u) x L'(11) to LY*°°(w), then there exists a constant C > 0 such that

M;T(f1,)(®) < CMfi®M/fo(®). (2:6)
Proof of Theorem 1.11 Because L*(u) with compact support is dense in L”(u) for 1 <
p < 00, we only consider the situation of fi,f, € L*°(u) with compact support. Let I(B) :=
sup, e d(x, 7). Next, we consider two cases for proving the result.

Case 1: I(B) =1 > 1. As in the proof of Theorem 9.1 in [34], to obtain (2.6), it suffices to
show that

1 1/8
—— [T - hsl’|d@) ) < CMefi M) (2.7)
w(6B)
B
holds for any x and ball B with x € B, and

|hg — hgl| < CM5)fi(x)M(5)fo(%) (2.8)

for all balls B C Q with x € B, where B is an arbitrary ball, and Q is a doubling ball. For any
ball B, we denote

hy = mp(T(F.15°) + T(F5.4) + T(°.57)),

and

hQ = WlQ(T(flO, 200) + T(ffo’fzo) + T(floo’ 200))’

where we split each f; as f; = £ + £, f° :fngB and £ = f; - f2, i = 1,2. Since

’

TGO < [TE L))+ TEL)O|+ [ TEL)O] + T L) 0)

then

1 ) 1/
(m fB IT(h.f)@)| - |hB|5|dM(z))

1 . s
C(m/}}”(ﬁ» 2)(2) — h| dM(Z))

(-1 (1m0 du)
<u(6B)/B () ’”)

(L [T )0 - T dute)
+<m[g| 1S @ = TR.£7)0)] MZ>

IA

IA
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1/

1 oo 0 0o 0 8
C(M(6B)./1;|T(fl )@ = T(.1)0)] du(2)>
C( 1 /|T(f°° OO)(Z)_T(foo oo)(y)|5d (Z)>

w(6B) J5' = YV 2 122 2

2211 +]2+13 +14.

1/8

First, we estimate ;. Applying Lemma 2.2 with s =8 (0 <8 < 1/2) and ¢ = 1/2, we get

1/8

1 0 s
I EC(M/BU(}‘IO,]E)(ZH dM(Z))

L(B) 1/8

<c(Lor) T igmbirsslom, s
L(B) 1/8 2

SC(M(6B)> | B)/ lf(ZL |d,U-(ZL

IA

uB) \" [/L(s x¢B) 1 ]
¢ (zi)| du(z;
(/L(GB)) 1_[ wB) 6 x gB) /gBlf(Z )‘ u(z;)

i=1

B 1/6-2
c(%) Msfi ()Mefo(x)

< CM5)fi (%)M fa(x).

IA

For I, let z,y € B, z; € 2B and z, € X\ 2B, then max<;<»d(z,z;) > d(z,2,) > CI(B) >
CI(B)* > Cd(z,y)*. By Definition 1.7 and the properties of A, we deduce

I T(R.f5°) (@) - T(ﬁ°:}3°°)(y)|

/ / d(z,y)°
x\¢8J¢sB [Zl Mz d(zz)2 [0, d(z,2)]8

d(z,9)°
) d d
< C/){\%B /QB [Zizzl?»(z,d(z,zi))]z [d(z, 20 lfl Z1 Hf2 25 ’ wu(z1) dul(zz)

[f1(z1)||fa(22)| dialzr) dpa(za)

A 1 d(z,y)°
- C/; Mz d(z,21)) d He) Zfskﬂ%\ékﬁs ,d(z,2)) ld(z,22)]° faen)| duten)
n(5 x £B)

63)/ |fi(z1)| dpa(z1)

)M(S x 6k+1 6B) 1
Map, 652rp) (5 x 6K+12B) 64188

Mg, 2rp) (5 x

9 Z G-k8e pp1-1/e [o(22)| dpu(z2)

k=1
< CM5)fi(x)M@)f2(x).

