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Abstract
This paper deals with the blow-up phenomena connected to the following
porous-medium problem with gradient terms under Robin boundary conditions:

⎧
⎪⎨

⎪⎩

ut =�um + k1up – k2|∇u|q in � × (0, t∗),
∂u
∂ν

+ γ u = 0 on ∂� × (0, t∗),
u(x, 0) = u0(x) ≥ 0 in �,

where � ⊂ R
n (n≥ 3) is a bounded and convex domain with smooth boundary ∂�.

The constants p, q,m are positive, and p > q >m > 1, q > 2. By making use of the
Sobolev inequality and the differential inequality technique, we obtain a lower bound
for the blow-up time of the solution. In addition, an example is given as an application
of the abstract results obtained in this paper. Our results can be regarded as an answer
to the open question raised by Li et al. in (Z. Angew. Math. Phys. 70:1–18, 2019).
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1 Introduction

In recent years, blow-up phenomena for parabolic problems have been actively studied by
many researchers. Such an issue is quite important, since it is often used to describe many
physical and biological phenomena; we refer, for instance, to [2–9]. Most of these papers
deal with the existence, blow-up, and other qualitative properties of solutions to related
problems. In many situations, the techniques used in the study of blow-up phenomena
often lead to the upper bound for the blow-up time when blow-up occurs. However, in
applications, the lower bound seems to be more important, due to the explosive nature of
the solution (see [10–14]). In this paper, we investigate the blow-up phenomena connected
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to the following porous-medium problem under Robin boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

ut = �um + k1up – k2|∇u|q in � × (0, t∗),
∂u
∂ν

+ γ u = 0 on ∂� × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in �,

(1)

where � ⊂ R
n (n ≥ 3) is a bounded and convex domain with smooth boundary ∂�, ∂u

∂ν
is

the normal derivative of u, t∗ is the maximal existence time of u, and � is the closure of
�. Additionally, we set R+ = (0, +∞) and assume that k1, k2 are nonnegative constants, u0

is a nonnegative C1(�) function satisfying compatibility conditions.
There is a vast literature on the work of the blow-up phenomena for parabolic equa-

tions with the gradient terms. We mainly concentrate on the following papers [1, 15–17].
Marras, Vernier Piro and Viglialoro in [16] considered the following problem

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u + k1(t)up – k2(t)|∇u|q in � × (0, t∗),
∂u
∂ν

+ γ u = 0 on ∂� × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in �,

(2)

where � is a bounded domain in � ⊂ R
n (n ≥ 2) whose boundary is sufficiently smooth.

When � ⊂ R
3, the authors derived a lower bound for the blow-up time under suitable

assumptions. Li, Pintus and Viglialoro [1] investigated the following problem

⎧
⎪⎪⎨

⎪⎪⎩

ut = �um + k1up – k2|∇u|q in � × (0, t∗),

u = 0 on ∂� × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in �,

(3)

where � ⊂ R
3 is a bounded and smooth domain. When � ⊂ R

3, the authors obtained a
lower bound for the blow-up time by using the differential inequality technique.

Furthermore, we note that an open problem in [1] is how to give the lower bound of the
blow-up time when the Dirichlet boundary conditions in (3) are replaced by Robin ones.
Under this situation and inspired by the aforementioned works, we studied the blow-up
phenomena of problem (1). The innovation of this paper is to establish suitable auxiliary
functions. Since auxiliary functions defined in problems (2) and (3) are not suitable for our
study, we need to construct new auxiliary functions. Moreover, instead of considering the
lower bound for the blow-up time of the problem in � ⊂ R

3, we study the more general
case when � ⊂R

n (n ≥ 3). Combining the Sobolev inequality and a differential inequality
technique, we give a lower bound for the blow-up time.

The rest of this paper is organized as follows. In Sect. 2, we derive a lower bound for
the blow-up time when blow-up occurs. In Sect. 3, an example is given to illustrate the
application of the results obtained in this paper.

