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Abstract
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1 Introduction
Let X1, X2, . . . be a sequence of independent and identically distributed (i.i.d.) random vari-
ables and write Mn for the partial maximum, i.e.,

Mn = max{X1, X2, . . . , Xn}.

If there exist suitable normalizing constants an > 0 and bn ∈ R, and a distribution G(x)
which is nondegenerate such that

lim
n→∞ P(Mn ≤ anx + bn) = lim

n→∞ Fn(anx + bn) = G(x) (1.1)

for all continuity points of G. Then G has one of the following three parametric forms:

Type I (Gumbel) : �(x) = exp
{

–e–x}, x ∈ R,

Type II (Fréchet) : �α(x) =

⎧
⎨

⎩
0 if x < 0,

exp{–x–α} if x ≥ 0,

Type III (Weibull) : �α(x) =

⎧
⎨

⎩
exp{–(–x)α} if x < 0,

1 if x ≥ 0,

where α is a positive constant. If (1.1) holds for some sequences {an > 0}, {bn}, we say that
distribution F belongs to the domain of attraction of G and write F ∈ D(G). Necessary and
sufficient criteria for F ∈ D(G) can be found in Leadbetter [15] and Resnick [23].
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One meaningful issue in extreme value theory is to study the convergence rate and ex-
tremal properties related to the normalized maximum of a sample. Hall [10] studied op-
timal rates of uniform convergence for standard normal distribution. Nair [19] derived
asymptotic expansions for the distribution and moments of extremes of normal samples
with the same normalizing constants. Liao et al. [17] studied optimal convergence rates for
the skew-normal distribution SN(λ) with shape parameter λ ∈ R. Peng et al. [21] obtained
similar results for the skew-t distribution. Beranger et al. [2] derived Mills inequalities and
ratio, and then the convergence rate of the univariate extended skew-normal ESN(λ, τ ),
where the parameters λ ∈ R and τ ∈ R are known as the slant and extension parameters,
respectively. For more efforts about asymptotic expansions and rates of convergence, see
Lin et al. [18], Liao et al. [16], Jia et al. [13], Du and Chen [5], and Huang and Wang [11].

Our interest in this article is to study the extremal properties and convergence rate of
the beta-normal distribution. The beta-normal distribution (BND) was first introduced by
Eugene et al. [6]. It is a generalization of both the normal distribution and the normal order
statistics. A random variable X is said to have a standardized BND with shape parameters
α > 0 and β > 0 if its probability density function (p.d.f.) is given by

gα,β (x) =
	(α + β)
	(α)	(β)

[
�(x)

]α–1[1 – �(x)
]β–1

φ(x), (1.2)

where –∞ < x < ∞, 0 < α,β < ∞, 	(·) denotes the gamma function, �(·) and φ(·) de-
note the standard normal cumulative distribution function (c.d.f.) and the standard nor-
mal probability density function (p.d.f.), respectively.

Note that α = 2,β = 1 and α = 1,β = 2 respectively stand for the skew-normal distribu-
tion with shape parameter λ = 1 and λ = –1 (Azzalini [1]). In addition, the normal dis-
tribution is a special case when α = 1 and β = 1. Several properties of the beta-normal
distribution have been studied in the literature: nth moment (Gupta and Nadarajah [9]);
bimodality properties (Famoye and Lee [7]); bimodality region, hazard rate function, mo-
ments, quantile measures, generating function, mean deviations, and Shannon entropy
(Rêgo, Cintra and Cordeiro [22]).

Throughout the paper, let {Xn, n ≥ 1} be a sequence of independent and identically dis-
tributed (i.i.d.) random variables with the c.d.f. Gα,β which obey the beta-normal distri-
bution. Let Mn = max{Xk , 1 ≤ k ≤ n} denote the partial maximum of {Xn, n ≥ 1}.