Therefore,

I, < CM)fi(0)Ms)fo ().
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Similar to estimate I, we immediately obtain

Iy < CM\fi (x)M ) f2(x)

Let us move on to I, estimate. By Definition 1.7, we have

T f5°) @) - T(R™.57) )]

Felh@)  deyy
¢ d d
- A\ B/’.(\ o3 [Y0, Mz d(z,2)) [Yr, d(z,z:)]0e W) du(z)

[fi(z0)||f2(22)]
C
= kXI:./.kHGB\ﬁkGBZ/@”GB\GgB [Z;‘Ll)»(Z,d(z,z,'))]2

d(z,y)°
X —_—
(Y2, dlz,2)]9

fi(z1)]
C _ el
= Z/X:/k+163\6k63 2| s1¢ne¢n [Mz d(z,21)]?

du(z1) di(z,)

d(z,9)°

X — e )]5/01 du(ﬁ)dM(ZZ)
oo k-1
h(z2)] d(z,9)°
C
' ;;/kﬂgﬁe\d‘gﬁe [M(z, d(z,22)))* [d(z, 22)]°

<[ Al dute)
6+18B\6/ 2B
=1141+142.

To estimate Iy, we take into account the properties of A and the factof r > 1 and 0 < @ <
1, so we have

I <C z d z 616/01151 1/(1)
il Z([A 3 6r5)] /(>/+163\ fi(z)| diu(z1)

X Z/ Zz)| du(z,)

k+1 63\6k 6B

%) 1 ’
<C ) dul(z 6/6/0118(11/0())
< ;j([k(wwgrgw [ lelane)

i e

<cN g lapi-tey 2 f z1)| du(z
= E (5 x 6’*123) @*lgBlfl( 1)| w(z1)

j=1

1
X (22)| du(z2)
u(5 x 612B) faﬂgglfz 2| dute:

< CM )i %) M5 fa(x).
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For I, by the properties of A, we have

Ip<C M du(z 6—k5/a18(1—1/a))
#= Z([)\v(xB,6k I"B)] _/6]<+1 gB\6kgBlf1( 2)| lu’( 2)

16 6
618B\6/ ¢

k-1
x Ifi(21)| dps(er)

oo

;( [A(xB,5 x 6k6r3)] 6k+16p
x f6 o il duta)

lf2(22)| du(zz)s—ka/wls(l—l/a))

< CY e 4(5 ST f ] dnter)

k=1

1
) m /;kgBlfl(Zl” du(z1)
< CM5)f1 (x)M5)fa (%)
Thus,

|T(f100’ Zoo)(z) - T(ffor 200)()/)| = CM(S)ﬁ(x)M(Slfé(x)

By the above estimate, we obtain (2.7).

Next, we prove (2.8). Consider two balls B C Q with x € B, where B is an arbitrary ball,

and Q is a doubling ball. Let N = N + 1, then we obtain
|hB - th = ’mB(T(legB’fZX@VgB\gB) + T(ﬁXGN%B\gB’ 2ng))|

+ |mB(T(f1X6NgB\gB'fZXeNgB\gB)) |

+|ms(T(hxevs pfoxeves) = ma(T(hxevs pfoxeves)|

+ { 5(T(h XX\6NgB’fZX6NgB)) —mo(T(A XX\6NgB’f2X6NgB)) |

+[maq T(fixgofaxeven go) + T(ﬁXGN%B\gQ’fZXGNgB))‘

(
+ | Q(T(flx6NgB\gQ’f2X6NgB\gQ))|

=h+h+hB+la+]s+]s+]7.

For the estimate J;, by the condition (1.5) in Definition 1.7 and the properties of A, we

obtain

| T(leQB’fZX6N§B\§B)(Z)i

fi(z1)1|fa(22)]
d
<C/ prY B/ 65 (32, Mz d(z,2)]? () dp(z)

m
+ |ms(T (A X6NgB’f2XX\6NgB)) -mo(T(h X6NgB'f2XX\6NgB))|
m
m

Page 9 of 21
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[fi(z1)l fo(2)l
fcﬂgmd ) Jovgn s e dterza)
Ngq
M
”(5 X5 / fe]dutz) Z/k+1 sp\6k 6 Mz, d(2,22)) i)
NgQ 5 6k+1 6B
< CMfi(x )Z 5 x ) 1 oo

Axg, 5 X 6"*19;"3) u(5 x 6k+1gB) 6k+18p

< CI(ByQM(mfl (x)M(5)f2 (x)

Also,

| T(hxev s 8 8:S2X 85)(2)| = CKoMfi ()M fa(%)
Then,

J1 < CKp oM@\ fi (%)M fa(x).

Let us estimate J,. By the condition (1.5) in Definition 1.7 and the properties of 4, we

have

’T(ﬁxw ég\ég’ﬁstés\gs)’

(21l |fa(22)]
d
/N6B\ B/6N6B\ 55 [Y 2, Mz d(z,2))]? duer) dialz2)
N-1N-1

[f1(z0)11/f2(22)]
: CZZ/’(”%B\M%B / : T ey ) duz)

e o1 ene s [ Mz d(z,2))]?