2 Lower bound for blow-up time
In this section, we aim to obtain a lower bound for the blow-up time t∗ that gives a safe
interval of the existence of the solution. To achieve this, we define L0 = min∂�(x · ν), d =
max� |x|, where x is a vector relative to the origin 0 and ν is a unit normal vector directed
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outward on ∂�. Suppose that k1, k2 are nonnegative constants and m, p, q are positive
constants with

q > p > m > 1, q > 2. (4)

We now define the following auxiliary function

�(t) =
∫

�

uα dx

with

α > max{1, 3 – m}. (5)

Let λ1 be the first eigenvalue of the plastic-membrane problem

⎧
⎨

⎩

�ω + λω = 0, x ∈ �,
∂ω
∂ν

+ γω = 0, x ∈ ∂�

with

λ1 >
γ (n + d)(α + q – 1)

2L0
. (6)

It follows from [18] that

W 1,2(�) ↪→ L
2n

n–2 (�), n ≥ 3.

Hence, we have

∫

�

(
u

α+m–1
2

) 2n
n–2 dx ≤ C

2n
n–2

s

(∫

�

uα+m–1 dx +
∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx

) n
n–2

, (7)

where Cs = Cs(n,�) is a Sobolev embedding constant depending on n and �. In this sec-
tion, we need to use the Sobolev inequality (7). Now, we state our main result as follows.

Theorem 2.1 Let u be a nonnegative classical solution of (1). Assume conditions (4)–(6)
hold. If the solution u becomes unbounded in the measure �(t) at some finite time t∗, then

t∗ ≥
∫ +∞

�(0)

dτ

C1τ
α+m–1

α

,

where

C1 =
4α2k1(q – p)

(q – m)(2α + n(m – 1))
ε

– p–m
q–p

1 C
n(m–1)

α
s

×
[(

2α + n(m – 1)
2n(m – 1)

) –n(m–1)
2α

+ ε
n(m–1)

2α
2

]

, (8)
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ε1 =
k2(q – m)(2q)q

k1(p – m)M2(α + q – 1)q , (9)

ε2 =
2m(α – 1)(q – m)[2α + n(m – 1)]ε

p–m
q–p

1
k1n(m – 1)(q – p)(α + m – 1)2 , (10)

M =
2L0λ1 – γ (n + d)(α + q – 1)

2L0 + γ d(α + q – 1)
. (11)

Proof Using the divergence theorem and assumption (5), we derive

� ′(t)

= α

∫

�

uα–1ut dx = α

∫

�

uα–1(�um + k1up – k2|∇u|q)dx

= α

∫

�

uα–1�um dx + αk1

∫

�

uα+p–1 dx – αk2

∫

�

uα–1|∇u|q dx

= –α

∫

�

[∇(
uα–1) · ∇(

um)]
dx + mα

∫

∂�

uα+m–2 ∂u
∂ν

dS + αk1

∫

�

uα+p–1 dx

– αk2

∫

�

uα–1|∇u|q dx

= –mα(α – 1)
∫

�

uα+m–3|∇u|2 dx – mαγ

∫

∂�

uα+m–1 dS + αk1

∫

�

uα+p–1 dx

– αk2

∫

�

uα–1|∇u|q dx

≤ –mα(α – 1)
∫

�

uα+m–3|∇u|2 dx – αk2

∫

�

uα–1|∇u|q dx

+ αk1

∫

�

uα+p–1 dx. (12)

First, we deal with the second term of (12). For this purpose, we consider the following
fact that

(
q
2

)2

u
(q–2)(α+q–1)

q
∣
∣∇u

α+q–1
q

∣
∣2 =

∣
∣∇u

α+q–1
2

∣
∣2.

