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1 Introduction

Fixed-point theory is an important pillar of the nonlinear analysis branch, as it plays an
active role in many branches of mathematics. The creation of the fixed point of the con-
tractive mappings has become a powerful research center for its multiple applications in
ordinary differential, fractional and integral equations.

For contraction mappings, the fundamental result of Banach on ordinary metric spaces
endowed with vector-valued metrics is described by Perov [1]. Later, for a self-mapping
on generalized metric spaces (€2, ), the results of Perov were generalized by Filip and
Petrusel [2] and some fixed-point sequences are proved. For more details, see [3-6].

In [7], the notions of mixed-monotone functions and coupled fixed points were initiated
and studied. Under partially ordered metric spaces (POMSs) and abstract spaces, some
main results in this direction have been developed, for broadening, see [8—12].

Thereafter, a tripled fixed point (TFP) was introduced by Berinde and Borcut [13] in
2011. They initiated it for self-mappings and established some exciting consequences in
POMSs. For more topics using this idea, we cite these papers [14—16].
© The Author(s) 2022, corrected publication 2022. This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give ap-
propriate credit to the original author(s) and the source, provide a link to the Creative Cormons licence, and indicate if changes

were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your

L]
@ Sprlnger intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13660-022-02780-6
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-022-02780-6&domain=pdf
https://orcid.org/0000-0002-8889-3768
mailto:tabdeljawad@psu.edu.sa
http://creativecommons.org/licenses/by/4.0/.

Hammad and Abdeljawad Journal of Inequalities and Applications (2022) 2022:44

To generalize a TFP, Karapinar initiated the idea of a quadruple fixed point (QFP) and
showed some fixed-point results on the topic [17]. Following this study, a QFP is developed
and some related fixed-point results are discussed in [18-20].

Similar to this pattern in this manuscript, some QFP results have been obtained in the
framework of generalized metric spaces equipped with vector-valued metrics and matrix
equations. Also, some old definitions have been circulated and supporting examples have
been put forward to strengthen our theoretical results. Finally, to illustrate the importance
of fixed-point technology, the theoretical results have been used in three applications.
Application I, on the study of the existence and uniqueness of the solution for a four-
system of integral equations, application II, on the study of the existence and uniqueness
of the solution for a four-system of integral sequences and application III, on finding a
unique stationary distribution for the Markov process.

2 Preliminaries
Throughout this paper, the symbols M,,,,(R*), ¥ and I represent the set of all m x m
matrices with componentsin R*, zero and identity matrices, respectively, and Ny = NU{0}.
Matrix convergence is very similar to normal convergence of sequences or vectors, i.e.,
assume that ® € M,,x,,(R*), a matrix ® is called convergent to zero, iff lim,_, .o " = 9.
To delve deeper into this trend, we pay close attention to [21, 22].
In the literature, some examples of matrices converging to zero are incorporated as fol-

lows:

Example 2.1 The matrix

in My, (R*) with e! + €2 < 1, converges to zero.

Example 2.2 Any matrix in M;,(R*) in the form of

converges to zero, provided that max{e!,e3} < 1.

Example 2.3 The matrix in the form of

T O 0
0 T 0
P = . )
0 O Yo

in M,, ,,(R*), converges to zero, provided that max{Y;:1 <i<m} < 1.

For a nonconvergence matrix to zero, we have the following example:
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Example 2.4 1If we consider e! + ¢ > 1 in the matrix below

in My, (R*), then it does not converge to zero.

The definition of addition and multiplication on R” is given as follows: Let v, v* € R™,

where v = (vy,vy,...,vy,) and v* = (v}, v5,...,v}), then
* _ * * *
v+ = (v1+v1,vz+v2,...,vm+vm),
and
* * * *
vv* = (vl.vl,w.vz,...,vm.vm).

Note that, for £ € R, v; < v} (resp., v; < v}) for each 1 <i < m, also v; < £ (resp., v; < {)

for each 1 <i < m, respectively. This topic has been studied extensively in [2, 23, 24].

Definition 2.5 ([2]) A mapping w : Q% — R™ (where Q is a nonempty set) is called a
vector-valued metric on €, if the assumptions below are satisfied, for each e!,e?, e € Q,
(1) w(el,e?) > 0, w(e!,e?) = 0 < el = e
(©2) w(e', e?) = w(e?,eh);
(Q3) w(e!, e?) < w(el, e®) + w(e?, e?).
Ifel,e? € R™, where e' = (ef,...,e}) and €® = (¢2,...,€2), thene' <e’iffe] <e?forl <

i < m. Then, the pair (2, w) is called a generalized metric space.

In matrix analysis, the proof of the following equivalent propositions that we need are
discussed in [25, 26].

« O — 19;

o« " — P asn— oo;

« foreach h € C, |h| < 1 with det(® — Al) = ¥;

+ I — & is a nonsingular matrix and
I-D) ' =T+D+ - +D" 4.

« the two matrices ®"”/ and /®” tend to zero as n — oo, for each [ € R™.
Here, ZM refers to the set of all matrices ® € M,,,,,(R*), where ®” — ©. For brevity, we
identify the row and column vectors in R”.

Bhaskar and Lakshmikantham [7] introduced the following two definitions:

Definition 2.6 ([7]) An element (e!,e?) € Q2 is called a coupled fixed point (CFP) of the
mapping H : Q2 — Q if H(e',e?) = ¢! and H(e?, e!) = €%

Definition 2.7 ([7]) The two given mappings H : Q2 — Q and /% : Q —  have a CFP
(e',e?) € Q2 if H(e', e?) = he' and H(e?, e') = he?.
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A TFP concept was presented by Berinde and Borcut [27] as follows:

Definition 2.8 ([27]) Anelement (e!, €2, ¢e?) € Q3 is called a TFP of the mapping H : Q3 —
Qif

H(el,ez,e3) =el, H(ez,eg,el) =¢?, and H(eg,el,e2) =e
Karapinar [18] introduced the two definitions below.

Definition 2.9 Let Q #@,and H : Q* — Q be a given mapping. An element (e!, €%, €3, ¢*) €
Q* is called a QFP of H if

Definition 2.10 Let H : Q* — Q be a mapping defined on a partially ordered set (POS)
(R, <). We say that / has the mixed-monotone property (MMP) if for any e!, 2, €3, ¢* € ,

e},ei € Q,e} =< e% = H(e%,e2,eg,e4) =< H(e%,e2,es,e4),
e,eseQ e <e; = H(e' e}, e’ e*) =H(e e3¢ e),
e,eeQe <es = H(e' e e, e*) <H(e, e e e),
eheseQel <ey = H(e', e’ e er) =H(e', e e, e)).

