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Abstract
The fuzzy set theory enables us to represent our knowledge under multiple
interpretations and axiomatic foundations from linguistic to computational
representations. While the intuitionistic fuzzy set, as a generalization of the fuzzy set,
cannot only represent the tolerance levels, but also the intolerance levels which a
decision maker can tolerate and cannot tolerate in the accomplishment of a linguistic
interpretation, in this paper, we introduce the generalized variational inequalities for
linguistic interpretations using intuitionistic fuzzy relations. It is shown that such
problems can be transformed into the classical (nonfuzzy) generalized variational
inequalities by means of level sets of the intuitionistic fuzzy relation. Furthermore, the
equivalence between the generalized variational inequalities with intuitionistic fuzzy
relations and the fuzzy fixed point problems is established. Finally, based on the
projection method, we propose an iterative algorithm and a projected neural network
model for the generalized variational inequalities with intuitionistic fuzzy relations,
and the stability of the proposed projected dynamical system is also investigated.

MSC: 26E50; 26E25; 34D20

Keywords: Variational inequality; Intuitionistic fuzzy relation; Level set; Projection
method; Lyapunov stability

1 Introduction
A wide class of problems arising in diverse applied fields ranging from physics, economics,
optimization to engineering can be formulated as variational inequalities. Variational in-
equality theory, where the function is a vector-valued mapping, was introduced by Hart-
man and Stampacchia [16] in 1965. It is well known that the theory of set-valued map-
pings, beside being an important mathematical theory, has become a significant tool in
many practical areas, especially in economic analysis [22]. Subsequently, the variational
inequality was generalized to the generalized variational inequality by Fang [9], where the
function is a set-valued mapping. The generalized variational inequality is to find x ∈ M
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and y ∈ f (x) such that

yT(
x′ – x

) ≥ 0, ∀x′ ∈ M, (1.1)

where M ⊆ Rn, and f : M → 2Rn is a set-valued function. There is an equivalence between
set-valued mappings and binary relations, thus the more convenient discussion framework
system can be chosen between the two according to the actual needs. Indeed, for a given
set-valued mapping f : M → Rn, we can induce a relation by

� =
{

(x, y) ∈ Rn × Rn : x ∈ M and y ∈ f (x)
}

.

Conversely, for a given relation � ∈ Rn × Rn, its domain is

dom(�) =
{

x ∈ Rn : (x, y) ∈ �, for some y ∈ Rn},

and for every x ∈ dom(�), its image set is

f (x) =
{

y ∈ Rn : (x, y) ∈ �
}

.

That is, f is a set-valued mapping from dom(�) to the family of subsets of Rn. Thus, for a
given set-valued mapping f on M, the generalized variational inequality (1.1) can also be
represented as follows: the generalized variational inequality, denoted by GVI(M,�), is to
find all solutions (x, y) such that

x ∈ M,
〈
y, x′ – x

〉 ≥ 0, ∀x′ ∈ M,

(x, y) ∈ �,

(1.2)

where M ⊆ Rn, � ⊆ Rn × Rn. The most basic result on the existence of solutions to the
variational inequality VI(M, F) requires the set M to be compact and convex, and the map-
ping f to be continuous [7], which is given by Brouwer’s fixed point theorem. To proceed
from this result, extended conclusions are derived by replacing the compactness of the set
M (closed which is possibly unbounded) with additional conditions on F (e.g., pseudo-
monotone, strongly monotone, coercive with respect to M) [7, 8, 15]. Similarly, the most
fundamental existence theorem for GVI(M, F) can also be proved by Kakutani fixed point
theorem which is for a set-valued function.

Lemma 1.1 (Brouwer fixed point theorem) Let C ⊆ Rm be a nonempty compact convex
set. Every continuous function � : C → C has a fixed point in C.

Lemma 1.2 (Kakutani fixed point theorem) Let C ⊆ Rm be a nonempty compact convex
set. Let � : C → 2C be a set-valued map such that, for each x ∈ C, �(x) is a nonempty
closed convex subset of C. If � is closed on C, then � has a fixed point.

In the classical set, the nature of the element is required to be explicit, that is, it can
be explicitly indicated that any element has or does not have this property. However, in



Xie and Li Journal of Inequalities and Applications         (2022) 2022:39 Page 3 of 16

