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Abstract
The main objective of the present article is to prove some new delay nonlinear
dynamic inequalities of Gronwall–Bellman–Pachpatte type on time scales. We
introduce very important generalized results with the help of Leibniz integral rule on
time scales. For some specific time scales, we further show some relevant inequalities
as special cases: integral inequalities and discrete inequalities. Our results can be used
as handy tools for the study of qualitative and quantitative properties of solutions of
dynamic equations on time scales. Some examples are provided to demonstrate the
applications of the results.
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1 Introduction
In 1919 Thomas Gronwall [1] discovered a vital inequality, which can be used as an ef-
fective tool in the study of existence, uniqueness, boundedness, stability, and other qual-
itative properties of solutions of certain nonlinear differential and difference equations.
The Gronwall inequality is stated as follows: If u is a continuous function defined on the
interval D = [a, a + h] and

0 ≤ u(t) ≤
∫ t

a

[
ζu(s) + ξ

]
ds, ∀t ∈ D,

where a, ξ , ζ , and h are nonnegative constants, then

0 ≤ u(t) ≤ ξheζh, ∀t ∈ D.

In 1943, Richard Bellman [2] proved the fundamental inequality, named Gronwall–
Bellman’s inequality, as a generalization for Gronwall’s inequality. He proved that: If u and
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f are continuous and nonnegative functions defined on [a, b], and let c be a nonnegative
constant, then the inequality

u(t) ≤ c +
∫ t

a
f (s)u(s) ds, t ∈ [a, b], (1.1)

implies that

u(t) ≤ c exp

(∫ t

a
f (s) ds

)
, t ∈ [a, b].

As a generalization of (1.1), Bellman himself [3] proved that: If u, f , a, ∈ C(R+,R+) and a
is nondecreasing, then the inequality

u(t) ≤ a(t) +
∫ t

0
f (s)u(s) ds, ∀t ∈R+, (1.2)

implies

u(t) ≤ a(t) exp

(∫ t

0
f (s) ds

)
, ∀t ∈R+.

The discrete version of (1.2) was studied by Pachpatte in [4]. In particular, he proved that:
If �(n), f (n), γ (n) are nonnegative sequences defined for n ∈N0, and f (n) is nondecreasing
for n ∈N0, then

�(n) ≤ f (n) +
n–1∑
s=0

γ (s)�(s), n ∈ N0, (1.3)

implies

�(n) ≤ f (n)
n–1∏
s=0

[
1 + γ (s)

]
, n ∈N0.

In [5], Pachpatte studied the following inequalities:

�p(t) ≤ cp(t) + b(t)
∫ t

0

[
g(s)�p(s) + h(s)�(s)

]
ds, t ∈ R+, (1.4)

�p(t) ≤ a(t) + b(t)
∫ t

0
k(t, s)

[
g(s)�p(s) + h(s)�(s)

]
ds, t ∈R+, (1.5)

and

�p(t) ≤ a(t) + b(t)
∫ t

0
f
(
s,�(s)

)
ds, t ∈R+, (1.6)

where �, a, b, g , h and c ∈ C(R+,R+), k(t, s) and its partial derivative ∂k(t,s)
∂t are real-valued

nonnegative continuous functions for 0 ≤ s ≤ t ≤ ∞, f : R+ × R+ → R+ is a continuous
function, and p > 1 is a constant.



El-Deeb and Baleanu Journal of Inequalities and Applications         (2022) 2022:45 Page 3 of 19

On the other hand, also in [5], Pachpatte investigated the following discrete analogues
of (1.4), (1.5), and (1.6):

�p(n) ≤ cp(n) + b(n)
n–1∑
s=n0

[
g(s)�p(s) + h(s)�(s)

]
, n ∈N0,

�p(n) ≤ a(n) + b(n)
n–1∑
s=n0

k(n, s)
[
g(s)�p(s) + h(s)�(s)

]
, n ∈N0,

�p(n) ≤ a(n) + b(n)
n–1∑
s=n0

F
(
s,�(s)

)
, n ∈ N0,

where �(n), a(n), b(n), g(n), h(n), and c(n) are real-valued nonnegative sequences, F :
N0 ×R+ → R+, and k(n, s), �1k(n, s) are real-valued nonnegative functions for n0 ≤ s ≤ n,
n ∈N0.