The Definition 2.10 is generalized for two mappings as follows:

Definition 2.11 ([1]) Let H: Q* — Q and 4 : Q — Q be mappings defined on a POS
(2, <). We say H has the mixed #-monotone property (MhMP) if for any e!, €%, €3,¢* € Q,

el ey € Qhel <hey = Hey, e e e*) <H(ey, e’ e, e),
e, 65 € Qhel <he; = H(e'el,ee*) = H(e', e3¢, ¢),
e, e5 € Qhel <hey = H(e', e el,e*) <H(e', e e,¢),
el ey € Q el <he; = H(el,ez,e?',e‘f) > H(el,ez,e ,eg).

Definition 2.12 ([28]) The mapping w : Q% — R” defined on a generalized metric space
(22, ) equipped with

5)((61,62,63,64), (rl,rz,rg,r4)) = w(el,rl) + a)(ez,rz) + w(eg,rg) + a)(e4,r4),
4

defined a metric on * that will be denoted for simplicity by w, for all e!, €2, e3, %, 1, 7%, 13,
4
r* e Q.

Definition 2.13 ([22]) Assume that (2, w, <) is a partially ordered metric space. Q is

called regular if the stipulations below are fulfilled:

1 1
n €
2 2
w €.

(a) for n >0, eil < ¢! if a nondecreasing sequence e

(b) for n >0, e* < efl if a nonincreasing sequence e
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3 Main results
We begin this part with the following definitions:

Definition 3.1 Let H: Q* — Q and /: Q — Q be mappings defined on a metric space
(2, w). We say that H and / are called compatible if

lim w(h(o1234),H(P1234)) =

n—+00

where O134 = H(el, €2, €3, et) and Prazq = (hel, he?, hel, hel),

lim w(h(02341)»H(P2341)) =

n—+00

where Oj341 = H(e2 e ,e ) and Py341 = (he2 he3 he ,hel 2),

lim w(h(O3412), H(P3a12)) =

n—+00

where Os415 = H(€3, e}, el,€2) and Psaya = (hed, hel, hel, he?),

lim @ (h(Oa123), H(Pa123)) =

n—+00

where Oy123 = H(e}, el,e2,€3) and Pyio3 = (het, hel, he?, hel), whenever {el}, {€?}, {3} and

{€%} are sequences in 2 so that

lim Oj3q = lim kel =e¢', lim Ogzyy = lim he? = €%,
n—+00 n—+00 n—+00 n—+00
lim Osqp = lim hed =€, lim O3 = lim hel = e,
n—+00 n—+00 n—+00 n—+00

for some el,e2,e3,e* € Q.

Definition 3.2 The mappings H : Q* — Q and 4 : Q@ — Q are called reciprocally contin-

uous if for some el,e?,e3,e* € Q,

lim /(Oig34) = he! and  lim H(Pig34) = H (e, €%, €3, ¢
— +00

n—+00

Q
w
S
m
[0}
5]

lim ]’1(03412) = h63 and lim H P3412 =H
n—+00

n—+00

( )
nl—i>rPooh(0234l) = h€2 and IIIP H(P2341 H(e2, 63, 64, el)
( )
( )

lim /(Oq03) = he* and  lim H(Pao3) = H(eh €', €2, ¢
n—+00

n—+00

’

whenever {el}, {e2}, {e3}, and {e}} are sequences in Q so that

lim O34 = lim kel =e', lim Oy = lim he’ = €%,
n—+00 n—+00 n—+00 n—+00
lim Osqpp = 11m he =e3 lim Og1p3 = lim heﬁ:ed‘.
n—+00 n—+00 n—+00
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Definition 3.3 The mappings H : Q* — Q and /: Q@ — Q are called weakly reciprocally

continuous if for some e!,e2,e3,e* € Q,

lim /(Oig34) = he' or  lim H(Piysa) = H(e', €%, €3, et

n—+00 n—+00

lim #(Og341) =he* or  lim H(P2341) H ez,eg,e4,el),
n—+00 N>+

(
(

lim #(Osa12) = he®  or 11m H(P3412) = H(es,e4,e ,e
(

lim h(O4123) :h€4 or hm H(P4123) H 64,6 ,62,63
n—+00

whenever {el}, {e2}, {e3}, and {e}} are sequences in Q so that

lim 01234 = lim heil = el, lim 02341 = lim heﬁ = 62,
n—+00 n—+00 n—+00 n—+00

lim Oz = lim hed = ¢, lim Oypp3 = lim he’ = e
n—+00 n—+00 n—+00 n—+00

Example 3.4 Let Q = [0,1] with the usual metric and partial order <, H: Q* — Q and
3 4 2,,3_ 4

h:Q — Q be two mappings defined by H(e!,e?, ¢, e*) = % and K(e!) = e!. Define
sequences {e}}, {€2}, {€3}, and {e}} by

1 1 n
ei =—, efl = , e = , and et=——, VmeNlN.
+1

n?+1

Then, (€2, <) is a partially ordered metric space. By simple calculations one can obtain that

lim Oj3q = lim he! =0, lim Ogqy = lim he? =0,
n—+00 n—+00 n—+00 n—+00
lim Osyp = lim hel =0, lim Oupp3 = lim kel =0,
n—+00 n—+00 n—+00 n—+00

for some e! = €2 = €3 = e* = 0 € Q. Also, the four limits of Definition 3.1 hold and the eight
limits of Definitions 3.2 and 3.3 are fulfilled. Hence, the mappings H and /4 are compatible,
reciprocally continuous and weakly reciprocally continuous.

Definition 3.5 Let the mappings 3, : Q* — Q and /: Q@ — Q be given on a metric space
(€2, w). The sequence {3, },en and 4 are called compatible if

lim C()(h(o/1234): %N‘n (P/1234)) = 0’

n—+00

_ 4 112 o3 Jpot
where O),3, = 3,(e}, €2, €3, %) and P}y, = (hel, he?, hed, hel),

lim w(h(O0h41), I (Ph3a1)) = 0,

n—+00

where Ol = 3,(e2, €3, et,el) and Phyy, = (he?, hed, hel, hel),

lim o(h(05415) I (Paas)) =0,

n—+00

where O}y, = 3,(e3, €}, e}, €2) and Py, = (hed, hel, he), he?),

lim a)(h(Oﬁuzg):Sn (P4,1-123)) =0,

n—+00
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where 0,3 = 3,(e}, e}, €2, e3) and Py, = (hek, hel, he?, hel), whenever {e}}, {€2}, {3} and

{eﬁ} are sequences in 2 so that

lim O, = hrn he =e! lim O.,, = hrn he =é’
Uz = +1 ) pm  Uozar = +1 )
lim O,,, = llm hed. . =é° lim O, = 11m he* = ¢
m Czayp = n+l ) im gz = n+l )

for some el,e2,e3,e* € Q.