the objective world, many phenomena, which are based on numerous fuzzy phenomena
and multi-valued logic, have fuzziness. For example, the linguistic interpretations such
as “young” and “old”, “long” and “short” are fuzzy concepts in people’s concepts. Such
vague concepts with unclear denotations cannot be expressed by the usual binary logic
and therefore cannot be described by the classical set. In 1965, Zadeh [26] introduced the
fuzzy set theory, which offers a wide variety of techniques for analyzing imprecise data and
enables us to represent our knowledge under varied interpretations and axiomatic foun-
dations from linguistic to computational representations. A fuzzy set u on R is a mapping
u : R → [0, 1], and u(x) is the degree of membership of the element x in the fuzzy set u. The
fuzzy set is a generalization of the classical set whose characteristic function is valued in
{0, 1}. By fuzziness, we mean a type of imprecision which is associated with fuzzy sets, that
is, classes in which there is no sharp transition from membership to nonmembership. In
fact, in sharp contrast to the notion of a class or a set in mathematics, most of the classes in
the real world do not have crisp boundaries which separate those objects which belong to a
class from those which do not. For notational purposes, it is convenient to have a device for
indicating that a fuzzy set is obtained from a nonfuzzy set by fuzzifying the boundaries of
the latter set. In 1970, Bellman and Zadeh [3] employed a wavy bar under a symbol which
defines the nonfuzzy set. On the other hand, the classical binary relations were also ex-
tended to the fuzzy binary relations on two ordinary sets [20]. For two given ordinary sets
A and B, a fuzzy relation is a fuzzy subset of the set A × B. The uncertainty environment
for a variational inequality leads to certain degrees of fuzziness in the classical relation.
In 2001, Hu [17] introduced the fuzzy variational inequality over a compact set by using
the tolerance approach. Subsequently, Hu [18] investigated the generalized variational in-
equality with fuzzy relation and showed that such problems can be transformed into reg-
ular optimization problems. In 2009, Hu and Liu [19] discussed mathematical programs
with fuzzy parametric variational inequalities. In 2019, Xie and Gong [25] investigated the
generalized variational-like inequalities for fuzzy-vector-valued functions.

With the research of fuzzy sets, Atanassov [1] presented the intuitionistic fuzzy set (IFS,
for short) which is more powerful and sensitive than the fuzzy set in dealing with imperfect
information and imprecise information. Actually, the intuitionistic fuzzy set is a straight-
forward generalization of Zadeh’s fuzzy set: a fuzzy set gives a degree to which an ele-
ment belongs to the set, while an intuitionistic fuzzy set gives both a membership degree
and a nonmembership degree. The membership and nonmembership values induce the
hesitancy degree, which models the hesitancy of deciding the degree to which an object
satisfies a particular property. For instance, this situation can be found in group decision
making problems. Consider a voting situation in which human voters can be divided into
three groups: vote for, vote against, and abstain. If we take 〈x1, 0.6, 0.3〉 as an element of
intuitionistic fuzzy set A of voting, then we can interpret it as “the voting for the candidate
x1 is 0.6 for 0.3 against and 0.1 abstentions”. IFS theory has been widely applied in various
fields such as decision analysis, pattern recognition, machine learning, image processing,
and so on [12–14]. In this paper, we further discuss the generalized variational inequalities
with intuitionistic fuzzy relations. In addition, real-time solutions to theses problems are
always needed in engineering applications, and thus they have to be solved in real time
to optimize the performance of dynamical systems. As parallel computational models, re-
current neural networks possess many desirable properties for real-time information pro-
cessing. In 2003, M.A. Noor [24] investigated some implicit projected dynamical systems
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associated with quasi-variational inequalities by using the techniques of the projection
and the Wiener–Hopf equations. Indeed, by means of level sets of the intuitionistic fuzzy
relations, the generalized variational inequalities for linguistic interpretations using in-
tuitionistic fuzzy relations can be transformed into the classical (nonfuzzy) generalized
variational inequalities, and we further propose a projection neural network for solving
the generalized variational inequalities with intuitionistic fuzzy relations. The stability of
the projected dynamical system is also discussed.

The aim of this paper is to investigate the generalized variational inequality for linguistic
interpretations using intuitionistic fuzzy relations and the stability of the associated dy-
namical system. The rest of the paper is structured as follows. In Sect. 2, we recall some
preliminaries with respect to intuitionistic fuzzy sets. In Sect. 3, we introduce the gen-
eralized variational inequality for linguistic interpretations using intuitionistic fuzzy rela-
tions. In Sect. 4, we prove the existence theorem of solutions to the generalized variational
inequalities with intuitionistic fuzzy relations. Furthermore, we propose an iterative algo-
rithm. In Sect. 5, based on the projection method, we propose a projection neural network
for solving the proposed problems, which is a dynamical system, and the stability of the
projected dynamical system associated with generalized variational inequalities with in-
tuitionistic fuzzy relations is discussed. Section 6 concludes this paper.

2 Preliminaries
For convenience of the reader, the basic properties of intuitionistic fuzzy sets is provided
in this section. Let U be a nonempty set called the universe of discourse.

Definition 2.1 ([1]) Let U be a given set. An intuitionistic fuzzy set in U is an expression
Ã given by

Ã =
{〈

x,μÃ(x),νÃ(x)
〉|x ∈ U

}
,

where μÃ : U → [0, 1], νA : U → [0, 1] with the condition 0 ≤ μÃ + νÃ(x) ≤ 1 for all x ∈ U .
The numbers μÃ(x) and νÃ(x) denote, respectively, the degree of membership and the
degree of nonmembership of the element x in the set Ã. We call π (x) = 1 – μÃ(x) – νÃ(x)
the intuitionistic index or the hesitancy degree of the element x in the set Ã. We will denote
by IFSs(U) the set of all the intuitionistic fuzzy sets in U .

Obviously, when νÃ(x) = 1 – μÃ(x), i.e., π (x) = 0, the set Ã = {〈x,μÃ(x)〉|x ∈ U} is a fuzzy
set.