In order to derive the asymptotic expansions of normalized maximum from BND, we
introduce some preliminary but important results from Jiang and Li [14]. First the Mills
type ratio of BND is stated as follows:

for fixed α,β > 0,

1 – Gα,β (x)
gα,β (x)

∼ 1
βx

as x → ∞. (1.3)

Jiang and Li [14] also showed that

1 – Gα,β (x) = c(x) exp

(
–

∫ x

1

h(t)
f (t)

dt
)

(1.4)
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for large x, where

c(x) → 	(α + β)
	(α)	(β + 1)

(2πe)– β
2 as x → ∞,

h(x) = 1 +
1
x2 , f (x) =

1
βx

.
(1.5)

Since limx→∞ h′(x) → 1, f (x) > 0 on [1,∞) and limx→∞ f ′(x) → 0, Gα,β (x) ∈ D(�) by Corol-
lary 1.7 of Resnick [23]. The norming constants an and bn can be given by

1 – Gα,β (bn) = n–1, an = f (bn) = β–1b–1
n (1.6)

such that

lim
n→∞ Gn

α,β (anx + bn) = �(x) = exp
(
– exp(–x)

)
. (1.7)

By using Mills ratio of BND and Khintchine theorem in Leadbetter et al. [15], Jiang and Li
[14] obtained another pair of normalized constants such that (1.7) holds:

ān = (2β log n)– 1
2 ,

b̄n =
(

2
β

log n
) 1

2
+

1
(2β log n) 1

2
log

	(α + β)
	(α)	(β + 1)

–
1
2

(
β

2 log n

) 1
2

[log 4π – logβ + log log n]. (1.8)

The remainder of this paper is organized as follows. Section 2 derives the main result
on pointwise convergence rate of the maximum of BND and asymptotic expansions for
distributions and densities of maximum from the BND sample. Some auxiliary lemmas
and related proofs are given in Sect. 3.

2 Main results
In this section, we establish first the pointwise convergence rate of the distribution of Mn

for the norming constants ān and b̄n given by (1.8).

Theorem 2.1 Let Gα,β (x) represent the c.d.f. of BND. For normalizing constants ān and
b̄n given by (1.8), we have

Gn
α,β (ānx + b̄n) – �(x) ∼ β2�(x)e–x

16
(log log n)2

log n

as n → ∞.

Remark 2.1 Beranger et al. [2] deduced the pointwise convergence rate of the extended
skew-normal ESN(λ, τ ) of Mn:

�(x)e–x

c
(log log n)2

log n
,
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where c = 16 when λ ≥ 0 and c = 4 when λ < 0. When τ = 0 the extended skew-normal
distribution reduces to the skew-normal SN(λ). The result is exactly the same as that of
Liao et al. [17], regardless of the slant parameter λ and extension parameter τ . But in The-
orem 2.1, the pointwise convergence rate of the BND is affected by the shape parameter β .

In the following, we shall derive asymptotic expansions for the c.d.f. and the p.d.f. of Mn

under the norming constants an and bn given by (1.6).

Theorem 2.2 Let Gα,β (x) be the c.d.f. of BND. For normalizing constants an and bn given
by (1.6), we have

b2
n
[
b2

n
(
Gn

α,β (anx + bn) – �(x)
)

– κ(x)�(x)
] −→

(
w(x) +

κ(x)2

2

)
�(x)

as n → ∞, where

κ(x) =
1
2
β–1(x2 + 2βx

)
e–x

and

ω(x) = –e–x
[

1
8
β–2x4 +

1
2
β–1x3 +

1
2
(
1 + β–1)x2 + 2x

]
.

Remark 2.2 According to the definition of bn, one can check that 1/b2
n = O(1/ log n). Hence,

the convergence rate of Gn
α,β (anx + bn) to its limit c.d.f. �(x) is proportional to 1/ log n by

Theorem 2.2.

In the end of the section, we establish the high-order expansion of density of maxima
from the BND.