[f1(z1)]If2(22)]
C d
' ./6X6B\ B/6x63\ 55 [0, Mz d(z,2:))]? dular)dp(z)

=:Jo1 + J22.

For /5y, sincez€ Band z; € 6 x gB\gB, then érB <d(z,z;) < %rg for i = 1,2. Therefore,

C
J2 < W /exéB\ﬁB /6X§B\gBV1(Z1)|Lf2(zz)|l/v(21)dﬂ(22)

= [)»(xg, rp)]? /6><6B\ B/sxﬁB\ BM(ZI)H](Z(ZZ)W(ZI)M(ZZ)

n30x 2B 1
= Cl_[ 1 6
i-1 )‘*(xBr SrB) /~’L(30 X gB) 6X%B

\fiz:)| di(z:)

=< CM)fi(x)M@)f2(x)
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For /51, by the properties of A, we have

N-1N-1

[f2(22)]
C ————, d
e kz,zk/ cagn sl N yagn g0 B dtn ey 4 B
N-1 k-1
|fi(z1)]
C _ d d
+ ;;/kﬂ%wkslg Az, d(z,21))]? [6/*123\61'23%(22” w(z2) du(zr)

N-1 1

j
C _ d ) d
= ]2=1: [k(xg,@grg)]z /‘ngB\Gngle(ZZ)‘ M(ZZ)IZ;/H()B\ lfl(zl | wa)

N-1

+CZ/6 & 6kgB[f2(zz)|du(zz)dM(zl)

oy Jekr18B\6k S [M(z,d(z,21))]?

N-
Zl[k(xg, Gop g el [ e ante

N-1

+ CZ ;,62 6j+1§3lﬁ(21)| dﬂ(zl)/ékB%(@” dp(z)
i 5

= [Axp,6/27p)]
< CKpoM@s)fi (1) Ms)fa(x).
For /3, similar to estimate I;, we have
J3 < CM5)fi(x)Ms)f2(x)
For J, and J;, similar to estimate I, we have
Ja+J5 < CM5)fi (x)Ms)f>(x).
By a similar method to estimate J;, we can obtain that
Jo < CKp oM@\ fi (%)M fa(x).
By a similar method to estimate J;, we also obtain that
J7 < CKp oM\ fi (%)M fa(x)

Hence, (2.8) is proved. Thus, Lemma 2.3, in this case, is proved.

Case 2:0 < I(B) =1 < 1. Assume that By and Qy are concentric with Band Q, respectively,
and [(By) = I(B)*, 1(Qo) = [(Q)*. As in the proof of Theorem 9.1 in [34], to obtain (2.6), it
suffices to show that

1/8
(/L(6B /||T(f1,f2) @] - 1hgl? |du(z)> < CM)fi(@)Mf (%) (2.9)

holds for any x and ball B with x € B, and

hg — ho| < CMs)fy(x)Ms)fs(%) (2.10)
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for all balls B C Q with x € B, where B is an arbitrary ball, Q is a doubling ball. For any ball

B, we denote

hg = mp(T(R.15°) + T(RO.f) + T(R°.7)),

and

hQ =mo(T(F.f°) + T(F™. ) + T(R.5°)),

where we split each f; as f; = f° + £, f =fiXsp, and £ = fi - 0,i=1,2. Since

’

ITARLO| = |TEL)O + [TEL)O] + [ TEL) O] + | TEL)w)

then
1/
(M(6B ) /||T(ﬁ’ﬁ)(z)| Sk |du(z)>
1/
8 (u(6B |T(f1’f2)(z) s’ du(2)>
<

B (u /|T(flfz (Z|dMZ))

1 1/8
+ (g [T - 050 o))

1 5 1/8
<“(6Bo) /;|T(ﬂoo’ 2)@) - T(R*.)0) du(z))

1 5 1/8
C(m/ﬂﬁ S - T(7.5°)0)] W))

= L1 +Ly+ L3+ Ly

We first estimate L;. Applying Lemma 2.2 with s = (0 <8 < 1/2) and ¢ = 1/2, we get

1/8

1 0 0 s
B C(M(6Bo) /B‘T(fl’ 2) @) du(z))