The operations of IFS are defined as follows [1, 2]: for every Ã, B̃ ∈ IFSs(U),
Ã ⊆ B̃ if and only if μÃ(x) ≤ μB̃(x) and νÃ(x) ≥ νB̃(x) for all x ∈ U .
Ã = B̃ if and only if Ã ⊆ B̃ and B̃ ⊆ Ã.
Ã ∩ B̃ = {〈x, min(μÃ(x),μB̃(x)), max(νÃ(x),μB̃(x))〉|x ∈ U}.
Ã ∪ B̃ = {〈x, max(μÃ(x),μB̃(x)), min(νÃ(x),μB̃(x))〉|x ∈ U}.

The complementary of an IFS Ã is Ãc = {(x,νÃ(x),μÃ(x))|x ∈ U}.
Let Ã ∈ IFSs(U), α,β ∈ [0, 1] with α + β ≤ 1. The (α,β)-level set of Ã, denoted by Ãβ

α , is
defined by

Ãβ
α =

{
x ∈ U|μÃ(x) ≥ α, νÃ(x) ≤ β

}
.
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Definition 2.2 ([11]) An intuitionistic fuzzy set Ã = {〈x,μÃ(x),νÃ(x)〉|x ∈ U} ∈ IFSs(U)
is called an intuitionistic fuzzy number if μÃ(x), νc

Ã(x) are fuzzy numbers, where νc
Ã(x) =

1 – νÃ(x).

Note that a fuzzy set u is called a fuzzy number if u is normal, convex, and upper semi-
continuous, and [u]0 = cl(suppu) = cl(

⋃
r∈(0,1][u]r) is compact.

Definition 2.3 ([5]) An intuitionistic fuzzy relation is an intuitionistic fuzzy subset of
U × V , that is, is an expression R̃ given by

R̃ =
{〈

(x, y),μR̃(x, y),νR̃(x, y)
〉|x ∈ U , y ∈ V

}
,

where μR̃ : U ×V → [0, 1], νR̃ : U ×V → [0, 1] with the condition 0 ≤ μR̃(x, y)+νR̃(x, y) ≤ 1
for all x ∈ U . We will denote by IFR(U × V ) the set of all the intuitionistic fuzzy subsets
in U × V . If U = V , then we say that R is an intuitionistic fuzzy relation on U .

The complementary relation of R is

R̃c =
{〈

(x, y),νR̃(x, y),μR̃(x, y)
〉|(x, y) ∈ U × V

}
.

For all x ∈ M, the image of R̃, denoted by R̃(x), is

R̃(x) =
{

y ∈ V |(x, y) ∈ R̃
}

.

The (α,β)-level set of an intuitionistic fuzzy relation R̃ is defined as

R̃β
α =

{
(x, y) ∈ U × V |μR̃(x, y) ≥ α, νR̃(x, y) ≤ β

}
.

For all x ∈ M, the (α,β)-level set of the image of R̃, denoted by [̃R(x)]βα , is

[
R̃(x)

]β

α
=

{
y ∈ V |(x, y) ∈ R̃β

α

}
.

Example 2.1 Assume that Mr. X wants to buy a car. Let U = {u1, u2, u3, u4, u5} be a set of
five candidate cars. Suppose that the set of candidate cars U can be characterized by a
set of parameters V = {v1, v2, v3, v4}, where vj(j = 1, 2, 3, 4) stands for “being cheap”, “being
beautiful”, “being safe”, and “being comfortable”, respectively. Mr. X thinks u1 is very expen-
sive and this fuzzy information cannot be expressed only by the two crisp numbers 0 and
1, a membership degree can be used instead, which is associated with each element and
represented by a real number valued in the interval [0, 1]. Furthermore, Mr. X thinks u1 is
0.8 in being cheap, 0.1 against, and the hesitancy degree is 0.1. In that case, the character-
istics of five candidate choices under four parameters are represented by an intuitionistic
fuzzy relation matrix R̃(ui, vj)5×4, which describes the attractiveness of the cars which Mr.
X is going to buy, as follows:

R̃ =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

(0.8, 0.1) (0.4, 0.6) (0.4, 0.2) (0.3, 0.6)
(0.6, 0.2) (0.3, 0.5) (0.5, 0.4) (0.7, 0.1)
(0.3, 0.6) (0.6, 0.3) (0.7, 0.1) (0.4, 0.5)
(0.7, 0.3) (0.2, 0.7) (0.3, 0.7) (0.7, 0.3)
(0.5, 0.4) (0.1, 0.7) (0.6, 0.2) (0.8, 0.1)

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠
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3 The generalized variational inequality with intuitionistic fuzzy relation
Definition 3.1 Let M ⊆ Rn, f : M → 2Rn be a set-valued mapping and �̃ is an intuitionistic
fuzzy relation on M × Rn with its membership function μ�̃ and nonmembership function
ν�̃ . Then the generalized variational inequality with intuitionistic fuzzy relation, denoted
by GVI(M, �̃), is defined as

GVI(M, �̃) find (x, y)

subject to x ∈ M,
〈
y, x′ – x

〉 ≥ 0, ∀x′ ∈ M,
〈
(x, y),μ�̃(x, y),ν�̃(x, y)

〉 ∈ �̃,

(3.1)

where �̃ = {〈(x, y),μ�̃(x, y),ν�̃(x, y)〉|y =∼ f (x)} ⊆ IFR(Rn × Rn), here the wavy bar under a
symbol plays the role of a fuzzifier, that is, a transformation which takes a nonfuzzy set into
a fuzzy set which is approximately equal to it. In other words, y =∼ f (x) is a fuzzy equality and
“=∼” denotes the fuzzified version of “=” with the linguistic interpretation “approximately
equal to”.