Let

rn(x) =
(
Gn

α,β (anx + bn)
)′ = nanGn–1

α,β (anx + bn)gα,β (anx + bn)

denote the density of (Mn – bn)/an, and

�n
(
rn,�′; x

)
= rn(x) – �′(x).

By Proposition 2.5 in Resnick [23], we have �n(rn,�′; x) → 0 as n → ∞.

Theorem 2.3 Let Gα,β (x) denote the c.d.f. of BND, then for normalizing constants an and
bn given by (1.6), we have

b2
n
[
b2

n
(
Gn

α,β (anx + bn) – �(x)
)′ – S(x)�′(x)

] −→ R(x)�′(x)

as n → ∞, where

S(x) = e–x
(

1
2
β–1x2 + x

)
–

1
2
β–1x2 +

(
β–1 – 1

)
x + 1 (2.1)
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and

R(x) = e–2x
(

1
8
β–2x4 +

1
2
β–1x3 +

1
2

x2
)

– e–x
(

3
8
β–2x4 +

1
2
β–2(3β – 1)x3

+
1
2
β–1(3β – 2)x2 + x

)
+

1
8
β–2x4 +

1
2
β–2(β – 1)x3

+
1
2
β–1(β – 2)x2 +

(
1 – β–1)x – 2. (2.2)

Remark 2.3 Since 1/b2
n = O(1/ log n), by Theorem 2.3, we could derive the speed of

(Gn
α,β (anx + bn))′ converging to its appropriate limit is proportional to 1/ log n.

In addition to the theory of univariate maxima, multivariate cases have found an in-
creasing interest in literature since the articles by Hüsler and Reiss [12], Nikoloulopoulos
et al. [20], Fung and Seneta [8], Beranger et al. [3], and others. Sarabia et al. [24] introduced
a bivariate BND which also is a beta-generated distribution. Further research on extremal
properties of the bivariate beta-normal distribution is meaningful. It is obvious that our
results will stimulate further multidimensional research work.

3 Proofs
In order to obtain expansions of a distribution and density for the maximum of the BND,
we provide the following distributional tail decomposition of BND.

Lemma 3.1 Let Gα,β (x) represent the c.d.f. of BND. For large x, we have

1 – Gα,β (x) = (2πe)– β
2

	(α + β)
	(α)	(β + 1)

�(x)α–1(1 – βx–2 + 2–1β(β + 5)x–4

+ O
(
x–6)) exp

(
–

∫ x

1

g(t)
f (t)

dt
)

(3.1)

with g(t) and f (t) given by (1.5).

Proof By integration by parts, we have

1 – Gα,β (x) =
1
β

�(–x)
φ(x)

gα,β (x)
[

1 +
α – 1
β + 1

(
�–1(x) – 1

)
+

(α – 1)(α – 2)
(β + 1)(β + 2)

(
�–1(x) – 1

)2

+ · · · +
(α – 1)(α – 2) . . . (α – n)
(β + 1)(β + 2) . . . (β + n)

(
�–1(x) – 1

)n

+
(α – 1)(α – 2) . . . (α – n – 1)

(β + 1)(β + 2) . . . (β + n)

∫ ∞
x [1 – �(t)]β+n�(t)α–n–2φ(t) dt

�(x)α–1[1 – �(x)]β

]
. (3.2)

It is easy to check by L’Hospital’s rule that

lim
x→∞

∫ ∞
x [1 – �(t)]β+n�(t)α–n–2φ(t) dt

�(x)α–1–n[1 – �(x)]β+n = 0 (3.3)

and

xr(�(x)–1 – 1
) → 0 for all r. (3.4)
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Notice that

1 – �(x) =
φ(x)

x
(
1 – x–2 + 3x–4 + O

(
x–6)) (3.5)

for large x (Castro [4]). Thus, by (3.2), (3.3), (3.4), and (3.5), we have

1 – Gα,β (x) =
1
β

�(–x)
φ(x)

gα,β (x)
[

1 +
α – 1
β + 1

(
�–1(x) – 1

)
+

(α – 1)(α – 2)
(β + 1)(β + 2)