(BN )|
/L(6BO) (legBo’fZXgBo Ll/2,oo(3y%)

1(B) )”“ - [u(5>< By 1 ]
¢ (z)| di(z;
(u(6BO) [1[ wB) 5 x 2By ‘/éBOV(Z)‘ wu(z;)

< wu(B)
~ \ 1(6By)

= CM)fi(x)M@)f2(x)

IA

IA

A

1/5-2
) Ms)fi ®)Ms)/f2(x)
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For L,,letz,y € B, z; € gBO and z, € X\gBO, then max;<;<> d(z,z;) > d(z,2z;) > Cl(By) =
CI(B)* > Cd(z,y)*. By Definition 1.7 and the properties of A, we obtain

TR f5°) @ = T(1.£57) 0]
1 d(z,y)°
X\6Bo ¢8y Zl 1)»(z, (z,2)) Zl 1d(z, ;)]0

d(z,9)°
) d )d
< C/X\gBO /éBO [Zlil A(z,d(z,zi))]2 [d(Z,Z ) 6/01 lfl 21 HfZ ¥4 | I‘L Zl M(ZZ)

i)
= C/GBO Mard(z,z) &)

lf1(21 Hfz(zz |d,U«(Zl)dM(Zz)

1 d(z,y
" kzlf o 06+ M@ 22) s e )

(5 x £Bo) 1
Mg, 2rpy) (5 x £By)

k+1 6
(5 x 6“1 2By) 1
X E 6—1«3/0{ 5 / . .
A(x3’6kgr30) u(5 x 6k+1§Bo) 618, LfZ( 2)| )

o) fi(z1)] dpu(z1)

Therefore,
Ly < CM5)fi ()M 5)f2 ().
Similar to estimate L,, we also obtain that
L3 < CM5)fi (%)M 5)f2 ().
Let us turn to estimate Ly. Write
I T(F.15°) @) - T(F.45°)0)|

[i(z)llfa(22)] d(z,y)°
/X\ 8By /X\ 65, [, Mz d(z,2)]? [Yr, d(z,2)] du(z1) dp(z)

< sz / [f1(z1)lfa(22)]
1 Bo\6k630 o Jo*1880\6 §Bo 32 Mz, d(z,2))]?

d(z,y)°
X i —
(32, d(z,z))

go» | fiteo)

o1 jok k+1630\6k6B

dp(z1) du(z,)

y /‘ |f1(z1)] d(z,y)°
61880\6 88, [Mz,d(2,21))]* [d(z,21)10

. Ci / fo(z)] d(z,y)°

o1 o1 Y61 EBo\6* EBo [Mz,d(2,22))]? [d(2, 22) 1%

du(z1) du(z,)

k-1
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< / file) dute) dues)
6+18By\6/$ By

=: L41 + L4,2.

To estimate L4;, by the properties of A, we obtain

—j8 /o
L41<CZ( (xs,6’ 278,)]? /61+1630\6f Bole)|dM(Zl)6 )

j
x fa(z2)| dpu(z2)
;/lH 2\%2 2

6k+18By\6k £ By

—jéla
- CZ( Mxp, 5% 6/2 rBO)]z /61+16 Lfl(zl)| dp(z1)6”7 )

x /@ gy e e

8/
<cy 6 M(5x61+16Bo)/ Ihte]dua)

j=1

1
X — V4 du(z
w(5 x 6/+1 gBO) LH%BOVZ( 2)‘ w(z2)

< CM\f1(x)M5)f2(x)

For Ly, by the properties of 1, we have

Ly, <C z d 6 ks/a)
42 Z( xB,6k—VBo)]2 v/6"*1§Bo\6’<§BOV 2| iz

-1
f (e duzn)
6+l 630\6’ 630

1 —ké/a
([A(xB,S % 6k§rso)]2 /6,“1230 VZ(Zz)}dM(Zz)6 K8/ )

V1(Z1 |duu(z1)

6k eB
58

>

£

¢

<C

>
I

1

1
(5 x 6K+12By) Jers1 65,

M8\

<CcY el |fa(22)| dpa(z2)

>
I
—_

1
X 7](6
(5 x 652Bo) Jek e,

< CM5\fi(x)M5)f2(x)

fi(z1)| du(z1)

Thus,

IT(F,£°) (@) = T(F.15°) )| < CMs i () Msfa(x)