Remark 3.1 More specifically, for y, f (x) ∈ Rn, since y =∼ f (x), then yj =∼ fj(x), j = 1, 2, . . . , n,
which actually determines an intuitionistic fuzzy set, whose membership function and
nonmembership function are denoted by μ�̃j ,ν�̃j , j = 1, 2, . . . , n, respectively. The member-
ship grade μ�̃j (x, y) can be interpreted as the degree to which the regular equality yj = fj(x),
j = 1, 2, . . . , n, is satisfied. To specify the membership functions μ�̃j , it is commonly as-
sumed that μ�̃j (x, y) should be 0 if the regular equality yj = fj(x) is strongly violated and
1 if it is satisfied, which is analogous to the nonmembership functions. In this sense, we
can obtain a membership function and a nonmembership function in the following forms,
respectively:

μ�̃j (x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, yj – fj(x) = 0,

μLj (yj – fj(x)), –cj ≤ yj – fj(x) < 0,

μRj (yj – fj(x)), 0 < yj – fj(x) ≤ dj,

0, otherwise,

ν�̃j (x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, yj – fj(x) = 0,

νLj (yj – fj(x)), –sj ≤ yj – fj(x) < 0,

νRj (yj – fj(x)), 0 < yj – fj(x) ≤ tj,

1, otherwise,

where cj, dj ≥ 0, are the tolerance levels which a decision maker can tolerate in the accom-
plishment of the fuzzy equality yj =∼ fj(x), and sj, tj ≥ 0 are the intolerance levels. We usually
assume that μLj ,νRj ∈ [0, 1] are continuous and nondecreasing, respectively, on [–dj, 0],
[0, tj], and μRj ,νLj ∈ [0, 1] are continuous and nonincreasing, respectively, on [0, dj], [–sj, 0].

As shown in Fig. 1, μ�̃j (x, y) and ν�̃j (x, y) is the membership function and the nonmem-
bership function of yj =∼ fj(x), respectively, where μLj (–cj) = 0, μRj (–dj) = 0, νLj (sj) = 0, and
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Figure 1 The membership function and nonmembership function of yj =∼ fj(x)

Figure 2 A triangular intuitionistic fuzzy number

νRj (tj) = 0. The membership function and the nonmembership function can be expressed
by some special forms, such as triangular intuitionistic fuzzy numbers(TIFNs), trapezoidal
intuitionistic fuzzy numbers(TrIFNs).

Example 3.1 Fig. 2 shows a triangular intuitionistic fuzzy number, denoted by A =
〈(a, 0, c); w, u〉, where w and u denote the maximum degree of membership and the mini-
mum degree of nonmembership, satisfying the conditions 0 ≤ w, u ≤ 1 and 0 ≤ w + u ≤ 1,
respectively.

Remark 3.2 Since all the components of y =∼ f (x) have to be satisfied, for the intuitionis-
tic fuzzy relation �, we define its membership function and nonmembership function,
respectively, as

μ�̃(x, y) = min
j=1,2,...,n

μ�̃j (x, y),

ν�̃(x, y) = max
j=1,2,...,n

ν�̃j (x, y).
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Definition 3.2 We say (x, y) is a (α,β)-level solution to the problem GVI(M, �̃) if (x, y)
solves the problem

GVI
(
M, �̃β

α

)
find (x, y)

subject to x ∈ M,
〈
y, x′ – x

〉 ≥ 0, ∀x′ ∈ M,
〈
(x, y),μ�̃(x, y),ν�̃(x, y)

〉 ∈ �̃β
α ,

(3.2)

where α,β ∈ [0, 1] with α + β ≤ 1, and

�̃β
α =

{
(x, y) ∈ M × Rn|μ�̃(x, y) ≥ α,ν�̃(x, y) ≤ β ,∀j =, 1, 2, . . . , n

}
.

4 The existence theorem and iterative algorithm of solutions to the
generalized variational inequalities with intuitionistic fuzzy relations

Definition 4.1 Let M ⊆ Rn, R̃ be an intuitionistic fuzzy relation on M ×Rn. For all x1, x2 ∈
M, the image of R̃ is said to be

(1) strongly monotone, if there exists a constant δ ∈ (0, 1) such that

〈y1 – y2, x1 – x2〉 ≥ δ‖x1 – x2‖ (4.1)

for all y1 ∈ [̃R(x1)]βα , y2 ∈ [̃R(x2)]βα , where ‖ · ‖ and 〈·〉 denote norm and inner product on
Rn, respectively.

(2) Lipschitz continuous, if there exists a constant L ∈ (0, 1) such that

D
([

R̃(x1)
]β

α
,
[
R̃(x2)

]β

α

) ≤ L‖x1 – x2‖, (4.2)

where D is the Hausdorff metric on Rn.

For simplicity, if the image of R̃ is strongly monotone and Lipschitz continuous, we also
say R̃ is strongly monotone and Lipschitz continuous, respectively.