Using the Hölder inequality, we have

∫

�

∣
∣∇u

α+q–1
2

∣
∣2 dx =

(
q
2

)2 ∫

�

u
(q–2)(α+q–1)

q
∣
∣∇u

α+q–1
q

∣
∣2 dx

=
(

q
2

)2(∫

�

uα+q–1 dx
) q–2

q
(∫

�

∣
∣∇u

α+q–1
q

∣
∣q dx

) 2
q

. (13)

Applying the general Poincaré inequality [19] to the term
∫

�
uα+q–1 dx in (13), we derive

λ1

∫

�

uα+q–1 dx = λ1

∫

�

(
u

α+q–1
2

)2 dx

≤
∫

�

∣
∣∇u

α+q–1
2

∣
∣2 dx –

∫

∂�

u
α+q–1

2
∂(u

α+q–1
2 )

∂ν
dS
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=
∫

�

∣
∣∇u

α+q–1
2

∣
∣2 dx +

γ (α + q – 1)
2

∫

∂�

uα+q–1 dS. (14)

Combining the Lemma in [20], the Hölder inequality and the Young inequality, we obtain

∫

∂�

uα+q–1 dS

≤ n
L0

∫

�

uα+q–1 dx +
(α + q – 1)d

L0

∫

�

uα+q–2|∇u|dx

≤ n
L0

∫

�

uα+q–1 dx +
2d
L0

(∫

�

uα+q–1 dx
) 1

2
(∫

�

∣
∣∇u

α+q–1
2

∣
∣2 dx

) 1
2

≤ n + d
L0

∫

�

uα+q–1 dx +
d
L0

∫

�

∣
∣∇u

α+q–1
2

∣
∣2 dx. (15)

We insert (15) into (14) to deduce

M
∫

�

uα+q–1 dx ≤
∫

�

∣
∣∇u

α+q–1
2

∣
∣2 dx, (16)

where M > 0 is given in (11) and assumption (6) guarantees M > 0. From (16) and (13), we
derive

M
∫

�

uα+q–1 dx ≤
∫

�

∣
∣∇u

α+q–1
2

∣
∣2 dx

=
(

q
2

)2(∫

�

uα+q–1 dx
) q–2

q
(∫

�

∣
∣∇u

α+q–1
q

∣
∣q dx

) 2
q

,

which, is equivalent to

M
q
2

(
2
q

)q ∫

�

uα+q–1 dx ≤
∫

�

∣
∣∇u

α+q–1
q

∣
∣q dx. (17)

Hence, multiplying both sides of the inequality (17) by ( q
α+q–1 )q, we obtain the relation-

ship of the second term in (12)

M
q
2

(
2
q

)q( q
α + q – 1

)q ∫

�

uα+q–1 dx

≤
(

q
α + q – 1

)q ∫

�

∣
∣∇u

α+q–1
q

∣
∣q dx

=
∫

�

uα–1|∇u|q dx. (18)

We substitute (18) into (12) to obtain

� ′(t) ≤ – mα(α – 1)
∫

�

uα+m–3|∇u|2 dx

– αk2M
q
2

(
2

α + q – 1

)q ∫

�

uα+q–1 dx + αk1

∫

�

uα+p–1 dx

= –
4mα(α – 1)
(α + m – 1)2

∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx
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– αk2M
q
2

(
2

α + q – 1

)q ∫

�

uα+q–1 dx + αk1

∫

�

uα+p–1 dx. (19)

Secondly, we pay attention to the third term of (19). It follows from the Hölder inequality
and the Young inequality that

∫

�

uα+p–1 dx ≤
(∫

�

uα+q–1 dx
) p–m

q–m
(∫

�

uα+m–1 dx
) q–p

q–m

≤
(

ε1

∫

�

uα+q–1 dx
) p–m

q–m
(

ε
– p–m

q–p
1

∫

�

uα+m–1dx
) q–p

q–m

=
p – m
q – m

ε1

∫

�

uα+q–1 dx +
q – p
q – m

ε
– p–m

q–p
1

∫

�

uα+m–1 dx, (20)

where 0 < p–m
q–m < 1 due to (4). The substitution of (20) into (19) leads to

� ′(t)