In 2014, El-Owaidy et al. [6] proved the following new form:

�(t) ≤ γ (t) +
∫ α1(t)

a
ε(s)w1

(
�(s)

)
ds

+
∫ α2(t)

a
ε(s)w2

(
�(s)

)
ds for all t ∈ I1 = [a, b]. (1.7)

In the same paper [6], the authors also studied the following inequality:

�(t) ≤ γ (t) +
∫ α(t)

a
ε(s)w

(
�(s)

)
ds +

∫ α(t)

a
k(t, s)w

(
�(s)

)
ds for all t ∈ I1,

where �, ε, ε ∈ C(I1,R+), α,∈ C1(I1, I1) are nondecreasing functions, with αi(t) ≤ t, αi(a) =
a, α′

i(t) ≥ 0, i = 1, 2, and wi ∈ (R+,R+) is a nondecreasing function, and k(t, s) ∈ C(I1 ×
I1,R+) with ∂k(t,s)

∂t ∈ C(I1 × I1,R+).
In 2015, Abdeldaim and El-Deeb [7] discussed the new form:

�(t) ≤ �0 +
∫ α(t)

0
γ (s)ϕ

(
�(s)

)[
ϕ
(
�(s)

)
+

∫ s

0
ε(λ)ϕ

(
�(λ)

)
dλ

]
ds for all t ∈R+,

where γ , ε ∈ C(R+,R+) and ϕ, ϕ′, α ∈ C1(R+,R+) are increasing functions, with ϕ′(t) ≤ k,
ϕ > 0, α(t) ≤ t, α(0) = 0 and k, �0 are positive constants.

In the same paper [7], by using the composite function, the authors introduced a new
inequality with a different kernel as follows:

ϕ1
(
�(t)

) ≤ �0 +
∫ α(t)

0
γ (s)ϕ2

(
�(s)

)[
�(s) +

∫ s

0
ε(λ)ϕ1

(
�(λ)

)
dλ

]p

ds for all t ∈R+,

where ϕ1, ϕ2, α ∈ C1(R+,R+) are increasing functions with α(t) ≤ t, ϕi(t) > 0, i = 1, 2, α(0) =
0 and ϕ′

1(t) = ϕ2(t), p ≥ 1 and �0 are positive constants.
In [8], one of the new generalizations of Gronwall type inequalities has been proved by

Abdeldaim and El-Deeb, and it can be written as follows:

ϕ1
(
�(t)

) ≤ �0 +
∫ α(t)

0
ε(s)ϕ1

(
�(s)

)
ds +

∫ α(t)

0
ε(s)ϕ2

(
�(s)

)
ds for all t ∈R+,
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with α(t) ≤ t, ϕi(t) > 0, i = 1, 2, α(0) = 0, ϕ′
1(t) = ϕ2(t), and ϕ–1

1 (t) is a submultiplicative
function and �0 is a positive constant.

Recently, in 2017, El-Deeb and Ahmed [9] studied the following inequality with retar-
dation α(t) ≤ t:

�p(t) ≤ c(t) +
∫ α(t)

a
γ (s)�(s) ds +

∫ b

a
ε(s)�p(s) ds for all t ∈ [a, b],

where �, γ , ε ∈ C([a, b],R+) and α, c ∈ C1([a, b],R+) with α(t) ≤ t, α(a) = 0 and p ≥ 1 is a
constant.

Lately, in 2019, Li and Wang [10] established the following inequality:

�(t) ≤ a(t) +
∫ α(t)

t0

γ (s)
[
�m(s) +

∫ s

t0

ε(τ )�n(τ ) dτ

]p

ds for all t ∈ [t0, +∞),

where �, a, γ , ε ∈ C(R+,R+) and α is a continuously differentiable nondecreasing function
on [t0, +∞) with α(t) ≤ t, α(t0) = 0 and p, m, n ∈ (0, 1] are positive constants.

Many generalizations, refinements, and extensions of Gronwall–Bellman type inequal-
ities can be found in [11–17].

Stefan Hilger was the first to discover the theory of time scales which he demonstrated
in his PhD thesis [18]. For further information and details on the time scales, we refer the
reader to books [19, 20]. Many dynamic inequalities have been investigated by different
authors during the past decade (see [21–40] and the references cited therein). Throughout
this paper, knowledge and understanding of the time scales notion and time scale calculus
are assumed.

In [35, Theorem 6.4, page 256], Bohner and Peterson introduced a dynamic inequality
on a time scale T which unifies the continuous version inequality (1.2) and the discrete
version inequality (1.3) as follows: If �, ζ are right dense continuous functions and γ ≥ 0
is a regressive and right-dense continuous function, then

�(t) ≤ ζ (t) +
∫ t

t0

�(η)γ (η)�η for all t ∈ T

implies

�(t) ≤ ζ (t) +
∫ t

t0

eγ

(
t,σ (η)

)
ζ (η)γ (η)�η for all t ∈ T.

In this paper, motivated by the above-mentioned inequalities, we prove some new delay
dynamic inequalities of Gronwall–Bellman–Pachpatte type on time scales. Some special
cases of our results contain continuous Gronwall type inequalities and their discrete ana-
logues. We also present some application examples to illustrate our results at the end. The
paper is organized as follows: Sect. 2 contains the main results of this paper. In Sect. 3,
an application to study some qualitative properties of the solutions of certain retarded
dynamic equations are demonstrated. In Sect. 4, we state the conclusion.