Definition 4.2 ([4]) The distance of a point x0 ∈ Rn to a closed set C ⊆ Rn, in the norm
‖ · ‖, is defined as

dist(x0, C) = inf
{‖x0 – x‖ : x ∈ C

}
.

The infimum here is always achieved. We refer to any point z ∈ C which is closest to x0,
i.e., satisfies ‖z – x0‖ = dist(x0, C), as a projection of x0 on C, denoted by PC(x0).

In other words, PC : Rn → C and PC(x0) = argmin{‖x0 – x‖ : x ∈ C}, we refer to PC as a
projection on C.

Remark 4.1 In general, there can exist more than one projection of x0 on C, that is, there
are several points in C which are closest to x0. However, we can construct the projection
of a point on a set which is unique. For instance, if C is closed and convex and the norm
is strictly convex such as the Euclidean norm, then for any x0, there is always exactly one
z ∈ C which is closest to x0. Conversely, if for any x0 there is a unique Euclidean projection
of x0 on C, then C is closed and convex.
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In what follows, we suppose that the norm of x ∈ Rn is the Euclidean norm, i.e.,

‖x‖ =
(
xT x

)1/2 =
(
x2

1 + · · · + x2
n
)1/2.

Lemma 4.1 ([21]) Let M ⊆ Rn be a closed and convex set. Then

(
x – PM(x)

)T(
y – PM(x)

) ≤ 0, ∀x ∈ Rn,∀y ∈ M, (4.3)
∥∥PM(x) – PM(y)

∥∥ ≤ ‖x – y‖, ∀x, y ∈ Rn. (4.4)

Theorem 4.1 Let M ⊆ Rn, R̃ be an intuitionistic fuzzy relation on M × Rn. If R̃ is Lipschitz
continuous, then there exists a point x ∈ M such that x ∈ [̃R(x)]βα , where α,β ∈ [0, 1] with α+
β ≤ 1, that is, x is a fixed point of R̃.

Proof Let x0 ∈ M and x1 ∈ [̃R(x0)]βα . Then there exists x2 ∈ [̃R(x1)]βα and

‖x2 – x1‖ ≤ L‖x1 – x0‖,

where L ∈ (0, 1). Since R̃ and x2 ∈ [̃R(x1)]βα , there is a point x3 ∈ [̃R(x2)]βα such that

‖x3 – x2‖ ≤ L‖x2 – x1‖ ≤ L2‖x1 – x0‖.

Then we can obtain a sequence {xn} of points of M satisfying xn+1 ∈ [̃R(xn)]βα and

‖xn+1 – xn‖ ≤ L‖xn – xn–1‖ ≤ Ln‖x1 – x0‖

for all n ≥ 1. Therefore, we have

‖xn+m – xn‖ ≤‖xn+m – xn+m–1‖ + ‖xn+m–1 – xn+m–2‖ + · · · + ‖xn+1 – xn‖
≤(

Ln+m–1 + · · · + Ln)‖x1 – x0‖

≤ Ln

1 – L
‖x1 – x0‖

for all n, m ≥ 1, thus, the sequence {xn+1} is a Cauchy sequence, which implies that xn →
x ∈ Rn. Therefore, the sequence [̃R(xn)]βα converges to xn+1 ∈ [̃R(x)]βα weakly, and since
xn+1 ∈ [̃R(xn)]βα for all n, then x ∈ [̃R(x)]βα , therefore, x is a fixed point of R̃. �

Theorem 4.2 Let M ⊆ Rn be a closed and convex set, �̃ be an intuitionistic fuzzy relation
on M × Rn. Then (x, y) is a solution of GVI(M, �̃) if and only if

x = PM[x – ρy], (4.5)

where y ∈ [�̃(x)]βα for α,β ∈ [0, 1] with α+β ≤ 1, ρ > 0 is a constant, and PM is the projection
of Rn on to M.

Proof If (x, y) is a solution to GVI(M, �̃), then x ∈ M, y ∈ [�̃(x)]βα , and

〈
y, x′ – x

〉 ≥ 0, ∀x′ ∈ M.
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Thus, for a constant ρ > 0, we have 〈ρy, x′ – x〉 ≥ 0, ∀x′ ∈ M. Then, for all v ∈ M,

∥∥v – (x – ρy)
∥∥2 = ‖v – x‖2 + 2〈v – x,ρy〉 + ‖ρy‖2

≥ ‖ρy‖2

=
∥∥x – (x – ρy)

∥∥2.

Therefore, x = minx∈M
1
2‖v – (x – ρy)‖2, that is, x = PM[x – ρy], where ρ > 0.

Conversely, if x = PM[x –ρy] and y ∈ [�̃(x)]βα , where ρ > 0, then x ∈ M. By (4.3) of Lemma
4.1, we obtain

〈
PM[x – ρy] – (x – ρy), v – PM[x – ρy]

〉 ≥ 0, ∀v ∈ M,

that is,

〈
x – (x – ρy), v – x

〉 ≥ 0, ∀v ∈ M,

thus, we have 〈ρy, v – x)〉 ≥ 0, ∀v ∈ M. Since ρ > 0 is a constant, then 〈y, v – x)〉 ≥ 0, ∀v ∈ M,
where y ∈ [�̃(x)]βα . Therefore, (x, y) is a solution of GVI(M, �̃). �

Theorem 4.2 indicates that GVI(M, �̃) is equivalent to the following fuzzy fixed point
problem:

H(x) = PM[x – ρy], (4.6)

where y ∈ [�̃(x)]βα . Accordingly, we can give the following iterative algorithm.