By the above estimate, we obtain (2.9).
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Next, we prove (2.10). Consider two balls B C Q with x € B, where B is an arbitrary ball,
and Q is a doubling ball. Denote N = N + 1. Recall that By and Q are concentric with
B and Q, respectively, and [(By) = I(B)*, /(Qo) = {(Q)*. Then,

|ZB _ZQ| = |mB(T(ﬁXgBO’f2X6N§BO\gBO) + T(flxéjNgBo\ng’fzngo)”
|mB(T(f1X6N6BO\630 f2X6N6BO\SBO))|
+ |mB(T(f1X6N6BO JoXen 6130)) - mQ(T(flxaNgBo’ﬁX@V gBO))|

+ | B T(leX\6N630 fZXeNGBO)) - mQ(T(ﬁXX\6NgB0’f2X6NgBO))|

ms(
+ ‘mB(T(ﬁxéNﬁso fQXX\éNGBO)) - mQ(T(ﬁXGNgBO’fQXX\GNgBO))‘

+ [ma(T(ixggufaxen gap gay) + THiXex g1 g0 2Xen 5,))]
+ |MQ(T(ﬁX6NgBO\ng'ﬁXwgBo\goo))\

=2M1 +M2 +M3 +M4 +M5 +M6 +M7.

To estimate M, by the condition (1.5) in Definition 1.7 and the properties of A, we obtain

|T(flngo’-f2X6N%Bo\gBo)(z)|

[fi(z0)f2(22)]
C P p
) /“30\530/230 32 A diz, zy o )

Ifi(z1)] If2(z2)]
—d — = d
Cf@BO "ed@z) “(ZI)/MO\@BO e dmz) )

5

IA

NBQ

ARl
)| d d
5 X 6B() / Vi “a | M “a Z Ak+1 630\6k630 Z! d(Z!ZZ)) M(ZZ)

22 (5 x 6518 By)
< CM5)f1(x) / 3
& kZ: Map, 5 x 651 8rg) (5 x 65+12By) 6k+1gBolf

(Zz)| du(z,)

< CKp,oM )i %)M 5)fa(x).
Also,
| T(h Xex 8 0\ 8580 S2X 5 5,) (@) < CKpoMis1fi (0)M5)f2(%)
Then,
My < CKpoM@s)fi(®)Mis)fo(x)

Let us estimate M. By the condition (1.5) in Definition 1.7 and the properties of 1, we
obtain

| T(fixen 8B\ ¢By Joxen 8B\ &By ) |

[fi(z0)lIf2(22)]
¢ dj(z1)d
= /NGBo\"’Bo /6N§Bo\gso (37 Mz d(z,2)))2 wlar) di(z)
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N-1N-1

[1(z1)]Ifa(20)]
: CZZ/k”%Bo\ek%Bo / / - o e duz)

k=1 j=1 618 Bo\6/ By [> i1 Mz, d(z,2))]?

[fi(z1)f2(22)]
¢ d d
+ /6\>< Bo\ 2By /éXgBO\gBO [Z?:l )‘-(Zyd(z,zi))]2 M(zl) M(Z2)

:IM21 +M22.

For M,, since z € By and z; € 6 x 6Bo\ 8B, then 1 zrBy < d(z,2) < —rBO for i =1,2.

Therefore,

C /‘ / [fi(z0)llf2(22)
My < ———— = ulz1) du(z,)
? (M2, 5780)12 Jox 880\ 8 By Jox 8B\ 80 d ' ’

c eIl
- Jo Ve 2 d
= D L) P /fmégo\ggo Lxggo\g% g HEa)

2 (30 x $Bo) 1

H

L Mas, 378y) (30 X 2Bo) Jex 85,

Ifi(z:)| dp(z:)
< CM5)fi ) Ms)fa(x)

For M,;, by the properties of A, we obtain

N-1N-1

2(22)
Mo = C;]Zk/kﬂ%o\d(ﬁ&) ‘ 618 By\6/ ¢ By [)»(Z,U;(Wdu(@)du(zﬂ
ey / e e | fo(22)| dpa(z2) diatzr)
o T ek 8Bo\6k By Mz, d(z,2))]* Jo*1 6 By\6i 8o
= 1
< Cjzzl 4[)\(963,61'%@0)]2 /61'”230\61'230[](2(22” du(z,)

j
X Z/ ) lfl(Zl)|dM(Zl)

o1 Y1 EBo\6 £y

N-1

fi(z1)]
+ CkX:l: /6’<+1 €k 50 —[)\(Z, Az Ju 5, lf2(22)| du(z) du(z,)
N-1

1
= TG Jyoga N 0 / 1fa)] dutey

N-1 1
. C,Zl e f@ I CYETE) f (22)] dpa(z2)
< CKp,oM5)fi %)M fa(x)