(
�–1(x) – 1

)2

+ · · · +
(α – 1)(α – 2) . . . (α – n)
(β + 1)(β + 2) . . . (β + n)

(
�–1(x) – 1

)n(1 + o(1)
)]

=
	(α + β)

	(α)	(β + 1)
�(–x)β�(x)α–1

[
1 +

α – 1
β + 1

(
�–1(x) – 1

)

+
(α – 1)(α – 2)
(β + 1)(β + 2)

(
�–1(x) – 1

)2

+ · · · +
(α – 1)(α – 2) . . . (α – n)
(β + 1)(β + 2) . . . (β + n)

(
�–1(x) – 1

)n(1 + o(1)
)]

= (2πe)– β
2

	(α + β)
	(α)	(β + 1)

(
1 – x–2 + 3x–4 + O

(
x–6))β

�(x)α–1

× exp

(
–

∫ x

1

g(t)
f (t)

dt
)

= (2πe)– β
2

	(α + β)
	(α)	(β + 1)

(
1 – βx–2 + 2–1β(β + 5)x–4 + O

(
x–6))

× �(x)α–1 exp

(
–

∫ x

1

g(t)
f (t)

dt
)

(3.6)

for large x, where g(t) and f (t) are given by (1.5). The proof is complete. �

In order to prove Theorem 2.2, we need the following auxiliary result.

Lemma 3.2 Let Hα,β (bn; x) = Gα,β (anx + bn) and hα,β (bn; x) = n log Hα,β(bn; x) + e–x with
constants an and bn given by (1.6). Then

lim
n→∞ b2

n
(
b2

nhα,β (bn; x) – κ(x)
)

= ω(x),

where κ(x) and ω(x) are given by Theorem 2.2.

Proof Since 1 – Gα,β (bn) = n–1, bn → ∞ if and only if n → ∞. The following facts can be
obtained:

lim
n→∞

1 – Gα,β (anx + bn)
n–1 = e–x (3.7)

and

lim
n→∞

1 – Gα,β (anx + bn)
b–4

n
= 0. (3.8)
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Set

Aα,β (bn) =
�(bn)α–1(1 – βb–2

n + 2–1β(β + 5)b–4
n + O(b–6

n ))
�(bn + β–1b–1

n x)α–1

× (
1 – β

(
bn + β–1b–1

n x
)–2 + 2–1β(β + 5)

(
bn + β–1b–1

n x
)–4

+ O
((

bn + β–1b–1
n x

)–6))–1.

Then limn→∞ Aα,β (bn) = 1 and

Aα,β (x) – 1 =
(
�(bn)α–1 – �

(
bn + β–1b–1

n x
)α–1 – βb–2

n �(bn)α–1

+ β
(
bn + β–1b–1

n x
)–2

�
(
bn + β–1b–1

n x
)α–1 + 2–1β(β + 5)

× b–4
n �(bn)α–1 – 2–1β(β + 5)

(
bn + β–1b–1

n x
)–4

�
(
bn + β–1b–1

n x
)α–1

+ O
(
b–6

n
))(

1 + o(1)
)
.

Then

lim
n→∞

Aα,β (bn) – 1
b–2

n
= 0 (3.9)

and

lim
n→∞

Aα,β (bn) – 1
b–4

n
= –2x. (3.10)

By (3.1), we have

1 – Gα,β (bn)
1 – Gα,β (bn + β–1b–1

n x)
e–x

= Aα,β (bn) exp

(∫ x

0

(
b–2

n β–1t +
b–2

n
1 + b–2

n β–1t

)
dt

)