Algorithm 1 For given x0 ∈ M such that y0 ∈ [�̃(x0)]βα .
Step 1. Let

x1 = PM[x0 – ρy0],

where ρ > 0 is a constant.
Step 2. Since y0 ∈ [�̃(x0)]βα , there exists y0 ∈ [�̃(x0)]βα such that ‖y0 – y1‖ ≤ D([�̃(x0)]βα ,

[�̃(x1)]βα). Let

x2 = PM[x1 – ρy1].

Step 3. Find xn and yn by the following iterative methods:

‖yn+1 – yn‖ ≤ D
([

�̃(xn+1)
]β

α
,
[
�̃(xn)

]β

α

)
,

xn+1 = PM[xn – ρyn], n = 1, 2, . . . .
(4.7)

Theorem 4.3 Let (xn, yn) and (x, y) be the solutions to (4.7) and (3.1), respectively. If �̃ is
strongly monotone and Lipschitz continuous, then xn → x strongly, and yn → y strongly.
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Proof According to (4.7) of Algorithm 1, we obtain xn+1 – xn = PM[xn – ρyn] – PM[xn–1 –
ρyn–1], where ρ > 0. Since �̃ is strongly monotone and Lipschitz continuous, then there
exist constants L, δ ∈ (0, 1), and combining with (4.4) of Lemma 4.1, we have

‖xn+1 – xn‖2 =
∥
∥PM[xn – ρyn] – PM[xn–1 – ρyn–1]

∥
∥2

≤∥
∥xn – xn–1 – ρ(yn – yn–1)2∥∥2

=‖xn – xn–1‖2 + ρ2‖yn – yn–1‖2 – 2ρ〈yn – yn–1, xn – xn–1〉
≤(

1 + ρ2L2 – 2ρδ
)‖xn – xn–1‖2.

Setting θ =
√

1 – 2ρδ + ρ2L2 < 1 for 0 < ρ < 2δ

L2 , then ‖xn+1 – xn‖ = θ‖xn – xn–1‖, thus, {xn}
is a Cauchy sequence, that is, xn → x strongly (n → ∞).

On the other hand, since �̃ is Lipschitz continuous, then there exists a constant L ∈ (0, 1)
such that

‖yn+1 – yn‖ ≤D
([

�̃(xn+1)
]β

α
,
[
�̃(xn)

]β

α

)

≤L‖xn – xn–1‖,

therefore, yn is a Cauchy sequence, that is, yn → y strongly (n → ∞). Furthermore, y ∈
[�̃(x)]βα . Indeed,

d
(
y,

[
�̃(x)

]β

α

) ≤‖y – yn‖ + d
(
yn,

[
�̃(x)

]β

α

)

≤‖y – yn‖ + D
([

�̃(xn)
]β

α
,
[
�̃(x)

]β

α

)

≤‖yn – y‖ + L‖xn – x‖,

thus, when n → ∞, d(y, [�̃(x)]βα) → 0, and since d(y, [�̃(x)]βα) = inf{‖y – t‖ : t ∈ [�̃(x)]βα},
then we obtain d(y, [�̃(x)]βα) = 0, that is, y ∈ [�̃(x)]βα .

Hence, according to Theorem 4.1, we have x ∈ M, y ∈ Rn satisfying y ∈ [�̃(x)]βα are the
solutions to (3.1), and xn → x strongly, yn → y strongly. �

5 Stability of the dynamical system for generalized variational inequalities
with intuitionistic fuzzy relations

Let M ⊆ Rn be a closed and convex set, �̃ be an intuitionistic fuzzy relation on M × Rn.
Consider the following projected neural network associated with the generalized varia-
tional inequality with intuitionistic fuzzy relation (3.1):

dx(t)
dt

= λ
{

PM[x – ρy] – x
}

, x(t0) = x0, (5.1)

where ρ > 0, λ are constants, y ∈ [�̃(x)]βα . x(t) = (x1(t), x2(t), . . . , xm(t))T denotes the state
vector of neurons, m is the number of neurons, and the initial value x0 is given randomly.
It is a dynamical system.

Without loss of generality, consider the following nonlinear dynamical system [6]:

⎧
⎨

⎩

dx
dt = f (t, x),

x(t0) = x0,
(5.2)
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where t ∈ R, x ∈ M ⊆ Rn, x0 is the initial state. If there exists a state x� in the state space
satisfying

f
(
t, x�

)
= 0, ∀t ≥ t0,

then we say x� is an equilibrium state or an equilibrium point of system (5.2). The equilib-
rium point x� is said to be stable in the sense of Lyapunov if, for any ε > 0, there exists δ > 0,
when ‖x(t0) – x�‖ < δ, we have ‖x(t0) – x�‖ < ε(t ≥ t0); x� is said to be asymptotically stable
if x� is stable and satisfies x(t) → x�(t → ∞); x� is said to be globally asymptotically stable
if, for any initial point, x� is asymptotically stable; x� is said to be globally exponentially
stable if, for any solution of the system x(t), there exist k > 0, η > 0 such that

∥
∥x(t) – x�

∥
∥ ≤ k

∥
∥x(t0) – x�

∥
∥ exp

(
–η(t – t0)

)
, ∀t ≥ t0.