Definition 3.6 Let the mappings 3, : Q* — Q and /: Q@ — Q be given on a metric space

(2, w). {Sn}uen and & are called weakly reciprocally continuous if

. / _ 1,1 2
Jm #(Oh) = e’y lim h(Onas) = e
lim_h(Ojy,) = he’, lim 7(Ojy3) = he',

whenever {el}, {2}, {€3}, and {e}} are sequences in 2 so that

1 2
lim O}y, = llm hel., =é', lim O}, = 11m hé?,, =é,
n—+00 n—+00
lim O, = lim hed., =¢é° lim O, = lim het | =¢*
n—+00 3412 Hn—>+00 n+l ’ n—+00 4123 Hn—>+00 n+l ’

for some el,e?,e3,e* € Q.

Example 3.7 Let Q = [0, 1] with the distance w(e',e?) = |e! - €?|,3,,: Q* — Qand 1 : Q —

. . N 1,2,3 4
2 be two mappings described as J,(e!, €%, €%, ¢*) = 5 — << and he' = e'. Define four
sequences {e!}, {€2}, {€3}, and {e}} as
n 1 1 1
ei:z—, ei:—, eﬁ: , and eﬁ: 3 , VmneN.
ne+1 n?+1 e"+1 n+1

Then, (2, ®) is a metric space. By routine calculations, one can write

lim O,,,, = lim he! ,=¢e'=0 lim Oy = lim he? , =e*=0
n—+00 1234 n—+00 n+l ’ n—+00 2341 n—+00 n+l ’

. / T 3 _ 3 _ . / 1 4 _ 4

lim O5,, = lim he,,, =€’ =0, lim O, = lim he,,, =" =0,
n—+00 n—+00 n—+00 n—+00

for some e! = €% = €3 = ¢* = 0 € Q. In addition:

lim a)(h(O’uM),Sy,(PiZM)) =0, lim w(h(olzgzu)»sn( /2341)) =0,

n—>+00 n—+00
nLirPoow(h(Oézuz)’Q‘n (P,3412)) =0, ng?ww(h(olﬂm)’%ﬂ( 21123)) =0.
Also,

lim h(O}y,,) = he' =0, lim h(Ojyy,) = he* =0,

n—+00 n—+00

lim h(0},;,) = he® =0, lim h(0}y,;) = he* =0,

n—+00 n—+00
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whenever {e!}, {€2}, {3}, and {e’} are sequences in Q. Therefore, according to Definitions
3.5 and 3.6 the mappings {3, },cn and & are compatible and weakly reciprocally continu-
ous.

Motivated by Definition 2.11, we state the definition below:

Definition 3.8 Let the mappings J,,: Q* — Q and %: Q — Q be given on a POS (L, <).
We say that {3,},cn, have the MhMP if for any e!,e?,¢3,et,e1,e?,e3,¢* € Q,

he' < he't

=
he* = he? = 3J,(e e e e
he® <he® =

=

Sule’ e, e, e) XJuale” e, e ,e”),
he4zhe’4 3n 64,61,62,63 isnﬂ 6/4,6/1,6,2,6,3

Definition 3.9 For given mappings ; : Q* > Qand h:Q — Q. We say {Ji}ien, and &
satisfy the condition (O) if

< CID[a)(h(el),Si(el,ez,es,e4)) + a)(h(rl),?sj(rl,rz,rg,r4))]

+ W(w(h(e) n(r))), (3.1)

for el,e?, e, e, rl, 12, 13, r* € Q with h(el) < h(rh), h(r?) < h(e?), h(e®) < h(r?), h(r*) < h(e?)
or h(e') = h(r'), h(r*) = h(e*), h(€®) = h(r®), h(r*) = h(e*), I # ® = (¢y), [ # ¥ = (V) €
MR, (D + W)(P 1) € ZM.
Example 3.10 (a) ¢ = %(i 11) and W = %(i 11) are matrices in ZM. We can easily prove
that (® + ¥)(® 1)L € ZM.

(b) Suppose that ® = BI and ¥ = (( — B)® — B)I are matrices in ZM. It is obvious that
(@+W)(®-DtezZMforB=1,11.%

1 1
()@= ( 3 ?) and ¥ = ( (1) g) are matrices in ZM. We can easily show that (& + W)(d -
1 i

DteZM.

Definition 3.11 We say I, and / have a mixed quadruple transcendence point (MQTP),
if there exists e, €2, €3, e € Q so that

o’

R (ei,eg,eg,eg) > h(ei), R (eg,ei,eg,ei) =< h(eg),
, (3.2)
o

So(ei,eﬁ,ei,eg,) > h(e ), and So(ei,ei,eg,ei) =< h(eff),

provided that I, and / have a nondecreasing transcendence point in e!, 3 and a nonin-

creasing transcendence point in €2, e?.

Lemma3.12 Suppose thats;: Q* — Qandh: Q — Q are two mappings on a partially or-
dered complete generalized metric space (POCGMS) (2, w, X). Assume also {J;},en, have
MhMP with 3,(Q%) C h(Q). If S, and h have a MQTP, then
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(i) there are sequences {e}}, {2}, {3}, and {e}} in Q so that

he

2%

1 2 3 a4 2~ 2 3 4 1
n-1 (en—l’ €161 en—l)’ hen = -1 (en—l’ €161 en—l)’

X

3 _
he;, =

22

3 4 1 2 4~ 4 1 2 3
n-1 (en—l’ €1 €417 en—l)’ and hen =n-1 (en—l’ €1 €41 en—l)‘

(ii) {hel}, {he3} are nondecreasing sequences and {he>}, {hek} are nonincreasing

sequerces.