Before we arrive at the main results in the next section, we need the following lemmas
and essential relations on some time scales such as R, Z, hZ, and qZ. Note that:
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(i) If T = R, then

σ (τ ) = τ , μ(τ ) = 0, f �(τ ) = f ′(τ ),
∫ b

a
f (τ )�τ =

∫ b

a
f (τ ) dτ ;

(1.8)

(ii) If T = Z, then

σ (τ ) = τ + 1, μ(τ ) = 1, f �(τ ) = �f (τ ),
∫ b

a
f (τ )�τ =

b–1∑
τ=a

f (τ );
(1.9)

(iii) If T = qZ = {qk : k ∈ Z} ∪ {0}, q > 1, then

σ (τ ) = qτ , μ(τ ) = (q – 1)τ ,

∫ b

a
f (τ )�τ = (q – 1)

logq(b)–1∑
k=logq(a)

qkf
(
qk), ∀a, b ∈ qN0 .

(1.10)

If λ ∈ Crd(T) (see [35]), then the Cauchy integral �(τ ) :=
∫ τ

τ0
λ(s)�s exists, τ0 ∈ T, and

satisfies ��(τ ) = λ(τ ), τ ∈ T. An infinite integral follows

∫ ∞

a
�(τ )�τ = lim

b→∞

∫ b

a
�(τ )�τ .

The function η : T → R is called regressive provided 1 + μ(t)η(t) 
= 0 for all t ∈ T
κ . The

set of all positively regressive elements of � is �+ = {η ∈ � : 1 + μ(t)η(t) > 0,∀t ∈ T}. We
form an Abelian group under the addition ⊕ by the set of all regressive functions on a time
scale T by η ⊕ ζ = η + ζ + μηζ . If η ∈ �, then the exponential function is defined by

eη(t, s) = exp

(∫ t

s
ξ̂μ(τ )

(
η(τ )

)
�τ

)
, s, t ∈ T,

where ξ̂ĥ(z) is the cylinder transformation, which is defined by

ξ̂ĥ(z) =

⎧⎨
⎩

Log(1+ĥz)
ĥ

, ĥ 
= 0,

z, ĥ = 0.

If η ∈ �, then eη(τ , s) is real-valued and nonzero on T. If η ∈ �+, then eη(τ , τ0) is always
positive.

Note that:
• If T = R, then

eb(τ , τ0) = exp

(∫ τ

τ0

b(s) ds
)

. (1.11)
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• If T = Z, then

eb(τ , τ0) =
τ–1∏
s=τ0

(
1 + b(s)

)
. (1.12)

• If T = qN0 , then

eb(τ , τ0) =
τ–1∏
s=τ0

(
1 + (q – 1)sb(s)

)
. (1.13)

Lemma 1.1 ([41]) If η ∈ � and a, b, d ∈ T, then
1. eη(τ , τ ) = 1 and e0(τ , s) = 1;
2. eη(σ (τ ), s) = (1 + μ(τ )η(τ ))eη(τ , s);
3. If η ∈ �+, then eη(τ , τ0) > 0, ∀τ ∈ T;
4.

∫ b
a η(τ )eη(d,σ (τ ))�τ = –

∫ b
a [eη(d, ·)]��τ = eη(d, a) – eη(d, b).

Lemma 1.2 (See [41]) Let χ : T → R be a delta differentiable function. If η ∈ � and fix
t0 ∈ T, then the exponential function eη(t, t0) is the unique solution of the following initial
value problem:

⎧⎨
⎩

χ�(t) = η(t)χ (t),

χ (t0) = 1.
(1.14)

Lemma 1.3 (See [41]) Let t0 ∈ T
κ and ς : T×T

κ →R be continuous at (t, t), where t > t0

and t ∈ T
κ . Assume that ς�(t, ·) is rd-continuous on [t0,σ (t)]T. If for any ε > 0 there exists

a neighborhood U of t, independent of λ ∈ [t0,σ (t)]T, such that

∣∣[ς(
σ (t),λ

)
– ς (s,λ)

]
– ς�(t,λ)

[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣, ∀s ∈ U ,

where ς� denotes the derivative of ς with respect to the first variable, then

χ (t) =
∫ t

t0

ς (t,λ)�λ

implies

χ�(t) =
∫ t

t0

ς�(t,λ)�λ + ς
(
σ (t), t

)
.

Lemma 1.4 ([41]) Suppose χ , b ∈ Crd , a ∈ �+, then

χ�(t) ≤ a(t)χ (t) + b(t), t ≥ t0, t ∈ T
κ ,

implies

χ (t) ≤ χ (t0)ea(t, t0) +
∫ t

t0

ea
(
t,σ (τ )

)
b(τ )�τ , t ≥ t0, t ∈ T

κ .
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Lemma 1.5 ([42]) If x ≥ 0 and p ≥ 1, then

x1/p ≤ m1x + m2, (1.15)

where m1 = 1
p K (1–p)/p, m2 = p–1

p K1/p, and K > 0.