System (5.2) is said to globally converge to the set M′ ⊆ Rn if, for any initial point, the
solution of the system x(t) satisfies

lim
t→∞ dist

(
x(t), M′) = 0,

where dist(x(t), M′) = infy∈M′ ‖x – y‖.

Lemma 5.1 (LaSalle’s invariance principle [23]) Let f (t, x) be continuous in system (5.2).
If there exists a continuously differentiable function V : Rn → R1 satisfying the following
conditions:

(i) There exists a constant r > 0 such that the set Mr = {x ∈ Rn : V (x) ≤ r} is bounded;
(ii) for all x ∈ Mr , dV (x)

dt ≤ 0,
then for all x0 ∈ Mr , when t → ∞, x(t) converges to the largest invariant subset of the set
{x ∈ Rn : dV (x)

dt ≤ 0}.

Lemma 5.2 (Gronwall’s inequality [10]) Let x(x), y(t) be real-valued nonnegative contin-
uous functions with domain {t : t ≥ t0}, and let a(t) = a0(|t – t0|), where a0 is a monotone
increasing function. If, for t ≥ t0,

x(t) ≤ a(t) +
∫ t

t0

x(s)y(s) ds,

then

x(t) ≤ a(t) exp

(∫ t

t0

y(s) ds
)

.

Theorem 5.1 Let M ⊆ Rn be a closed and convex set, �̃ be an intuitionistic fuzzy relation
on M × Rn. (x�, y�) is a solution of GVI(M, �̃) if and only if x� is an equilibrium point of
dynamical system (5.1).

Proof According to Theorem 4.2, (x�, y�) is a solution of GVI(M, �̃) if and only if

x� = PM
[
x� – ρy�

]
,
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where y� ∈ [�̃(x�)]βα , ρ > 0 is a constant, that is,

PM
[
x� – ρy�

]
– x� = 0,

namely, x� is an equilibrium point of dynamical system (5.1). �

Theorem 5.2 Let M ⊆ Rn be a closed and convex set, �̃ be an intuitionistic fuzzy relation
on M×Rn. If �̃ is Lipschitz continuous, then for any x0 ∈ Rn there exists a unique continuous
solution x(t) of dynamical system (5.1) with x(t0) = x0, where t ∈ [t0,∞).

Proof Let

G(x) = λ
{

PM[x – ρy] – x
}

, y ∈ [
�̃(x)

]β

α
,α,β ∈ [0, 1].

Then, for any x1, x2 ∈ Rn, since �̃ is Lipschitz continuous, and by (4.4), we have

∥
∥G(x1) – G(x2)

∥
∥ ≤ λ

{∥∥PM[x1 – ρy1] – PM[x2 – ρy2]
∥
∥ + ‖x1 – x2‖

}

≤ λ
{‖x1 – x2‖ +

∥
∥(x1 – ρy1) – (x2 – ρy2)

∥
∥}

≤ λ{2 + ρL}‖x1 – x2‖,

where y1 ∈ [�̃(x1)]βα , y2 ∈ [�̃(x2)]βα , ρ > 0, L > 0. Thus, G(x) is Lipschitz continuous. Then,
by the existence and uniqueness theorem of solutions for an ordinary differential equation,
for any x0 ∈ Rn, there exists a unique continuous solution x(t) of dynamical system (5.1)
with x(t0) = x0 over [t0, T].

On the other hand, since for any x ∈ Rn

∥∥G(x)
∥∥ = λ

{∥∥PM[x – ρy] – x
∥∥}

≤ λ
{∥∥PM[x – ρy] – PM[x]

∥∥ +
∥∥PM(x) – PM

[
x�

]∥∥}
+

∥∥PM
[
x�

]
– x

∥∥}
≤ λρ‖y‖ + λ

∥∥x – x�
∥∥ + λ

∥∥PM
[
x�

]∥∥ + λ‖x‖
≤ λ(2 + ρL)‖x‖ + λ

{∥∥x�
∥∥ +

∥∥PM
[
x�

]∥∥}
,

then

∥∥x(t)
∥∥ ≤ ‖x0‖ +

∫ t

t0

∥∥Tx(s)
∥∥ds ≤ (‖x0‖ + k1(t – t0)

)
+ k2

∫ t

t0

∥∥x(s)
∥∥ds,

where k1 = λ{‖x�‖ + ‖PM[x�]‖}, k2 = λ(2 + ρL). Therefore, by Lemma 5.2, we have

∥
∥x(t)

∥
∥ ≤ {‖x0‖ + k1(t – t0) exp

(
k2(t – t0)

)}
, t ∈ [t0, T).