For M3, similar to estimate L;, we have

Mz < CM)fi(0)Ms)fa(x).
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For My and M5, similar to estimate L,, we have
My + Ms < CMs\fi (%)M 5)f2(x).
By a similar method to estimate M;, we also obtain that
Mg < CKp oM fi ()M 5)fo (%)
By a similar method to estimate M, we also obtain that
M7 < CKp oM@ fi(x)Ms)fa (%)
Hence, (2.10) is proved. Thus, the proof of Lemma 2.3 is completed. d

Proof of Theorem 1.11 Let 0 < § < 1/2, 1 < p1,p2,4 < 00, %1 = pil + p%,fl € [P (n) and

fo € LP2(). By |[f(x)| < Nsf(x), Lemma 2.1, Lemma 2.3, Horder’s inequality and the bound-
edness of M, for p > 5, we obtain

17 oy = INs (TG 10
= C“Mg(T(fl’fZ)) ”Lq(m = C”M(S)(fl)M(S)(fZ) ”Lq(ﬂ)

= CHM(5)(}(1)HU’1(;Q HM(5)(]C1)HM2(M) < CllAllzzr w2l )
Thus, the proof of Theorem 1.11 is finished. O
Next, let us prove Theorem 1.12. We first prove the following lemma.

Lemma 2.4 Assume that ) satisfies the e-weak reverse doubling condition. Let 1 <q <p <
oo.Iff € Mﬁ;(,u), then for x € B(xg, rg), we have

Fo)l 1
/X\zB )»(x,d(x, ) d ()/) < C()L(}CB, s ) ”f”MZ(M)'

Proof By Holder’s inequality, we have

Fo)l
./X\zB A(x, d(x,y)) 410)

3 o)l
- _JVL_y
2 Lo imdtn 407

= Z: (xB’Q/VB) Q/+1B\2,Blf(y)|dﬂ()/)
> 1 e i+l p\1/d

= Z:)‘(xB 2/r3)|: 2/+13lf(y)| dﬂ()’)] u(z B)

= Z (xB AUr )|[f||Lq(M,2j+1B)[M(21+23))]l/p—l/q[M(2j+zB))]I/q—l/pM(ZjHB)l/q/
=1 ’
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o0

SCZ (x5 2/r)”f”M” [u(22B)] "

> i -1/p
< Cllf gz > [r(xs,2rs)]
j=1
< Wl 3 e [
= Mg () = [C(2)]Vp ’
-1
< Cllf g [ s)]
Thus, the proof of Lemma 2.4 has been completed. d

Now we give the proof of Theorem 1.12.

Proof of Theorem 1.12 Fixing a ball B € X, we have

T < |TRL) @]+ [TEL) @]+ [TEL) @]+ [ TEL) )
Z=G1+G2+G3+G4,

where f? = fixop and £ = f; — 0 for i = 1,2.
For Gy, by the result of Theorem 1.11, we have

I7G2.59) g 00) = supu(6B)# s ( / (. 2")(z)|qdm>) !

<sup/,L (6B Il’_%”T(fl f2)”Lq ()

< Csupu 63)” g ano ||qu

i=1

2 L
< Csup,u(6B)%_% H(/zB |fil% dﬂ()’)) l

BeX

<CSUP1_[/L(6B)I" 9 (/ lflq'du(y))

BeX

2
< CI Tl G0

i=1

For Gs, by condition (1.5) in Definition 1.7 and Lemma 2.4, we have

0 oo If2(22)|
T6)@ < [ i) o 0 i 22)) + 2l ) 1) A4
[fi(z1)] [f2(z2)]
_EUL g 2By
SC/ZB %o dle,z0) ) [ o i dlnzg))
o(2)]

=0 f ten] diaten /X\ZB " d(nz2)) @)
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1-1/q -l/p
Cﬁ( w(2B) Al a2 (A (xss 78)) 2|lf2||M1q’§(u)

2
< (B (Moxg,re) 7 [T Il ()

i=1

Therefore,
1/q
75D g = sprteny ([ 7((0 )@ dto)