Theorem 1.6 ([43, Leibniz integral rule on time scales]) In the following, by f �(t, s) we
mean the delta derivative of f (t, s) with respect to t. Similarly, f ∇ (t, s) is understood. If f ,
f �, and f ∇ are continuous and u, h : T → T are delta differentiable functions, then the
following formulas hold ∀t ∈ T

κ :
(i) [

∫ h(t)
u(t) f (t, s)�s]� =

∫ h(t)
u(t) f �(t, s)�s + h�(t)f (σ (t), h(t)) – u�(t)f (σ (t), u(t));

(ii) [
∫ h(t)

u(t) f (t, s)�s]∇ =
∫ h(t)

u(t) f ∇ (t, s)�s + h∇ (t)f (ρ(t), h(t)) – u∇ (t)f (ρ(t), u(t));
(iii) [

∫ h(t)
u(t) f (t, s)∇s]� =

∫ h(t)
u(t) f �(t, s)∇s + h�(t)f (σ (t), h(t)) – u�(t)f (σ (t), u(t));

(iv) [
∫ h(t)

u(t) f (t, s)∇s]∇ =
∫ h(t)

u(t) f ∇ (t, s)∇s + h∇ (t)f (ρ(t), h(t)) – u∇ (t)f (ρ(t), u(t)).

2 Main results
In this section, the authors state and justify the main results and investigate some dynamic
Gronwall–Bellman inequalities on time scales.

Theorem 2.1 Let a, b ∈ T
k with a < b, and let �, f , g , c ∈ Crd([a, b]T,R+) and α : T → T.

Furthermore, assume that α and c are delta-differentiable on T with c�(t) ≥ 0, α�(t) ≥ 0,
α(t) ≤ t and α(a) = a. For any constant p ≥ 1, if

�p(t) ≤ c(t) +
∫ α(t)

a
g(s)�(s)�s +

∫ b

a
f (s)�p(s)�s for all t ∈ [a, b]T, (2.1)

then

�(t) ≤
{
�1e�1 (t, a) +

∫ t

a
e�1

(
t,σ (s)

)
�1(s)�s

}1/p

for all t ∈ [a, b]T, (2.2)

where

�1 =
c(a) +

∫ b
a f (s)(

∫ s
a e�1 (s,σ (λ))�1(λ)�λ)�s

1 –
∫ b

a f (s)e�1 (s, a)�s
, (2.3)

such that

∫ b

a
f (s)e�1 (s, a)�s < 1,

and

�1(t) = c�(t) + m2α
�(t)g

(
α(t)

)
, (2.4)

�1(t) = m1α
�(t)g

(
α(t)

)
, (2.5)

where m1, m2 are defined as in Lemma 1.5.
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Proof Define a function χ1(t) by

χ1(t) = c(t) +
∫ α(t)

a
g(s)�(s)�s +

∫ b

a
f (s)�p(s)�s. (2.6)

We notice that χ1(t) ≥ 0 and nondecreasing on [a, b]T. Since α(a) = a, we get that

χ1(a) = c(a) +
∫ b

a
f (s)�p(s)�s. (2.7)

Then from (2.1), (2.6) and by using the monotonicity of χ1(t), we get

�(t) ≤ χ
1/p
1 (t),

which implies

�(
α(t)

) ≤ χ
1/p
1

(
α(t)

) ≤ χ
1/p
1 (t). (2.8)

From (2.6), (2.8) and using Theorem 1.6, we have

χ�
1 (t) = c�(t) + α�(t)g

(
α(t)

)�(
α(t)

) ≤ c�(t) + α�(t)g
(
α(t)

)
χ

1/p
1 (t). (2.9)

Therefore, using (2.9) and Lemma 1.5, we get that

χ�
1 (t) ≤ c�(t) + m1α

�(t)g
(
α(t)

)
χ1(t) + m2g(t)

= m1α
�(t)g

(
α(t)

)
χ1(t) +

[
c�(t) + m2α

�(t)g
(
α(t)

)]

= �1χ1(t) + �1(t), (2.10)

where �1(t) and �1(t) are defined as in (2.4) and (2.5), respectively.
Now an application of Lemma 1.4 to (2.10) yields

χ1(t) ≤ χ1(a)e�1 (t, a) +
∫ t

a
e�1

(
t,σ (s)

)
�1(s)�s. (2.11)

From (2.8) and (2.11), we get that

�p(t) ≤ χ1(a)e�1 (t, a) +
∫ t

a
e�1

(
t,σ (s)

)
�1(s)�s. (2.12)

From (2.7) and (2.12), we have

χ1(a) = c(a) +
∫ b

a
f (s)�p(s)�s

≤ c(a) +
∫ b

a
f (s)

[
χ1(a)e�1 (s, a) +

∫ s

a
e�1

(
s,σ (λ)

)
�1(λ)�λ

]
�s

≤ c(a) + χ1(a)
∫ b

a
f (s)e�1 (s, a)�s
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+
∫ b

a
f (s)

(∫ s

a
e�1

(
s,σ (λ)

)
�1(λ)�λ

)
�s. (2.13)

Thus, from (2.13), we obtain

χ1(a) ≤ �1, (2.14)

where �1 is defined as in (2.3).
Then we get the desired inequality (2.2) by combining (2.12) and (2.14). This completes

the proof. �

Remark 2.2 If we take T = R, α(t) = t, and p = 1, then, using relations (1.8), Theorem 2.1
reduces to [44, Theorem 1.5.1].