It implies that x(t) is bounded on [t0, T), then by the extension theorem of solutions for an
ordinary differential equation, we have T = ∞. �

Theorem 5.3 Let M ⊆ Rn be a closed and convex set, �̃ be an intuitionistic fuzzy relation
on M ×Rn. If �̃ is pseudo-monotone and Lipschitz continuous, then dynamical system (5.1)
is stable in the sense of Lyapunov and globally converges to the solution set S of GVI(M, �̃).
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Proof Since �̃ is Lipschitz continuous, by Theorem 5.2, dynamical system (5.1) has a
unique continuous solution x(t). Suppose that x� ∈ M is an equilibrium point of dynamical
system (5.1), then x� is a solution of GVI(M, �̃), it follows that (y�)T (x – x�) ≥ 0, ∀x ∈ M,
where y� ∈ [�̃(x�)]βα , and since �̃ is pseudo-monotone, then we have yT (x–x�) ≥ 0, ∀x ∈ M,
where y ∈ [�̃(x)]βα . Setting x = PM[x – ρy], then

〈
y, PM[x – ρy] – x�

〉 ≥ 0.

On the other hand, for x� ∈ M, by (4.3) of Lemma 4.1, we have

〈
PM[x – ρy] – (x – ρy), x� – PM[x – ρy]

〉 ≥ 0,

that is,

〈
PM[x – ρy] – x, x� – PM[x – ρy]

〉
+

〈
ρy, x� – PM[x – ρy]

〉 ≥ 0.

Therefore, we obtain

〈
PM[x – ρy] – x, x� – x +

(
x – PM[x – ρy]

)〉 ≥ 0.

Thus, we have

〈
x – x�, x – PM[x – ρy]

〉 ≥ ∥
∥x – PM[x – ρy]

∥
∥2.

Hence, for the following Lyapunov function

V (x) = λ
∥∥x – x�

∥∥2, x ∈ Rn,

we have

dV (x)
dt

=
dV
dx

dx
dt

= 2λ
〈
x – x�, PM[x – ρy] – x

〉 ≤ 0,

where x ∈ M0 = {x ∈ M : V (x) ≤ V (x0)}. Therefore, dynamical system (5.1) is stable in the
sense of Lyapunov.

Furthermore, since V (x) is continuously differentiable on the bounded set M0, by
LaSalle’s invariance principle, x(t) converges to the largest invariant subset of the set
{x ∈ M : dV

dt = 0}. Since dV
dt = 0 ⇔ dx

dt = 0, then {x ∈ M : dV
dt = 0} = {x ∈ M : dx

dt = 0} = M0 ∩ S,
therefore, limt→∞ dist(x(t), S) = 0, that is, dynamical system (5.1) globally converges to the
solution set S of GVI(M, �̃). �

Theorem 5.4 Let M ⊆ Rn be a closed and convex set, �̃ be an intuitionistic fuzzy relation
on M × Rn. If �̃ is Lipschitz continuous, then for λ < 0, dynamical system (5.1) globally
exponentially converges to the solution of GVI(M, �̃).

Proof Since �̃ is Lipschitz continuous, by Theorem 5.2, dynamical system (5.1) has a
unique continuous solution x(t). Let x� ∈ M be an equilibrium point of dynamical sys-
tem (5.1), and consider the following Lyapunov function:

V (x) = λ
∥∥x – x�

∥∥2, x ∈ Rn,
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we have

dV
dt

= 2λ
〈
x(t) – x�, PM

[
x(t) – ρy

]
– x(t)

〉

= –2λ
∥∥x(t) – x�

∥∥2 + 2λ
〈
x(t) – x�, PM

[
x(t) – ρy

]
– x�

〉
.

On the other hand, for the equilibrium point x� ∈ M, by Theorem 5.1, we have x� is a
solution of GVI(M, �̃)), that is, x� = PM[x� – ρy�], thus, by (4.3) of Lemma 4.1 and �̃ is
Lipschitz continuous, we obtain

∥∥PM
[
x(t) – ρy

]
– x�

∥∥ =
∥∥PM

[
x(t) – ρy

]
– PM

[
x� – ρy�

]∥∥

≤∥∥x – x� – ρ
(
y – y�

)∥∥

≤∥∥x – x�
∥∥ + ρL

∥∥x – x�
∥∥

≤(1 + ρL)
∥∥x – x�

∥∥,

where ρ > 0, L > 0, y ∈ [�̃(x)]βα , y� ∈ [�̃(x�)]βα , α,β ∈ [0, 1]. Therefore, we have

dV
dt

=
d
dt

(
λ
∥∥x(t) – x�

∥∥2) ≤ 2αλ2∥∥x(t) – x�
∥∥2,

where α = ρL. Setting λ1 = –λ, then λ1 > 0, and we have

∥∥x(t) – x�
∥∥ ≤ ∥∥x(t0) – x�

∥∥ exp
(
–αλ1(t – t0)

)
,

that is, dynamical system (5.1) globally exponentially converges to the solution of GVI(M,
�̃). �

6 Conclusions
In this paper, we have investigated the generalized variational inequalities with intuitionis-
tic fuzzy relations. We have obtained the existence theorem of solutions to the generalized
variational inequalities with intuitionistic fuzzy relations. Furthermore, we have analyzed
an iterative algorithm and a projected neural network model for this type variational in-
equality by using the projection method, and the proposed projected dynamical system is
shown to be stable in the sense of Lyapunov, globally convergent and globally exponentially
convergent under various conditions.
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