< Cu(6B) P~V (2B) P (3, 1)) P2 “ql‘[uanp,
2

< Cu(2B) 110287 (12B)) ™ (w(B) " TT Il ()
i=1

B 1/q 2
[“( )] 1‘[uf||Mp,

2
< CTT WAl 0)-

i=1

For G3, similar to G, we have

2
17 (BN sy = T Tz 00>
i=1

Let us move on to estimate G,. For y € B, by Lemma 2.4, we have

fi(z1)f2(22)]
’T(fl fZ < C-/X\ZB /;(\23 [A(x, d(x,21)) + Alx, d(x,22))]? djite) dpitea)

NoN
= Cl_l[/ s M, )

_1
COasr8)) 7 I llag2s

Thus,

1/q
||T(floo’ 2oo)||M1;(“) SZ‘:}EM%B)UPUq(/B’T((ﬁm,fzoo))(z){qdﬂ(Z))

2
< Cpu(6B)"P (1)) B T T Wil (10

i=1

2
< Cu@B)" 1 (u(2B)) ™ (u(B) " [T Wl ()

i=1
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B 1"
sc[“—] il i (1)
w(2B) [1[ M

2
< CTT WAl (0)-

i=1

The proof of Theorem 1.12 is finished. g

Acknowledgements
The authors would like to thank the referees for their very careful reading and many valuable suggestions.

Funding

This work was partially supported by Natural Science Foundation of China (No.11971026), Natural Science Foundation of
Anhui Province (No.1608085QA12), Natural Science Foundation of Education Committee of Anhui Province
(Nos.KJ2016A506, KJ2017A454) and Excellent Young Talents Foundation of Anhui Province (Nos.GXYQ2017070,
GXYQ2020049).

Availability of data and materials
No data have been used in this study.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HW analyzed the problems and proved Theorem 1.11. RX proposed the problems and proved Theorem 1.12. All authors
read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 6 February 2021 Accepted: 5 April 2022 Published online: 25 April 2022

References
1. Alvarez, J, Milman, M.: H? continuity properties of Calderén-Zygmund-type operators. J. Math. Anal. Appl. 118, 63-79
(1986)
2. Alvarez, J., Milman, M.: Vector valued inequalities for strongly singular Calderén-Zygmund operators. Rev. Mat.
Iberoam. 2, 405-426 (1986)
3. Bui, T, Duong, X.: Hardy spaces, regularized BMO spaces and the boundedness of Calderén-Zygmund operators on
non-homogeneous spaces. J. Geom. Anal. 23, 895-932 (2013)
4. Cao, Y, Zhou, J. Morrey spaces for nonhomogeneous metric measure spaces. Abstr. Appl. Anal. 2013, Article ID
196459 (2013)
5. Chen, J, Lin, H.: Maximal multilinear commutators on non-homogeneous metric measure spaces. Taiwan. J. Math. 21,
1133-1160 (2017)
6. Coifman, R.: A real variable characterization of HP. Stud. Math. 51, 269-274 (1974)
7. Coifman, R, Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212,
315-331(1975)
8. Fefferman, C, Stein, E.: HP spaces of several variables. Acta Math. 129, 137-193 (1972)
9. Fu, X, Yang, D, Yuan, W.: Boundedness of multilinear commutators of Calderén-Zygmund operators on Orlicz spaces
over non-homogeneous spaces. Taiwan. J. Math. 16, 2203-2238 (2012)
10. Fu, X, Yang, D, Yuan, W.: Generalized fractional integrals and their commutators over non-homogeneous metric
measure spaces. Taiwan. J. Math. 18, 509-557 (2014)
11. Gong, H, Xie, R, Xu, C.: Multilinear fractional integral operators on non-homogeneous metric measure spaces. J.
Inequal. Appl. 275, 1-17 (2016)
12. Grafakos, L, Torres, R.: Multilinear Calderén-Zygmund theory. Adv. Math. 165, 124-164 (2002)
13. Grafakos, L, Torres, R.: On multilinear singular integrals of Calderén-Zygmund type. Publ. Mat,, 57-91 (2002) (extra)
14. Hu, G, Meng, Y, Yang, D.: Multilinear commutators of singular integrals with non doubling measures. Integral Equ.
Oper. Theory 51, 235-255 (2005)
15. Hu, G, Meng, Y, Yang, D.: New atomic characterization of ' space with nondoubling measures and its applications.
Math. Proc. Camb. 138, 151-171 (2005)
16. Hu, G, Meng, Y, Yang, D.: Weighted norm inequalities for multilinear Calderén-Zygmund operators on
non-homogeneous metric measure spaces. Forum Math. 26, 1289-1322 (2014)
17. Hytonen, T.: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat.
54,485-504 (2010)



Wang and Xie Journal of Inequalities and Applications (2022) 2022:46 Page 21 of 21

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.
30.
31
32.
33
34
35.
36.
37.
38.
39.