≤ –
4mα(α – 1)
(α + m – 1)2

∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx – αk2M

q
2

(
2

α + q – 1

)q ∫

�

uα+q–1 dx

+ αk1

(
p – m
q – m

ε1

∫

�

uα+q–1 dx +
q – p
q – m

ε
– p–m

q–p
1

∫

�

uα+m–1 dx
)

= –
4mα(α – 1)
(α + m – 1)2

∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx + αk1

q – p
q – m

ε
– p–m

q–p
1

∫

�

uα+m–1 dx, (21)

where ε1 is defined in (9). For the term
∫

�
uα+m–1 dx of (21), using the Hölder inequality

and the Sobolev inequality (7), we have

∫

�

uα+m–1 dx

≤
(∫

�

uα dx
) 2α+2(m–1)

2α+n(m–1)
(∫

�

(
u

α+m–1
2

) 2n
n–2 dx

) (n–2)(m–1)
2α+n(m–1)

≤
(∫

�

uα dx
) 2α+2(m–1)

2α+n(m–1)

×
[

C
2n

n–2
s

(∫

�

uα+m–1 dx +
∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx

) n
n–2

] (n–2)(m–1)
2α+n(m–1)

= C
2n(m–1)

2α+n(m–1)
s

(∫

�

uα dx
) 2α+2(m–1)

2α+n(m–1)

×
(∫

�

uα+m–1 dx +
∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx

) n(m–1)
2α+n(m–1)

. (22)

It is easy to see that 0 < n(m–1)
2α+n(m–1) < 1. In view of the inequality

(a + b)j ≤ aj + bj, a, b > 0, 0 ≤ j < 1,
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we can rewrite (22) as
∫

�

uα+m–1 dx

≤ C
2n(m–1)

2α+n(m–1)
s

(∫

�

uα dx
) 2α+2(m–1)

2α+n(m–1)
(∫

�

uα+m–1 dx
) n(m–1)

2α+n(m–1)

+ C
2n(m–1)

2α+n(m–1)
s

(∫

�

uα dx
) 2α+2(m–1)

2α+n(m–1)
(∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx

) n(m–1)
2α+n(m–1)

. (23)

To the first term of the right-hand side of (23), we make use of the Hölder inequality and
the Young inequality to derive

C
2n(m–1)

2α+n(m–1)
s

(∫

�

uα dx
) 2α+2(m–1)

2α+n(m–1)
(∫

�

uα+m–1 dx
) n(m–1)

2α+n(m–1)

≤
[

C
n(m–1)

α
s

(
2α + n(m – 1)

2n(m – 1)

)– n(m–1)
2α

(∫

�

uα dx
) α+m–1

α
] 2α

2α+n(m–1)

×
(

2α + n(m – 1)
2n(m – 1)

∫

�

uα+m–1 dx
) n(m–1)

2α+n(m–1)

≤ 2α

2α + n(m – 1)
C

n(m–1)
α

s

(
2α + n(m – 1)

2n(m – 1)

)– n(m–1)
2α

(∫

�

uα dx
) α+m–1

α

+
1
2

∫

�

uα+m–1 dx. (24)

To the second term of the right-hand side of (23), it follows from the Hölder inequality
and the Young inequality that

C
2n(m–1)

2α+n(m–1)
s

(∫

�

uα dx
) 2α+2(m–1)

2α+n(m–1)
(∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx

) n(m–1)
2α+n(m–1)

≤
[

C
n(m–1)

α
s ε

– n(m–1)
2α

2

(∫

�

uα dx
) α+m–1

α
] 2α

2α+n(m–1)

×
(

ε2

∫

�

∣
∣∇u

α+m–1
2

∣
∣2

) n(m–1)
2α+n(m–1)