= Aα,β (bn)
(

1 +
∫ x

0

(
b–2

n β–1t +
b–2

n
1 + b–2

n β–1t

)
dt +

1
2

(∫ x

0

(
b–2

n β–1t

+
b–2

n
1 + b–2

n β–1t

)
dt

)2(
1 + o(1)

))
. (3.11)

Combining (1.3), (3.7), (3.8), (3.9), (3.10) with (3.11), we thus have

lim
n→∞ b2

nhα,β (bn; x)

= lim
n→∞

log Hα,β (bn; x) + n–1e–x

n–1b–2
n

= lim
n→∞

log Gα,β (bn + β–1b–1
n x) + (1 – Gα,β (bn))e–x

β–1gα,β (bn)b–3
n

= lim
n→∞

(
–
[
1 – Gα,β

(
bn + β–1b–1

n x
)]

–
1
2
[
1 – Gα,β

(
bn + β–1b–1

n x
)]2(1 + o(1)

)
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+
[
1 – Gα,β (bn)

]
e–x

)

/
β–1gα,β (bn)b–3

n

= lim
n→∞

bn[1 – Gα,β (bn + β–1b–1
n x)]

β–1gα,β (bn)

1–Gα,β (bn)
1–Gα,β (bn+β–1b–1

n x) e–x – 1

b–2
n

= e–x lim
n→∞

Aα,β (bn)(
∫ x

0 (b–2
n β–1t + b–2

n
1+b–2

n β–1t ) dt)(1 + o(1)) + Aα,β (bn) – 1

b–2
n

= e–x lim
n→∞

∫ x

0
b2

n

(
b–2

n β–1t +
b–2

n
1 + b–2

n β–1t

)
dt

= 2–1β–1(x2 + 2βx
)
e–x := κ(x), (3.12)

where the last step is based on the dominated convergence theorem. By similar calculation
we have

lim
n→∞ b2

n
[
b2

nhα,β (bn; x) – κ(x)
]

= lim
n→∞

log Gα,β (bn + β–1b–1
n x) + n–1e–x – n–1b–2

n κ(x)
n–1b–4

n

= lim
n→∞

1 – Gα,β (bn + β–1b–1
n x)

n–1

1–Gα,β (bn)
1–Gα,β (bn+β–1b–1

n x) e–x(1 – b–2
n exκ(x)) – 1

b–4
n

= e–x lim
n→∞

(
Aα,β (bn)b4

n

(∫ x

0

(
b–2

n β–1t +
b–2

n
1 + b–2

n β–1t

)
dt – κ(x)exb–2

n

)
dt

+
1
2

Aα,β (bn)b4
n

(∫ x

0

(
b–2

n β–1t +
b–2

n
1 + b–2

n β–1t

)
dt

)2

– Aα,β (bn)b2
nex

× κ(x)
∫ x

0

(
b–2

n β–1t +
b–2

n
1 + b–2

n β–1t

)
dt + b4

n
(
Aα,β (bn) – 1

))

= –e–x
(

1
8
β–2x4 +

1
2
β–1x3 +

1
2
(
1 + β–1)x2 + 2x

)

:= ω(x).

The proof is complete. �

Lemma 3.3 Let an and bn be defined by (1.6). For large n, we have

Gn–1
α,β (anx + bn) = Dn(x)�(x), (3.13)

where Dn(x) = 1 + b–2
n κ(x) + b–4

n (ω(x) + 1
2κ(x)2)(1 + o(1)), κ(x) and ω(x) are given by Theo-

rem 2.2.

Proof Obviously, by Theorem 2.2, we have

Gn
α,β (anx + bn) =

[
1 + b–2

n κ(x) + b–4
n

(
ω(x) +

1
2
κ(x)2

)(
1 + o(1)

)]
�(x). (3.14)
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Noting that

Gn
α,β (anx + bn) → exp

(
–e–x) as n → ∞,

we have

n
(
1 – Gn

α,β (anx + bn)
) → e–x

and

1 – Gn
α,β (anx + bn) = O

(
n–1)

as n → ∞, which implies

Gn–1
α,β (anx + bn) =

Gn
α,β (anx + bn)

1 – (1 – Gα,β (anx + bn))

= Gn
α,β (anx + bn)

(
1 + O

(
n–1)). (3.15)

It is easy to check that

n–1 = o
(
b–4

n
)

(3.16)

holds for large n. �

Combining (3.14), (3.15), and (3.16), we obtain the desired result.