40.

. Hyténen, T, Liy, S, Yang, D, Yang, D.: Boundedness of Calderén-Zygmund operators on non-homogeneous metric

measure spaces. Can. J. Math. 64(4), 892-923 (2012)

. Hyténen, T, Martikainen, H.: Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. J.

Geom. Anal. 22, 1071-1107 (2012)

Hyténen, T, Yang, D, Yang, D.: The Hardy space H' on non-homogeneous metric spaces. Math. Proc. Camb. 153(01),
9-31(2012)

Lin, H., Yang, D.: Spaces of type BLO on non-homogeneous metric measure spaces. Front. Math. China 6, 271-292
(2011)

Lin, H., Yang, D.: An interpolation theorem for sublinear operators on non-homogeneous metric measure spaces.
Banach J. Math. Anal. 6, 168-179 (2012)

Lin, H., Yang, D.: Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces.
Sci. China Math. 57, 123-144 (2014)

Lin, H., Yang, D, Yang, D.: Hardy spaces H” over non-homogeneous metric measure spaces and their applications.
Sci. China Math. 58, 309-388 (2015)

Lin, Y.: Strongly singular Calderén-Zygmund operator and commutator on Morrey type spaces. Acta Math. Sin. Engl.
Ser. 23,2097-2110 (2007)

Lin, Y., Lu, S.: Toeplitz operators related to strongly singular Calderén-Zygmund operators. Sci. China Ser. A 49,
1048-1064 (2006)

Lin, Y, Lu, S.: Boundedness of commutators on Hardy-type spaces. Integral Equ. Oper. Theory 57, 381-396 (2007)
Lin, Y., Lu, S.: Strongly singular Calderén-Zygmund operators and their commutators. Jordan J. Math. Stat. 1, 31-49
(2008)

Liu, S, Yang, D, Yang, D.: Boundedness of Calderén-Zygmund operators on non-homogeneous metric measure
spaces: equivalent characterizations. J. Math. Anal. Appl. 386, 258-272 (2012)

Lu, G.: Commutators of bilinear 8-type Calderén-Zygmund operators on Morrey spaces over non-homogeneous
spaces. Anal. Math. 46, 97-118 (2020)

Nazarov, F, Treil, S, Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math. 190, 151-239 (2003)
Sawano, Y, Tanaka, H.: Morrey spaces for non-doubling measures. Acta Math. Sin. 21, 535-1544 (2005)

Sawano, Y, Tanaka, H.: Sharp maximal inequality and commutators on Morrey spaces with non-doubling measures.
Taiwan. J. Math. 11, 1091-1112 (2007)

Tolsa, X.: BMO, H' and Calderon-Zygmund operators for non-doubling measures. Math. Ann. 319, 89-101 (2001)
Tolsa, X.: Painlevé's problem and the semiadditivity of analytic capacity. Acta Math. 190, 105-149 (2003)

Xie, R, Gong, H., Zhou, X.: Commutators of multilinear singular integral operators on non-homogeneous metric
measure spaces. Taiwan. J. Math. 19, 703-723 (2015)

Xie, R, Shu, L: 8-type Calderdn-Zygmund operators with non-doubling measures. Acta Math. Appl. Sin. Engl. Ser. 29,
263-280(2013)

Xu, J. Boundedness of multilinear singular integrals for non-doubling measures. J. Math. Anal. Appl. 327, 471-480
(2007)

Xu, J. Boundedness in Lebesgue spaces for commutators of multilinear singular integrals and RBMO functions with
non-doubling measures. Sci. China Ser. A 50, 361-376 (2007)

Zheng, T, Tao, X, Wu, X.: Bilinear Calderon-Zygmund operators of type w(t) on non-homogeneous space. J. Inequal.
Appl. 113, 1-18 (2014)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Multilinear strongly singular integral operators on non-homogeneous metric measure spaces
	Abstract
	Keywords

	Introduction and main results
	Proof of main results
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Publisher's Note
	References