Proof (i) Suppose that for e, €2, €3, e € Q, the stipulation (3.2) is fulfilled. Since J,(Q*) C

h(R2), we can construct e}, e?,e?, et € Q so that

T~ (1,23 4 2 2 3 4 1
he; = Bo(eo,eo,eo,eo), hey = i‘so(eo,eo,eo,eo),
3~ (3 4 L 2 4 4 1 2 3
he; =3, (eo,eo,eo,eo), and kel = 3. (e, el, €2, €). (3.3)

Again, since J,(Q%) C (), there are e}, €3, €3, €5 € Q so that

1_ . (ol 2 (02 03 4l
hey = 31 (e1, €1, €, €1), he; = 31 (e7, €3, € e1),

3 (p3 4,1 2 4_ (4,1 2 3
he; = 31 (e}, el,ep,e), and  he; =3, (el e}, €1, 7).

It follows with the same scenario that

1 _ 1 2 3 4
hen = ﬂsn—l(en_l’en—l’en—l’en—l)’

2 _ 2 3 4 1
hen = '\Yn—l(enfl’ €, 1€, 1» en,l)y

3 3 4 1 2 (34)
- X
hen = msﬂ—l(en—l’ €161 en—l)’
4 _ 4 1 2 3

hen - S”I*I(en—l’en—l’en—l’en—l)'
(ii) Now, we prove by mathematical induction that for all # > 0,

1 1 3 3 2 2 4 4

he, < he,,,, he, < he;,, |, he, = he,.,, and he, > he,,;. (3.5)

In the light of (3.3) and since (3.2) holds, we obtain
hei =< he}, heg < he?, hei > he%, and he‘i > he‘f,

thatis for n = 0, (3.5) holds. Let (3.5) be fulfilled for # > 0. Now, by (3.4) and (3.5), the result
is completed. 0

Below, our main theorem of this section is stated as follows:

Theorem 3.13 Let the stipulations of Lemma 3.12 hold, suppose that {J;}ien, and h are
compatible, weakly reciprocally continuous, where h is continuous, satisfies the condition
(O), is monotonic nondecreasing, and h(2) C Q is complete. Then, {3;}icn, and h have a
quadruple coincidence point (QCP) provided that h(Q2) is regular and ®, V are nonzero
matrices in ZM.
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Proof Let {el}, {€2}, {€3}, and {e}} be sequences constructed by Lemma 3.12. It follows

from (3.1) that

w(hey, hey,,) = o(Su-1(ey_1 €51 €5 1,€n 1), Snlen €€y er))

< ®[w(he,_,,Su-1(e) 1. er 1,6 1,65 1)) + w(hey, Ju(en € €0, €

VU (w(he,_,he,))
®[w(he,_i, he)) + w(h(ey), hey,,)] + V(w(he,_y, hey)).

This leads to,
w(hey, hey,,) < (@ + W) - @) w(he,_,, hey).

n

Similarly, we can write

(he he? ) <(®+W¥)I - CD)_lw(hefl_l,hef,),

n+1

w(he), he),,) < (@ + W) - ®) " w(he)_, hel),
and
w(hey, hey,,) < (@ + W) - @) w(he}_y, hel).
Adding (3.6)—(3.9), one can obtain

nn = w(hey, hey,,) + w(hel, he,,,) + w(he, he),,) + w(he}, hey, )

)]

(3.6)

(3.7)
(3.8)

(3.9)

= (@ + W) - D) w(hey 1, he,) + w(he,_, hel) + w(he, 1, he)) + w(hey_;, he) ]

= (@ +¥)I =) ).

Put (& + W)(I — ®)~! = &, then for # € N, we have

2

[I]

V<N BNy < By < 770-

By using the triangle inequality, for £ > 0, we have

w(he,, he,,,) + w(hel, hel,,) + o(he), hel,,) + w(her, hes,,)

< w(he,, he,,,) + w(he,, hel,,) + w(he), hel, ) + w(he}, hel,,)

3
n+l n+l n+l

+ w(hen+l’hen+2) + w(hem—l’ hen+2> + w(heml’ hen+2) + w(hen+1’ hen+2)

+ w(hen+€ 1’hen+€) + w(hen% l’hen%) + w(hen+€ l’hen+€) + w(hen% l’hen+£)

tNMue1 + 00+ N1

N
< (E}’l E C+ E}’l+[—l) .

Page 10 of 22
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This implies that

w(hey, hey,,) + w(he}, hel,,) + w(he), hel,,) + w(he,, hei,,)

n+t n+t n+t n+t

< (@ +W)I - D))" (I- (@ + W) - &)™) .
Passing the limit as n — +00, we have

lim w(he,, he,,,) + w(he,, he.,,) + w(he), he),,) + w(he,, he,,,) =0,

> 400 n+{ n+{ n+{ n+{
yielding
lim w(hel, hel ) = lim w(he?, he’,,) = lim w(he, hed
> 400 ( n’ n+Z) > 400 ( n’ n+l) > +00 ( n’ n+(3)
= lim w(het het,,)) =0.
n—>+00 ( " "H{)

This illustrate that {hel}, {he2}, {he3}, and {he’} are Cauchy sequences in 2. The com-
pleteness of 4(2) leads to (¢, e?,¢?,e) € Q% so that

lim he! = he' = ¢!, lim hei =he? = ¢
n—+00 n—+00

lim hel =he®=¢’, and  lim het=he* = ¢
n—+00 n—+00

By construction, we obtain

. 1 s~ (Ll 2 3 4 . 2 o (2 3 4
lim ke, , = lim 3,(e,,e e ,e lim ke’ , = lim S,(e;,e’, e, e
nstoo M T e n( w e En? n)’ nstoo T e n( w e n)’
lim hed., = lim (e3¢ el,e? and  lim ke | = lim (e} el, e, ).
n— 400 n+1 n—+00 n( W= n n)’ n—+00 n+l n—+00 n( w = ")

The weakly reciprocally continuous and compatibility of {J;};cn, and /(€2) leads to

lim 3, (hel, he?, hed, het) = het lim 3, (he?, hed, het, hel) = he?
P }’l( n’ n’ n’ n) ’ P }'l( n’ n’ n’ n) ’
lim 3, (hed, het hel he?) = he®, and  lim 3, (he*, hel, he?, he®) = he*.
P n( n’ n’ n’ n) ’ P n( n’ n’ n’ n)