Lemma 3.4 Let gα,β (x) denote the p.d.f. of BND, then

gα,β (x) = βx
(
1 + x–2 – 2x–4 + O

(
x–6))(1 – Gα,β (x)

)
(3.17)

for large x, and with normalizing constants an and bn from (1.6), we have

β–1b–1
n gα,β (β–1b–1

n x + bn)
1 – Gα,β (β–1b–1

n x + bn)
= 1 + A1(x)b–2

n + A2(x)b–4
n + O

(
b–6

n
)

for large n, where

A1(x) = β–1x + 1, A2(x) = –
(
β–1x + 2

)
. (3.18)

Proof According to Lemma 3.1 and

xr(�(x)–1 – 1
) → 0 for all r,

we have

1 – Gα,β (x)
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=
1
β

�(–x)
φ(x)

gα,β (x)
[

1 +
α – 1
β + 1

(
�–1(x) – 1

)
+

(α – 1)(α – 2)
(β + 1)(β + 2)

(
�–1(x) – 1

)2

+ · · · +
(α – 1)(α – 2) . . . (α – n)
(β + 1)(β + 2) . . . (β + n)

(
�–1(x) – 1

)n(1 + o(1)
)]

= β–1x–1(1 – x–2 + 3x–4 + O
(
x–6))gα,β (x).

Then

gα,β (x) = βx
(
1 – x–2 + 3x–4 + O

(
x–6))–1(1 – Gα,β (x)

)

= βx
(
1 + x–2 – 2x–4 + O

(
x–6))(1 – Gα,β (x)

)

:= Cn(x)
(
1 – Gα,β (x)

)
, (3.19)

where

Cn(x) = βx
(
1 + x–2 – 2x–4 + O

(
x–6)).

Therefore, for large n, we have

β–1b–1
n gα,β (β–1b–1

n x + bn)
1 – Gα,β (β–1b–1

n x + bn)

= β–1b–1
n Cn

(
β–1b–1

n x + bn
)

=
(
β–1b–2

n x + 1
)(

1 +
(
β–1b–1

n x + bn
)–2 – 2

(
β–1b–1

n x + bn
)–4 + O

((
β–1b–1

n x + bn
)–6))

=
(
β–1b–2

n x + 1
)(

1 + b–2
n – 2β–1b–4

n x – 2b–4
n + O

(
b–6

n
))

= 1 +
(
β–1x + 1

)
b–2

n –
(
β–1x + 2

)
b–4

n + O
(
b–6

n
)

:= 1 + A1(x)b–2
n + A2(x)b–4

n + O
(
b–6

n
)
. (3.20)

The proof is complete. �

Proof of Theorem 2.1 Let un = ānx + b̄n and τn = n(1 – Gα,β (un)), where ān and b̄n are given
by (1.8).

un = (2β log n)– 1
2 x +

(
2
β

log n
) 1

2
+

1
(2β log n) 1

2
log

	(α + β)
	(α)	(β + 1)

–
1
2

(
β

2 log n

) 1
2

[log 4π – logβ + log log n]

implies

u2
n =

2
β

log n +
2x
β

+
2
β

log
	(α + β)

	(α)	(β + 1)
– log 4π + logβ – log log n

+
β(log log n)2

8 log n
(
1 + o(1)

)
, (3.21)

u–1
n =

(
2
β

log n
)– 1

2
(

1 + O
(

log log n
log n

))
, (3.22)
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and

O
(
u–2

n
)