Remark 2.3 If we take T = R and α(t) = t, then, using relations (1.8), Theorem 2.1 reduces
to [45, Theorem 2.1].

Remark 2.4 If we take T = R, then, using relations (1.8), Theorem 2.1 reduces to [9, The-
orem 2.1].

As a special case of Theorem 2.1, if we take T = Z and the delay function α(n) = n – τ ,
where τ > 0, and so �α(n) = 1 > 0, then, using relations (1.9) and (1.12), we obtain the
following completely new discrete result.

Corollary 2.5 Assume that �(n), g(n), c(n), and f (n) are nonnegative sequences defined for
n ∈N0, with �c(n) ≥ 0 for n ∈N0. If �(n) satisfies the following delay discrete inequality:

�p(n) ≤ c(n) +
n–τ–1∑

s=a
g(s)�(s) +

b–1∑
s=a

f (s)�p(s),

then

�(n) ≤
{

�̃1

n–1∏
s=a

(
1 + �̂1(s)

)
+

n–1∑
s=a

�̂1(s)
n–1∏

λ=s+1

(
1 + �̂1(λ)

)}1/p

,

where

�̂1 =
c(a) +

∑b–1
s=a f (s)[

∑s–1
λ=a �̂1(λ)

∏s–1
υ=λ+1(1 + �̂1(υ))]

1 –
∑b–1

s=a f (s)
∏s–1

λ=a(1 + �̂1(λ))
,

such that

b–1∑
s=a

f (s)
s–1∏
λ=a

(
1 + �̂1(λ)

)
< 1,

and

�̂1(n) = �c(n) + m2�(n – τ )g(n – τ )
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= c(n + 1) – c(n) + m2g(n – τ ),

�̂1(n) = m1�(n – τ )g(n – τ )

= m1g(n – τ ).

Theorem 2.6 Let a, b ∈ T
k with a < b, and let �, g, c ∈ Crd([a, b]T,R+) and α : T → T.

Further, assume that α and c are delta-differentiable on T with c�(t) ≥ 0, α�(t) ≥ 0, α(t) ≤
t, and α(a) = a. Moreover, assume that k(t, s), k�(t, s) ∈ Crd([a, b]T × [a, b]T,R+) for a ≤ s ≤
t ≤ b. For any constant p ≥ 1, if

�p(t) ≤ c(t) +
∫ α(t)

a
k(t, s)�(s)�s +

∫ b

a
g(s)�p(s)�s for all t ∈ [a, b]T, (2.15)

then

�(t) ≤
{
�2e�2 (t, a) +

∫ t

a
�2(s)e�2

(
t,σ (s)

)
�s

}1/p

for all t ∈ [a, b]T, (2.16)

where

�2 =
c(a) +

∫ b
a g(s)(

∫ s
a e�2 (s,σ (τ ))�2(τ )�τ )�s

1 –
∫ b

a g(s)e�2 (s, a)�s
,

such that

∫ b

a
g(s)e�2 (s, a)�s < 1,

and

�2(t) = c�(t) + m2

[
α�(t)k

(
σ (t),α(t)

)
+

∫ α(t)

a
k�(t, τ )�τ

]
, (2.17)

�2(t) = m1

[
α�(t)k

(
σ (t),α(t)

)
+

∫ α(t)

a
k�(t, τ )�τ

]
, (2.18)

where m1, m2 are defined as in Lemma 1.5.

Proof Define a function χ2(t) by

χ2(t) = c(t) +
∫ α(t)

a
k(t, s)�(s)�s +

∫ b

a
g(s)�p(s)�s. (2.19)

Clearly, χ2(t) is nonnegative nondecreasing on [a, b]T. As α(a) = a, we have

χ2(a) = c(a) +
∫ b

a
f (s)�p(s)�s. (2.20)

Then from (2.15), (2.19) and by using the monotonicity of χ2(t), we obtain

�(t) ≤ χ
1/p
2 (t), �(

α(t)
) ≤ χ

1/p
2

(
α(t)

) ≤ χ
1/p
2 (t). (2.21)
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Using Theorem 1.6 to delta differentiating (2.19) and from (2.21), we get

χ�
2 (t) = c�(t) + α�(t)k

(
σ (t),α(t)

)�(
α(t)

)
+

∫ α(t)

a
k�(t, τ )�(τ )�τ

≤ c�(t) + α�(t)k
(
σ (t),α(t)

)
χ

1/p
2 (t) +

∫ α(t)

a
k�(t, τ )χ1/p

2 (τ )�τ

≤ c�(t) +
[
α�(t)k

(
σ (t),α(t)

)
+

∫ α(t)

a
k�(t, τ )�τ

]
χ

1/p
2 (t). (2.22)