≤ 2α

2α + n(m – 1)
C

n(m–1)
α

s ε
– n(m–1)

2α
2

(∫

�

uα dx
) α+m–1

α

+
n(m – 1)

2α + n(m – 1)
ε2

∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx, (25)

where ε2 is defined in (10). It follows from (23)–(25) that
∫

�

uα+m–1 dx

≤ 4α

2α + n(m – 1)
C

n(m–1)
α

s

[(
2α + n(m – 1)

2n(m – 1)

)– n(m–1)
2α

+ ε
– n(m–1)

2α
2

]

×
(∫

�

uα dx
) α+m–1

α

+
2n(m – 1)

2α + n(m – 1)
ε2

∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx. (26)
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Thirdly, we insert (26) into (22) to obtain

� ′(t)

≤ –
4mα(α – 1)
(α + m – 1)2

∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx + αk1

q – p
q – m

ε
– p–m

q–p
1

×
{

4α

2α + n(m – 1)
C

n(m–1)
α

s

[(
2α + n(m – 1)

2n(m – 1)

)– n(m–1)
2α

+ ε
n(m–1)

2α
2

]

×
(∫

�

uα dx
) α+m–1

α

+
2n(m – 1)

2α + n(m – 1)
ε2

∫

�

∣
∣∇u

α+m–1
2

∣
∣2 dx

}

= C1�
α+m–1

α (t), (27)

where C1 is defined in (8). Integrating (27) from 0 to t, we deduce

t ≥
∫ �(t)

�(0)

dτ

C1τ
α+m–1

α

.

Since u blows up at finite time t∗ in measure �(t), passing the limits as t → t∗, we obtain

t∗ ≥
∫ +∞

�(0)

dτ

C1τ
α+m–1

α

,

where α+m–1
α

> 1 in view of (4) and (5). �

3 Application
In what follows, an example is given to illustrate the application of the abstract results.

Example 3.1 Let u be a nonnegative classical solution of the problem (1)

⎧
⎪⎪⎨

⎪⎪⎩

ut = �u2 + u3 – |∇u|4 in � × (0, t∗),
∂u
∂ν

+ 1
3 u = 0 on ∂� × (0, t∗),

u(x, 0) = 1
2 – 1

36 |x|2 in �,

where � = {x = (x1, x2, x3)||x|2 = x2
1 + x2

2 + x2
3 < 9} is a ball of R3. Here, we choose k1 = k2 = 1,

m = 2, p = 3, q = 4, α = 2, γ = 1
3 , and u0(x) = 1

2 – 1
36 |x|2. By direct computation, we have

λ1 ≈ 2.4674. It is easy to check that (6) holds. Moreover, we compute (9)–(11) to obtain
M ≈ 0.4368, ε1 ≈ 68.6981, ε2 ≈ 142.4850. Using the Theorems 2.1 and 3.2 in [21], we
have the embedding constant Cs ≈ 7.5931. Inserting the above parameters into (8), we
have C1 ≈ 14.6651.

Since we assume that u becomes unbounded at t∗ in measure �(t), it follows from the
Theorem 2.1 that u blows up in finite time and

t∗ ≥
∫ +∞

�(0)

dτ

C1τ
α+m–1

α

≈
∫ +∞

14.3391

dτ

14.6651τ
3
2

≈ 3.5879 × 10–2,
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where

�(0) =
∫

�

u2
0 dx =

∫

�

(
1
2

–
1

36
|x|2

)2

dx

=
∫ 2π

0
dθ

∫ π

0
dϕ

∫ 3

0

(
1
2

–
1

36
|r|2

)2

r2 sinϕ dr ≈ 14.3391.

4 Conclusion
In this paper, we make use of the Sobolev inequality (7) to overcome the difficulty men-
tioned in [1] when finding the lower bound for the blow-up time under Robin boundary
conditions. The results of this paper provide an answer to the open question raised in [1].
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