= O
(

β

2 log n

)
. (3.23)

Since

log�(un) = o
(
(log log n)2/ log n

)
(3.24)

for large n, by using (3.6), (3.21), (3.22), and (3.23), we have

τn = n
(
1 – Gα,β (un)

)

=
(

1
2π

) β
2 	(α + β)
	(α)	(β + 1)

(
n

uβ
n

)
exp

(
–

β

2
u2

n + (α – 1) log�(un)
)(

1 + O
(
u–2

n
))

=
(

2
β

log n
) β

2
(

1
uβ

n

)
exp

(
–x –

β2

16
(log log n)2

log n
(
1 + o(1)

))(
1 + O

(
u–2

n
))

= e–x
(

1 –
β2

16
(log log n)2

log n
(
1 + o(1)

))
.

Obviously, for τ (x) = e–x,

τ (x) – τn(x) = e–x β2

16
(log log n)2

log n
(
1 + o(1)

) ∼ e–x β2

16
(log log n)2

log n

for large n. By Theorem 2.4.2 of Leadbetter et al. [15], the result follows. �

Proof of Theorem 2.2 It is followed by Lemma 3.2 that hα,β (bn; x) → 0 and

∣∣∣∣∣

∞∑

i=3

hi–3
α,β (bn; x)

i!

∣∣∣∣∣
< exp

(
hα,β (bn; x)

) → 1

as n → ∞. By Lemma 3.2 once again, we have

b2
n
[
b2

n
(
Gn

α,β (anx + bn) – �(x)
)

– κ(x)�(x)
]

= b2
n
[
b2

n
(
exp

(
hα,β (bn; x)

)
– 1

)
– κ(x)

]
�(x)

=

[

b2
n
(
b2

nhα,β (bn; x)
)

– κ(x)) + b4
nh2

α,β (bn; x)

(
1
2

+ hα,β (bn; x)
∞∑

i=3

hi–3
α,β (bn; x)

i!

)]

�(x)

−→
(

w(x) +
κ(x)2

2

)
�(x)

as n → ∞. The result follows. �

Proof of Theorem 2.3 Set Eα,β(bn) = 1/Aα,β (bn), by (3.9) and (3.10), we have

lim
n→∞ b2

n
(
Eα,β (bn) – 1

)
= 0 (3.25)
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and

lim
n→∞ b4

n
(
Eα,β (bn) – 1

)
= 2x. (3.26)

By (3.11), we have

1 – Gα,β (bn + β–1b–1
n x)

1 – Gα,β (bn)
ex

= Eα,β (bn)
[

1 –
∫ x

0
ρα,β (t) dt +

1
2

(∫ x

0
ρα,β (t) dt

)2(
1 + o(1)

)]

= Eα,β (bn)
[

1 –
∫ x

0
ρα,β (t) dt +

1
2

(∫ x

0
ρα,β (t) dt

)2

+ o
(
b–4

n
)]

, (3.27)

where

ρα,β (x) = b–2
n β–1x +

b–2
n

1 + b–2
n β–1x

.

By (3.13), (3.19), and (3.20), we have

β–1b–1
n Cn

(
β–1b–1

n x + bn
)
Dn(x)

=
(
1 + A1(x)b–2

n + A2(x)b–4
n + O

(
b–6

n
)) ×

(
1 + b–2

n κ(x) + b–4
n

(
ω(x)

+
1
2
κ(x)2

)(
1 + o(1)

))

= 1 +
(
A1(x) + κ(x)

)
b–2

n +
(

A2(x) + κ(x)A1(x) + ω(x) +
1
2
κ2(x)

)
b–4

n

+ o
(
b–4

n
)
. (3.28)

By Lemmas 3.3, 3.4 and combining (3.25)–(3.28), we have

�n
(
rn,�′; x

)

= rn(x) – �′(x)

=
(
1 – Gα,β (bn)