Using Lemma 1.5, inequality (2.22) can be rewritten as

χ�
2 (t) ≤ c�(t) + m1

[
α�(t)k

(
σ (t),α(t)

)
+

∫ α(t)

a
k�(t, τ )�τ

]
χ2(t)

+ m2

[
α�(t)k

(
σ (t),α(t)

)
+

∫ α(t)

a
k�(t, τ )�τ

]

= �2(t)χ2(t) + �2(t), (2.23)

where �2(t) and �2(t) are defined as in (2.18) and (2.17), respectively.
Now, applying Lemma 1.4 to (2.23) yields

χ2(t) ≤ χ2(a)e�2 (t, a) +
∫ t

a
e�2

(
t,σ (τ )

)
�2(s)�τ . (2.24)

From (2.21) and (2.24), we get that

�p(t) ≤ χ2(a)e�2 (t, a) +
∫ t

a
e�2

(
t,σ (τ )

)
�2(τ )�τ . (2.25)

From (2.20) and (2.25), we have

χ2(a) = c(a) +
∫ b

a
g(s)�p(s)�s

≤ c(a) +
∫ b

a
g(s)

[
χ2(a)e�2 (s, a) +

∫ s

a
e�2

(
s,σ (τ )

)
�2(τ )�τ

]
�s

≤ c(a) + χ2(a)
∫ b

a
g(s)e�2 (s, a)�s

+
∫ b

a
g(s)

(∫ s

a
e�2

(
s,σ (τ )

)
�2(τ )�τ

)
�s. (2.26)

Thus, from (2.26) we obtain

χ2(a) ≤ c(a) +
∫ b

a g(s)(
∫ s

a e�2 (s,σ (τ ))�2(τ )�τ )�s

1 –
∫ b

a g(s)e�2 (s, a)�s
= �2. (2.27)

Our desired result (2.16) follows directly from (2.25) and (2.27). This concludes the
proof. �
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Remark 2.7 If we take T = R, α(t) = t, and p = 1, then, using relations (1.8), Theorem 2.6
reduces to [44, Theorem 1.5.2 (b1)].

Remark 2.8 If we take T = R and α(t) = t, then, using relations (1.8), Theorem 2.6 reduces
to [45, Theorem 2.3].

Remark 2.9 If we take T = R, then, using relations (1.8), Theorem 2.6 reduces to [9, The-
orem 2.2].

As a special case of Theorem 2.6, if we take T = Z and the delay function α(n) = n – τ ,
where τ > 0, and so �α(n) = 1 > 0, then, using relations (1.9) and (1.12), we obtain the
following completely new discrete result.

Corollary 2.10 Assume that �(n), g(n), c(n) α(n), and f (n) are nonnegative sequences de-
fined for t ∈ N0, with �c(n) ≥ 0 and k(n, s), �k(n, s) are nonnegative sequences defined on
E = {(m, n) ∈N

2
0 : 0 ≤ n ≤ m < ∞}. If �(n) satisfies the following delay discrete inequality

�p(n) ≤ c(n) +
n–τ–1∑

s=a
k(n, s)�(s) +

b–1∑
s=a

g(s)�p(s),

then

�(n) ≤
{

�̂2

n–1∏
s=a

(
1 + �̂2(s)

)
+

n–1∑
s=a

�̂2(s)
n–1∏

τ=s+1

(
1 + �̂2(τ )

)}1/p

,

where

�̂2 =
c(a) +

∑b–1
s=a g(s)[

∑s–1
λ=a �̂2(λ)

∏s–1
τ=λ+1(1 + �̂2(τ ))]

1 –
∑b–1

s=a g(s)
∏s–1

λ=υ(1 + �̂2(λ))
,

such that

b–1∑
s=a

g(s)
s–1∏
λ=a

(
1 + �̂2(λ)

)
< 1,

and

�̂2(t) = �c(n) + m2

[
�(n – τ )k(n + 1, n – τ ) +

n–τ–1∑
s=a

�k(n, s)

]

= c(n + 1) – c(n) + m2

{
k(n + 1, n – τ )

+
n–τ–1∑

s=a

[
k(n + 1, s) – k(n, s)

]}
,
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�̂2(t) = m1

[
�(n – τ )k(n + 1, n – τ ) +

n–τ–1∑
s=a

�k(n, s)

]

= m1

{
k(n + 1, n – τ ) +

n–τ–1∑
s=a

[
k(n + 1, s) – k(n, s)

]}
.