Since {he.}, {he3} are nondecreasing and {he?}, {he}} are nonincreasing, using the regu-
larity of 2, one can obtain for all > 0, hel < e, € < he?, he? < €%, and e* < he’. Hence,
by (3.1), we can write

w(Sl 61,62,e3,e4),Sn(hei,hei,hei,hei))
< @[w(hel,;“si(el,eZ,eg,e‘L)) + a)(he}q,Sn(hei,hei,hei,hei))] + \I’(a)(hel,he}q)).
Passing the limit as # — 0o, we obtain J;(e!, e, €%, e*) = hel. Similarly, we can conclude

that 3;(e%, €%, €%, eb) = he?, (€3, e*, el, %) = he?, and J;(et, el, €2, €3) = he*. Hence, (€', €2, €,
e*) is a QCP of {3;}en, and 4. O

The result below is given from Theorem 3.13 by taking / = Id, where Id is the identity
map.
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Corollary 3.14 Let (,w,<) be a POCGMS and {S;}ienuio) : Q* — Q be a mixed-
monotone sequence of mappings, where {J;}ienujoy and 1d : Q@ — 2 satisfy the condition
(0). Also, 3¢ and 1d have a MQTP and 1d(R2) is regular. Then, there is (e, €%, €3,e*) € Q* so
that 3;(et, €2, €3, e*) = e, 3;(e%, €3, e, el) = €2, J;(e3, €%, e, €?) = €, and J;(e*, el, %, e®) = ¢*
forieNy.

If we omit some conditions of Corollary 3.14 and take ® as a zero matrix and expand
the distance w((e!), ('), we obtain the important result below.

Corollary 3.15 Let (Q, w, <) be a POCGMS and 71: Q* — Q be a mixed-monotone map-

ping, such that
w(%i(el,eZ,eS,e4),Sj(rl,rz,rg,r4)) < \IJ(cu((e1 e, e, e4) (r1 e, 74)))
If TV has a MQTP, then 1 has a QFP in Q.

Definition 3.16 We say that (¢!, e2,¢?,¢*) is a quadruple comparable (QC) with (¢}, 2,

23,0 iff

el i {1, 62 5 §2, eB i §3’ 64 5 §4 or
el 5 {1, 62 i §.2, 63 5 4.3, 64 i §4 or
61 E 4.2’ 82 ﬁ 4.3, 63 E é.4 84 f é.1 or
el ﬁ 4.2, 62 E §.3’ 63 5 4.4, 64 z {1 or
el > ;3, 62 =< C4’ 63 > Cl 64 =< §.2 or
el 5 ;3’ 62 Z §4’ 63 f ;1’ e4 Z ;2 or
el i ;4’ ez 5 Cl, 63 Z ;2 e4 j é.s or
el ﬁ {4’ 62 i {1, e3 ﬁ {2’ 64 i ;3

If we replace (e!,¢e?, €3, e*) and (¢1,¢2,¢3,¢%) with (hel, he?, he3, het) and (het, he?, he3,
h¢*) in Definition 3.16, we call (¢!, €2, €3, e*) a QC with (¢!, ¢2, ¢3, ¢*) with respect to (w.r.t.)
h.

Theorem 3.17 Let (Q,w, <) be a POCGMS. Assume that {3}y, : R* — Q is a sequence
of mappings and h : Q@ — Q, where {3;}ien, and h satisfy the condition (O) and have QCPs
with quadruple comparable (w.r.t.) h. Then, {3;}icn, and h have a unique common QFP.

Proof 1t follows from Theorem 3.13 that the set of QCPs is nonempty. Now, begin with
proving that (e!,e2,e3,e*) and (¢1, ¢2, ¢3, ¢*) are QCPs, with meaning, if

Si(
Si(

=3¢t ¢e% 88 c) he? =3i(¢%8%, ¢4 ¢,
=3i(¢%eheh e, het=3i(eh e eh ),
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then he' = hel, he? = he?, he® = he?, and het = he*. Since the set of QCPs is a QC, then by
(3.1), we obtain

w(he', het) = o(3i(e', e, % et), (¢t £, 3, ¢h)
< lo(he',3i(e', ¢, € e)) + w(he!,3i(¢ 1 2,3, ¢%))]
+ \Il(a)(hel,hg“l)).
AsI#W € ZM, w(he', ht') = ¢, hence he! = h¢!. Similarly, we can prove that he? = h¢?,
he® = h¢?, and he* = he*. Hence, he' = he? = he® = he* = h¢' = he? = he® = he*. This tells
us (he', he?, he®, he*) is a unique QCP of {3;};eny, and 4. Since {J;}icn, and 4 are weakly

compatible and since two compatible mappings commute at their coincidence points,

thus, clearly (e', €%, €3, ¢*) is a unique common QFP of {3;};ery, and 4. O

Example 3.18 Suppose that Q = [0, 00). Define

1 2
e —e
o(eh@) = (7N,
le” — e

o) ()

It is clear that the pair (€2, w) is a POCGMS and &, ¥ € ZM. Define two mappings J; :
Q*— Qand h: Q — Q with

and

(=)

=
[«

1,2, .3, 4
el+e*+e’+e
;si(el,eZ,eS,e4): (#> and h(el):16el,

by mathematical induction, we can fulfill the condition (3.1) for all e!, €2, €3, e* € Q, that is,

we find that the first side has its greatest value when i = 1, and j — 0o as below

| El+€2+€3+64 _ V1+V2+V3+V4 |
4 Y
el +e2+e3+e4 _ Vl +V2+V3+V4 |
4 ]
1,,2,,3, 4 1,.2,..3, .4
- i 0\ [l16e' — et 4 |16y! — b 0 1\ [I16(e! -]
—\o 1 |16e1—w|+|16v1—w| 1 0 [16(e* — v1)| ’
4 4 7] 4
Now, for j =j + 1, we obtain

elve?+ed et 1 v 8t |
- 4 4 j
K = 2,63, 04 s

|el+e +e’+et lvl+v +V +v4|
4 4 Y
1 9 |1661—M|+|16V1—1M| 0 4 lel — v
= . 1 1_ € +62f63+64 1 Z1L vl +V24-;-’V3+V4 + 1 1
0 1) \|16e! — eretene |y 16yt — frorarnt 4 0] \|et v
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Hence,
1 |el+ez+e3+e4 _ vt |€1+62+63+64
K< — ¢y + — 4
- 4 |e1+e2+e3+e4 _ vi2 3t |el+e2+e3+e4
4 4
1,,2,,3, 4 1,,2,.3,.4
1 0 |161 e +e Ze +e | |16v1_%v +v4+}v +V
= Z 1 16 elre?red et 16V! 1vla2d a0t
1) \l6e! - acietect eyt - f e

1

4

0
1 1,,2,.3 4
1 0 4 | + 3 |e +e Ze +e
4 4 0 |e .y | |€1+€2263+€4

Therefore, all stipulations of Theorem 3.13 are fulfilled, and (0,0, 0,0) is a QCP of {3;};en,
and 4, also, this point is a unique common QFP of the same mappings according to The-

orem 3.17.
The definition below is very important for the applications.