)–1
β–1b–1

n Gn–1
α,β

(
β–1b–1

n x + bn
)
gα,β

(
β–1b–1

n x + bn
)

– �′(x)

=
(
1 – Gα,β (bn)

)–1
β–1b–1

n Cn
(
β–1b–1

n x + bn
)
�(x)

(
1 – Gα,β

(
β–1b–1

n x + bn
))

× Dn(x) – �′(x)

=
[

Eα,β (bn)
(
A1(x) + κ(x)

)
b–2

n + Eα,β (bn)
(

ω(x) +
1
2
κ2(x) + κ(x)A1(x) + A2(x)

)
b–4

n

– Eα,β (bn)
(

1 +
(
A1(x) + κ(x)

)
b–2

n +
(

ω(x) +
1
2
κ2(x) + κ(x)A1(x) + A2(x)

)
b–4

n

)

×
∫ x

0
ρα,β(t) dt +

1
2

Eα,β (bn)
(

1 +
(
A1(x) + κ(x)

)
b–2

n +
(

ω(x) +
1
2
κ2(x) + κ(x)A1(x)

+ A2(x)
)

b–4
n

)
)
(∫ x

0
ρα,β (t) dt

)2

+ Eα,β(bn) – 1 + o
(
b–4

n
)]

�′(x). (3.29)
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Hence

lim
n→∞ b2

n�n
(
rn,�′; x

)

= lim
n→∞

(
A1(x) + κ(x) – b2

n

∫ x

0
ρα,β(t) dt

)
�′(x)

= 2–1β–1[(x2 + 2βx
)
e–x – x2 + 2x(1 – β) + 2β

]
�′(x)

:= S(x)�′(x). (3.30)

Combining (3.29) and (3.30) together, we have

lim
n→∞ b2

n
(
b2

n�n
(
rn,�′; x

)
– S(x)�′(x)

)

= lim
n→∞ b2

n

[(
Eα,β (bn) – 1

)(
κ(x) + A1(x)

)
+ Eα,β (bn)

(
1
2
κ2(x) + κ(x)A1(x)

× A2(x) + ω(x)
)

b–2
n – b2

n

∫ x

0

(
ρα,β(t) –

(
β–1t + 1

)
b–2

n
)

dt – Eα,β(bn)
(

κ(x)

+ A1(x) +
(

1
2
κ2(x) + κ(x)A1(x) + A2(x) + ω(x)

)
b–2

n

)∫ x

0
ρα,β (t) dt

+
1
2

Eα,β (bn)b2
n

(
1 +

(
κ(x) + A1(x)

)
b–2

n +
(

1
2
κ2(x) + κ(x)A1(x) + A2(x)

+ ω(x)
)

b–4
n

)(∫ x

0
ρα,β(t) dt

)2

+ b2
n
(
Eα,β(bn) – 1

)
+ o

(
b–2

n
)]

�′(x)

= lim
n→∞

[
b4

n
(
Eα,β(bn) – 1

)
+

1
2
κ2(x) + κ(x)A1(x) + A2(x) + ω(x)

– b4
n

∫ x

0

(
ρα,β(t) –

(
β–1t + 1

)
b–2

n
)

dt –
(
κ(x) + A1(x)

)
b2

n

∫ x

0
ρα,β(t) dt

+
1
2

b4
n

(∫ x

0
ρα,β (t) dt

)2]
�′(x)

=
[

e–2x
(

1
8
β–2x4 +

1
2
β–1x3 +

1
2

x2
)

– e–x
(

3
8
β–2x4 +

1
2
β–2(3β – 1)x3

+
1
2
β–1(3β – 2)x2 + x

)
+

1
8
β–2x4 +

1
2
β–2(β – 1)x3 +

1
2
β–1(β – 2)x2

+
(
1 – β–1)x – 2

]
�′(x)

:= R(x)�′(x).

The proof is complete. �
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