Theorem 2.11 Assume that a, b ∈ T
k with a < b, and let �, α, and c be defined as in Theo-

rem 2.6. Further, suppose that k1(t, s), k2(t, s), k�
1 (t, s), and k�

2 (t, s) ∈ Crd([a, b]T×[a, b]T,R+)
for a ≤ s ≤ t ≤ b. For any constant p ≥ 1, if

�p(t) ≤ c(t) +
∫ α(t)

a
k1(t, s)�(s)�s +

∫ b

a
k2(t, s)�p(s)�s for all t ∈ [a, b]T, (2.28)

then

�(t) ≤
{
�3e�3 (t, a) +

∫ t

a
�3(s)e�3

(
t,σ (s)

)
�s

}1/p

for all t ∈ [a, b]T, (2.29)

where

�3 =
c(a) +

∫ b
a k2(a, s)(

∫ s
a �3(λ)e�3 (s,σ (λ))�λ)�s

1 –
∫ b

a k2(a, s)e�3 (s, a)�s
, (2.30)

such that

∫ b

a
k2(s, a)e�3 (s, a)�s < 1, (2.31)

and

�3(t) = m1

[
α�(t)k1

(
σ (t),α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�s
]

+
∫ b

a
k�

2 (t, s)�s,

�3(t) = c�(t) + m2

[
α�(t)k1

(
σ (t),α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�s
]

,

where m1, m2 are defined as in Lemma 1.5.

Proof Define a function χ3(t) by

χ3(t) = c(t) +
∫ α(t)

a
k1(t, s)�(s)�s +

∫ b

a
k2(t, s)�p(s)�s. (2.32)

We notice that χ3(t) is nonnegative nondecreasing on [a, b]T. Since α(a) = a, we get that

χ3(a) = c(a) +
∫ b

a
f (s)�p(s)�s. (2.33)

Then from (2.28), (2.32) and by using the monotonicity of χ1(t), we obtain

�(t) ≤ χ
1/p
3 (t),
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which implies

�(
α(t)

) ≤ χ
1/p
3

(
α(t)

) ≤ χ
1/p
3 (t). (2.34)

From (2.32), (2.34) and by using Theorem 1.6, we have

χ�
3 (t) = c�(t) + α�(t)k1

(
σ (t),α(t)

)�(
α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�(s)�s

+
∫ b

a
k�

2 (t, s)�p(s)�s

≤ c�(t) + α�(t)k1
(
σ (t),α(t)

)
χ

1/p
3 (t) +

∫ α(t)

a
k�

1 (t, s)χ1/p
3 (s)�s

+
∫ b

a
k�

2 (t, s)χ3(s)�s

≤ c�(t) +
[
α�(t)k1

(
σ (t),α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�s
]
χ

1/p
3 (t)

+
(∫ b

a
k�

2 (t, s)�s
)

χ3(t). (2.35)

By applying Lemma 1.5 to (2.35), we get

χ�
3 (t) ≤ c�(t) + m1

[
α�(t)k1

(
σ (t),α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�s
]
χ3(t)

+ m2

[
α�(t)k1

(
σ (t),α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�s
]

+
(∫ b

a
k�

2 (t, s)�s
)

χ3(t)

≤
{

m1

[
α�(t)k1

(
σ (t),α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�s
]

+
∫ b

a
k�

2 (t, s)�s
}
χ3(t)

+ c�(t) + m2

[
α�(t)k1

(
σ (t),α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�s
]

= �3(t)χ3(t) + �3(t). (2.36)

Therefore, using Lemma (1.4) in (2.36), we get that

χ3(t) ≤ χ3(a)e�3 (t, a) +
∫ t

a
�3(s)e�3

(
t,σ (s)

)
�s. (2.37)

Combining (2.34) and (2.37) yields

�p(t) ≤ χ3(a)e�3 (t, a) +
∫ t

a
�3(s)e�3

(
t,σ (s)

)
�s. (2.38)
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From (2.33) and (2.38), we have

χ3(a) ≤ c(a) +
∫ b

a
k2(a, s)

[
χ3(a)e�3 (s, a)

+
∫ s

a
�3(λ)e�3

(
s,σ (λ)

)
�λ

]
�s

≤ c(a) + χ3(a)
∫ b

a
k2(a, s)e�3 (s, a)�s

+
∫ b

a
k2(a, s)

(∫ s

a
�3(λ)e�3

(
s,σ (λ)

)
�λ

)
�s. (2.39)

Therefore, from (2.39) we obtain

χ3(a) ≤ �3, (2.40)

where �3 is defined as in (2.30).
We obtain the desired inequality (2.29) by combining (2.38) and (2.40). The proof is

complete. �

Remark 2.12 If we take T = R, α(t) = t, p = 1, then, using relations (1.8), Theorem 2.6
reduces to [44, Theorem 1.5.2 (b2)].

Remark 2.13 If we take T = R and α(t) = t, then, using relations (1.8), Theorem 2.6 reduces
to [45, Theorem 2.3].

Remark 2.14 If we take T = R, then, using relations (1.8), Theorem 2.6 reduces to [9, The-
orem 2.3].

As a special case of Theorem 2.11, if we take T = Z and the delay function α(n) = n – τ ,
where τ > 0, and so �α(n) = 1 > 0, then, using relations (1.9) and (1.12), we obtain the
following completely new discrete result.