Definition 3.19 Assume that ® = (¢;;) and ¥ = (¢) are two matrices in ZM. Then,

&<V ifandonlyif ¢;<vy,1<ij<m,

max(®, W) = © = (6),
where 6;; = max{¢;;, ¥;;}. It is obvious that, if ® < ¥ then max{®, ¥} = ¥

4 Application (I)
By using the results of Sect. 3, in this part, the existence and uniqueness of the solutions

of the integral equations system are extracted. Consider the system below:

e'(8) = [y (w(8,0,€'(0)) +x(8,0,€*(0)) + ¥(8,0,€(0)) +2(8,0,€*(0))) do
+ b(6),

= fog(w(& 0,eX(0)) +x(8,0,%(0)) + y(8,0,e*(0)) + 28,0, (0))) do
+b(8),

e (8) = fOQ(W(S,G,e?’(U)) +x(8,0,e*(0)) +y(8,c7,e1 (0)) +2(8,0,€*(0)))do
+ b(6),

= fOQ(W(S, 0,e*(0)) +x(8,0,e (0)) + y(8,0,€%*(0)) + 2(8,0,€3(0))) do
+b(8),

(4.1)

for all §,0 € [0, 0], for some o > 0.
As usual, we consider ©2 = C([0, ¢], R) is a continuous real function created on [0, ¢] and

equipped with a metric

maXop<s<e |el (8) - 32(5)|
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Define a partial order “<]] on Q as follows:
for e!,e* € Q, for any § € [0, 0], e' < €*iff ' (5) < €(§).

Thus, (22, w, <) isa POCGMS.

Now, system (4.1) will be taken under the hypotheses below:

(t;) the functions w,x,,z: [0,0] x [0,0] x R — R?and b: [0,0] — R are continuous;
(ti) for all €1, €? € Q, there is u : [0,0] — My,2([0,0]), so that

0 < |w(s,0,e'(0)) - w(s,0,e*(0))] < n1(S)w(e!, e?),
0 < |x(8,0,€*(0)) —x(8,0,€' (0))| < pa(8)w(e', e?),
0<|y(5,0,e(0)) - y(8,0,6*(0))| < us(S)wle',e?),
0 < |2(8,0,€%(0)) - 2(8,0,€' (0))| < pa(S)w(e!, €?),

(4.2)

1

for all 8,0 € [0,0] with u(8) < ® = (g ?) and [(8) < W = (
V€ ZM; '

(i) consider p11(8) + p2(8) + 3(8) + na(8) <1 and

O wim

) This holds because

1

1(8) = max{1u1(8), 142(8), 113(8), 114 (8) };

(f1) there exist continuous functions A, p, v, ¢ : [0, 0] — R so that

A< fo w(8,0,A(0)) +x(8,0, p(0)) + ¥(8,0,v(0)) +2(8,0, 32(0))) do + b(8),
o> fo w(s,0,p(0)) +x(8,0,v(0)) + (8,0, (0)) +2(8,0,r(0))) do + b(8),
v < fog(w (8,0,v(0)) +x(8,0,5(0)) + y(8,0,A(0)) + 2(8,0, p(c))) do + b($),
x> fo w(s,0,x#(0)) +x(8,0,A(0)) +y(8,0, p(0)) +2(8,0,v(0))) do + b(8).

Theorem 4.1 The problem (4.1) has a unique solution in Q2 if the four assumptions (;) —
(t1:) are fulfilled.

Proof Define an operator J; : Q* — Q by
Si(el,ez,eg,e4)

=b(8) + /Q(W(S,G,el(o)) +x(8,o,ez(a)) +y(8,a,e3(o)) + z(8,0,e4(0))) do,
0

for any e!,e?,¢%,e* € Q and 8,0 € [0, 0].
To obtain the required result, we will show that the operator {3} ;e fulfills the stipula-
tions of Corollary 3.14.

Initially, we discuss the MMP of {3,};cn. Suppose that e!,v! € Q with e! < v!, then for
8,0 € [0, 0], we have

Ji(e! e, e, e)(8) - Ji(v', e, €2, e*) (8) = /Q(W(S,o,el(a)) -w(8,0,v'(0))) do
0

Page 15 of 22
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For any § € [0, 0], given that e!(§) < v}(§) and according to our hypothesis (4.2), we can

write
Si(vl,ez,e3,e4)(8) (e e, e, e4)(8) <0,
hence J;(e!, €2, €3, e*)(8) > 3;(V1, €2, €3, e*)(8). Let €2,v? € Q with e < 12, then we obtain
Ji(e! V2 e, e*)(8) - (e, e, e, e*) (8) = /Q(g(é,a,vz(a)) -g(8,0,€%(0))) do
0

Given that €?(8) < v*(8) for any § € [0, 0], and according to our hypothesis (4.2), we obtain

Tsi(el,vz,e3,e4)(8) (e1 e, e, 64)(8) >0,
that is, J;(e!, €2, €3, ) (8) < Ji(e!, v2, €2, e*)(6). Similarly, we can conclude that J;(e!, €2, €,
e)(8) > Ji(eh, 2,3, e)(8) and J;i(el, €%, €3, e*)(8) < (e, €%, €3, v*)(8). Therefore, {J;}ien
has a MMP.