Corollary 2.15 Assume that �(n), g(n), c(n), and α(n) are nonnegative sequences defined
for t ∈ N0, with �c(n) ≥ 0 and k1(n, s), k2(n, s), �k1(n, s), �k2(n, s) are nonnegative se-
quences defined on E = {(m, n) ∈ N

2
0 : 0 ≤ n ≤ m < ∞}. If �(n) satisfies the following delay

discrete inequality:

�p(n) ≤ c(n) +
n–1∑
s=a

k1(n, s – τ )�(s – τ ) +
b–1∑
s=a

k2(n, s)�p(s),

then

�(n) ≤
{

�̂3

n–1∏
s=a

(
1 + �̂3(s)

)
) +

n–1∑
s=a

�̂3(s)
n–1∏

λ=s+1

(
1 + �̂3(λ)

)}1/p

,

where

�̂3 =
c(a) +

∑b–1
s=a k2(a, s)[

∑s–1
λ=a �̂3(λ)

∏s–1
λ=υ+1(1 + �̂3(λ))]

1 –
∑b–1

s=a k2(a, s)
∏s–1

λ=a(1 + �̂3(λ)
,
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such that

b–1∑
s=a

k2(a, s)
s–1∏
λ=a

(
1 + �̂3(λ)

)
< 1,

and

�̂3(n) = m1

[
�(n – τ )k1(n + 1, n – τ ) +

n–1∑
s=a

�k1(n, s)

]

+
b–1∑
s=a

�k2(n, s), ,

= m1

[
k1(n + 1, n – τ ) +

n–1∑
s=a

[
k1(n + 1, s) – k1(n, s)

]]

+
b–1∑
s=a

k2(n + 1, s) – k2(n, s),

�̂3(t) = �c(n) + m2

[
�(n – τ )k1(n + 1, n – τ ) +

n–1∑
s=a

�k1(n, s)

]

= c(n + 1) – c(n) + m2

[
k1(n + 1, n – τ ) +

n–1∑
s=a

[
k1(n + 1, s) – k1(n, s)

]]
.

3 Applications
In this section, by using Theorem 2.11, we demonstrate the global existence of solutions
for a class of nonlinear retarded dynamic integral equations of the form

�p(t) = h(t) + ϒ

(
t,

∫ α(t)

a
�1

(
s,�(s), k1

)
�s,

∫ b

a
�2

(
s,�p(s), k2

)
�s

)
,

�p(a) = r̃,
(3.1)

where ϒ ∈ Crd([a, b]T ×R+ ×R+,R+).
Now, in the following theorem, we obtain the explicit estimates for the solution of (3.1).

Theorem 3.1 Consider the retarded dynamic integral equation (3.1), and assume the fol-
lowing:

∣∣h(t)
∣∣ ≤ c(t),

∣∣ϒ1(t, u, ν̃)
∣∣ ≤ |u| + |ν̃|,

|�1| ≤ k1(t, s)�(s),

|�2| ≤ k2(t, s)�(s),

(3.2)

where �, c, h, ∈ Crd([a, b]T,R+), c is delta-differentiable on T
k with c�(t) ≥ 0, k1(t, s),

k�
1 (t, s), k2(t, s), k�

2 (t, s) ∈ Crd([a, b]T × [a, b]T,R+) for a ≤ s ≤ t ≤ b and p ≥ 1 is a constant.
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Then we have the explicit bound estimation for the solution � of (3.1) as follows:

�(t) ≤
{
�3e�3 (t, a) +

∫ t

a
�3(s)e�3

(
t,σ (s)

)
�s

}1/p

, (3.3)

where

�3 =
c(a) +

∫ b
a k2(a, s)(

∫ s
a �3(λ)e�3 (s,σ (λ))�λ)�s

1 –
∫ b

a k2(a, s)e�3 (s, a)�s
,

such that

∫ b

a
k2(s, a)e�3 (s, a)�s < 1,

and

�3(t) = m1

[
α�(t)k1

(
σ (t),α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�s
]

+
∫ b

a
k�

2 (t, s)�s,

�3(t) = c�(t) + m2

[
α�(t)k1

(
σ (t),α(t)

)
+

∫ α(t)

a
k�

1 (t, s)�s
]

,

where m1, m2 are defined as in Lemma 1.5.

Proof From (3.1) and (3.2), we have

∣∣�(t)
∣∣p ≤ c(t) +

∫ t

a
k1(t, s)

∣∣�(s)
∣∣�s +

∫ b

a
k2(t, s)

∣∣�(s)
∣∣p

�s. (3.4)

Now, applying Theorem 2.11 to inequality (3.4), we get

�(t) ≤
{
�3e�3 (t, a) +

∫ t

a
�3(s)e�3

(
t,σ (s)

)
�s

}1/p

,

which is the desired estimation in (3.3). This completes the proof. �

4 Conclusion
First, we introduced Theorem 1.6 which was needed in the proofs of the rest of results.
Second, we generalized a number of Gronwall–Pachpatte type inequalities, in two inde-
pendent variables, to a general time scale. We applied our results to study the uniqueness
and global existence of solutions for a class of nonlinear retarded Volterra–Fredholm dy-
namic integral equations.
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