Next, we shall estimate (3J;(e, e, €3, %), 3;(v1,v%,v3,v%)) for ! < v, 12 <€, 8 <17,
vt <etorel v, v > e e =13, vt > et and with {3}, having a MMP, we have
~fol 2 3 4\ ~ (1 2 3 4
w(Ji(e, e, €%, e), 3; (v, v2, vPvt))

~ (maxogﬁsg) 13:(e', €2, €%, €%)(8) — (v, v, v3,v4)(5)|)

maXOSﬁSQ |Si(€1, 621 63, 64)(8) - S}'(Vlr Vz: VS’ 1/4)(8)| '
Now, take into account (4.2), for all § € [0, ¢], we can write

|3i(e!, €%, €%, e*)(8) - 3; (v!, V2, v, vh) (8)

/Q(W(&a,el(o)) + x(é,a,ez(cr)) +y(8,cr,e3(a)) + 2(8,0,64(6))) do
0

_ /Q(w(b‘,a,vl(o)) +x(8,0,V°(0)) +¥(8,0,V(0)) +2(8,0,v*(0))) do
0
§AQ|W(8,0,61(U (801/ ‘do+/ |x806 (501/ )|d0

+ /Q‘y(&a,e"’(o)) —y(8,a,v3(a))’d0 +/ ’2(5,0’,64((7)) —Z((S,G,V4(G))’d0
0 0

<1 @®)w(e', V') + ua(8)w(e*v?) + n3(d)w(e, v*) + na(8)w(e*, v*)
< u(é)(a)(el,vl) + a)(ez,v )+ a)(e3 v3) + a)(e4 V4))

< \IJ(w(el,vl) + a)(ez,v2) + a)(e3 v ) + a)(e4 v4))
Hence,
a)(:\“si(el,ez,eg,e4),;“s/(vl,v2,v3, v4))

- w(e', v!) + w(e?,v?) + w(e?,v?) + w(et, v)
- <w(el, D+ w(e2,v?) + w(e3, v3) + w(e?, v4))

Page 16 of 22
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< ¢[w(el,%i(el,e2,eg,e4)) + a)(vl,Sj(Vl,vz,vs, V4))]

+ \I’a)(el, vl).
Consider A, p, v, s are the same as hypothesis (f;,), then, we obtain

A'Ssi()\f}p; v, %)y ,O Zsi(p;U:%;)\),

v =< S\l'(‘Ur %1)‘-7 ,0)) and > Sl'(Jfr)‘-r 1%} U)'

Put e} = A, € = p, € = v, and €} = », then all requirement stipulations of Corollary 3.14
hold. Hence, the point (e', e, &3, e*) is a QFP of {3;};en, which is a unique solution of the

problem (4.1). a

5 Application (ll)
This part is a generalization of Sect. 4, where we introduce the sequence of the integral

equations system as the following:

e'(8) = [y (wi(8,0,€'(0)) +x:(8,0,€*(0)) + yi(8,0,€%(0)) + z:(8,0,€*(0))) do
+ b(6),
e*(8) = fog(w,»((S,a,ez(a)) +x:(8,0,63(0)) + y;(8,0,€*0)) + zi(8,0,e' (c))) do
+b(2), (5.1)
e3(8) = fOQ(Wi(S,O‘,eg(O’)) +x:(8,0,e*(0)) + (8,0, (0)) + zi(8,0,€%(0))) do
+ b(6),
e*(8) = fog(wi(8,a,e4(a)) +x:(8,0,e'(0)) +y:(8,0,€%(0)) + zi(8,0,€3(c))) do
+b(8),

for all §,0 € [0, g], for some @ > 0. Similar to Theorem 4.1 the problem (5.1) has a simul-
taneous solution with the stipulations below by considering all requirements of Sect. 3
in terms of the definition of the partial order “<” on €2, the distance “@” and a partially
ordered complete generalized metric space (£2, w, <).

System (5.1) will be considered under the following assumptions:

(1;) the functions w;, x;, v, 2; : [0, 0] x [0,0] x R — R? and b: [0, o] — R are continuous;

(4) for all €1, e? € Q, there is 1 : [0,0] — Ma,»([0, 0]), so that

0 <|wi(8,0,€'(0)) —wi(8,0,6*(0))| < u1()w(e', ),
0 < |x:(8,0,€*(0)) —x:(8,0,€"(0))] < pa(8)wle', ),
0 < |yi(8,0,€'(0)) —3i(8,0,€*(0))| < us(8)w(e', ),
0 <|zi(8,0,€*(0)) - zi(8,0,€" ()] < pa(d)w(e', ),
for all §,0 € [0,0] with u(8) < ® = (f‘) z) and u(8) < ¥ = (z é). This holds because
O, W € ZM;
(#::1) consider 11(8) + u2(8) + 143(8) + pa(d) < 1 and

w(8) = max{1(8), 12(8), w3 (), ia(d) };
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(%;y) there is continuous functions A, p, v, > : [0, 0] — R so that

A< Jowil8,0,1(0)) +x:(8,0, p(0)) +yi(8,0,0(0)) + 2i(8, 5, 5(0))) do + b(3),
o= fOQ(W,'(S,a,p(a)) +x:(8,0,v(0)) +y(8,0, %#(0)) + z:(8,0,A(0))) do + b(8),
v< fog(wi(S,cr, v(0)) +x;(8,0, () + y:(8,0,1(0)) + z:(8, 0, p(o))) do + b(5),
x> fog(wl-(&o, #(0)) +x:(8,0,A(0)) +¥:(8,0,p(0)) + zi(8,0,v(0))) do + b(5).

6 Application ()
In this part, a unique stationary distribution for the Markov process is discussed. Suppose

that R” = {(e!,€%,...,e") =e:¢; > 0,i > 1} and

Al ={p=(c,eee") eRl xR x R? x R”

n

n

1, 2. 3. 4
E p,»:E (ef +ef +e +ef)=1¢,
-1

i=1

refer to a 4(n - 1)-dimensional unit simplex and g € A% | could be considered a possibility
over 4n possible statuses. Here, the Markov process is a stochastic process that verifies that
4n statuses are realized in each period % = 1,2,... with the probability contingent on the
current achieved status. Assume that a;; refer to the probability contingent that status i is
achieved in the subsequent period beginning in status j. Hence, in period % and # + 1, the
"1 given by ! = 3 a0
for each j > 1. To put this in a matrix form, let " be a column vector, then p"*! = Tp".

prior probability vector " and the posterior probability &

Take into account, for conditional probability, a; > 0 and ) " ; a; = 1 are required. At any
period p" is called a stationary distribution of the Markov process, the problem of finding
a stationary distribution is equivalent to the fixed-point problem Tp” = ©”, whenever
@ﬁ — BOrHl'

For all i, consider &; = min; a; such that ¢ = Z;’zl &

Now, the basic theory for this part is formulated as follows:

Theorem 6.1 Via the hypothesis a; > 0, there exists a unique stationary distribution for

the Markov process.
Proof Define a distance w: A% ; x A% ; — R? by

w(D,E) = 5((61,62,63,64), (rl, e, r4))

n
_ (Z(Iei—rﬁl+}e?—r?{+|e?—r?|+|e?—r? )

i=1

n
Z<re;—r:r+re%—rﬂ+\e?—rf\+\e%—r;*>>),

i=1



Hammad and Abdeljawad Journal of Inequalities and Applications (2022) 2022:44 Page 19 of 22

foreach D,E € A% ,.Clearly, foreach D,E € A% |, w(D,E) > (0,0).If o(D, E) = (0,0), yields

n
(Z(Iei—ril +lef = ri|+ el =] + |ef = rl),

i=1

Xn:(|e —ri|+ e —r7| + e} —r}| + e} —r4|)>

i=1

=(0,0),
which leads to, |e] —r}| + |e? —r?| + |&} — 12| + |e} —r}| =

e’ =r?, e =r’,and e* =14, i.e., D = E. Conversely, take D = E, then for all i, e} = r,

e =r),and el =r}, = |e} —k!| = e} — k| = |&} — k3| = |e} — k}| = 0, yields,

0 for all i, this 1mp11es that el = 11,
Ler=r?

’

n
(Z(’e —r1|+|e —r2|+|e —r3‘+‘e —r4|)

i=1

n

> (et =ri|+ e —r?| + e} —r}| + ¢! —r4|)>

i=1
=(0,00 = w(D,E)=(0,0).
Also, we obtain

0.8~ (3l -]+~ o -] o -

i=1

),

n

D (let-ri|+ et 1P| +|ef = 1| + e} —r“\))

i=1

n
; (Z(Ir}—e}\+\r?—e?!+!r?—e?!+!r?—e? )

i=1

n

S (el + 2]+ - 3] o 1t —e‘*l))

i=1

= w(E,D).
Now,

w(D,E) = (X:(|el1 —ri1| + |ei2 —rl.2| + |ef’ —r;g’\ + \e?—rf

i=1

)s

n

>t ]+ e - r?|+|e?—r?|+|e§‘—r?|)>

(e} =) + (I} =D + (&2 = 1) + (B = 1)
+|e3—z3+(z3 P+l =t + @i )’

12

(e} =11 + (I} = rD) + (€2 = ) + (12 = r?)]
+(e] =)+ (B =r)) + |(ef = I}) + (I} = )|
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2o el =1+ | —rl ]+ e = P+ |12 - 12

= 331, (3_,3 4 Jh) L (JA_ 4
O\ tler LI+ 15—+ e =+ 15 =1

A

’

n

17 11 ) 2.2
Z le; =L+l —rj| +le; =L+ 12 =17

3_73) 13 _,3 4_qa L 7A_ 4
\tle — L1+ 15 =7l + ey — L1+ 16 =1

n
> (e =G|+ lef | + e 2|+ [ef -1

i=1

> (e =& +let =8| + |ef = 5| + lef - £}1)

i=1

)

n
(Do -+ = 2 B = [ vt

i=1

),

n

(a5 =+ |8 =]+ [ =)

i=1

= w(D,B) + w(B,E),

where D = (I1,2,3,1*) € A} . Thus, (A% |, w) isa generalized metric space. One can prove
easily the completeness and if we define on A} ; the following order, for (e',e?, ¢, e%),
1,2 .3 4 4
(rhr5, e rt) e AL,
(r, ) < (e b ehet) & el =rle? <re’ =1 and e <7,
then the triple (A}_;, », <) isa POCGMS.
Leth =T forallp € A,_1,theneachd; = Y7, a;¢; > 0 moreover, since each Z;’Zl a; =

j
1, we can write

=

n n n n n

= 0 = Ny 1, .2, .3 4\ _ 1, .2, .3, 4\ _
E :l_g E al,@]—g a,,g (e,'+€,-+ej+3/)— (ej+e/+ej+ej)—1,
j=1

j=1 i=1 j=1  j=1 j=1

which implies that i € A% ;. Thus, we have T: A% | — A% ;. Now, we shall show that Tis
a contraction. Consider T; refers to the ith row of 1. Hence, for any (e!, €2, &3, &%), (!, 72, 73,
r*) € A} |, we obtain

a)(-i(el, e, e, 64), -l(rl, 2,7, r4))

n n
([Pt vt v -ttt o o))
i=1 \| j=1
n n
Z Z“ii(e}+e;‘2+€,3+e?)—ﬂzj(l”jl+rj2+rlf°’+rf)
i=1 \| j=1
n 1 2 3 4 1 2 3 4
- 2": ‘Zj:l(aij—gi)[(ej +e&+&+el)=(r} +r7+r+1})]
- (ol 2 3 4 1 2 3 4 ’
= vl 4G g +e) =} wrfan) o)

n
Z | 27:1(417 - «c,‘i)[(ej1 + ej2 + e].3 + e;‘) - (rj1 + rj2 + rf + rf‘)]

relet+e2+ed+el)y—(rt +r2 4 +rd)

] ] ] ] ] ] ] ]
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n n
< ( Z(aij—ei)[(ejl+ef+ef+ef)—(}+rf+rf+rf)]
i=1 \| j=1
n
+ ei(e}+ef+ef+ef)—(;f+;f+;f+;f) ,
j=1
n n
(a; — 8,»)[(61-1 + ef + e;’ + ef) - (rjl + rj2 + rf + rf)]
i=1 \| j=1

+ si(e}+ef+ef+ef)—(;f+;f+@+rf)

j=1

Y Y (ag —ed)(le} — il + 1e2 = 72| + 1€ = 12| + et — i),

<
S (g — el — 7+ (&2 = r2] + 1€ = 72+ e = r¥)
Yille —ril+1e =7l + e = rl+lef —rf]) x XL lag - &il,
n 1 1 2 2 3 3 4 4 n
S (el =l 1€ = 721+ [} = ]+ 1t — r41) x Y0 lay — el
2 2 3 3
—(—¢) Z;l:l”ejl _rjll + |€j =1 | + |ej -5 | + |ef—rf|):

n (e =+ 1€ — 2|+ |} — 1) + et — rt
Y (let —rtl+|e2 = 12|+ |e} —r}| + et — rt))

= lllw((el,ez,e3,e4), (rl,rz,r3,r4)).

Hence, with W = (I — ¢) all stipulations of Corollary 3.15 are fulfilled. Hence, there is a
unique QFP of the mapping 7 that is a unique stationary distribution for the Markov pro-
cess. Also, for any ' € A,_;, the sequence { 1"} converges to a unique stationary dis-
tribution. O
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