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Abstract
The concept of Tribonacci sequence spaces by the domain of a regular Tribonacci
matrix was introduced by Yaying and Hazarika (Math. Slovaca 70(3):697–706, 2000). In
this paper, by using the domain of regular Tribonacci matrix T = (tik) and the concept
of neutrosophic convergence, we introduce some neutrosophic normed space in
Tribonacci convergent spaces and prove some topological and algebraic properties
based results with respect to these spaces.
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1 Introduction
The theory of fuzzy sets was generalized from classical sets by Zadeh in 1965 [2], which
was further generalized to intuitionistic fuzzy sets by Atanassov [3]. This theory deals with
a situation that may be imprecise or vague or uncertain by attributing a degree of mem-
bership and a degree of non-membership to a certain object. Several literature works on
their corresponding sequence spaces can be found in [4–6]. In 2004, Park laid the grounds
of intuitionistic fuzzy metric space which was later redefined by Saadati [7] and Park [8]
as fuzzy norm and intuitionistic fuzzy norm.

The idea of neutrosophic sets was introduced by Smarandache [9] as an extension of
the intuitionistic fuzzy set. For the situation when the aggregate of the components is 1, in
the wake of satisfying the condition by applying the neutrosophic set operators, different
outcomes can be acquired by applying the intuitionistic fuzzy operators, since the oper-
ators disregard the indeterminacy, while the neutrosophic operators are taken into the
cognizance of the indeterminacy at a similar level as truth-membership and falsehood-
nonmembership. Using the idea of neutrosophic sets, the notion of neutrosophic bipolar
vague soft set [25] and its application to decision making problems were defined. Further,
Smarandache [10, 11] investigated neutroalgebra which is a generalization of partial alge-
bra, neutroalgebraic structures, and antialgebraic structures. Neutrosophic set is a more
adaptable and effective tool because it handles, aside from autonomous components, ad-
ditionally partially independent and dependent information [12, 13]. Summability theory
and matrix transformation have been necessary modes in developing the theory of non-
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converging sequences. The motivation of it being able to transform the sequence or series
which does not converge originally but approaches some number on applying the trans-
formation. An infinite matrix is usually used for this approach, since it is the most natural
operator between two sequence spaces. Some work on sequence spaces via matrix trans-
formation can be found in [1].

Recently in [1], the authors defined the matrix corresponding to the Tribonacci sequence
in [14, 15]. In this paper we aim to define novel neutrosophic sequence spaces with the
help of neutrosophic norm and using the Tribonacci matrix as a mode. Also, we study
Tribonacci convergent and Tribonacci Cauchy in neutrosophic normed space by using
the Tribonacci matrix T . Prior to the introduction of new spaces of Tribonacci convergent
sequence with respect to neutrosophic norm (P, Q, R), we mention the following notions
that will be used in the article.

2 Preliminaries
Let R and C denote the sets of real and complex numbers respectively. By ω we denote a
linear space of sequence of real or complex numbers. Any vector subspace of ω is called a
sequence space.

ω :=
{
ϑ = (ϑk), k ∈N|ϑ = (ϑk) ∈ R, or C

}
. (2.1)

Let X1 and X2 be two sequence spaces and let T = (tik) be an infinite matrix of real
entries. We write Ti to denote the sequence in the nth row of matrix T . Recalling that T
defines a matrix mapping from sequence space X1 to X2 if for every sequence ϑ = (ϑk), the
W transform of ϑ is defined as Tϑ = {Ti(ϑ)}∞i=1 ∈ X2, where

Ti(ϑ) =
∑

k=1

tikϑk , i ∈N.

For any sequence space E, the sequence space ET defined by

ET =
{
ϑ = (ϑk) ∈ w : Tϑ ∈ E

}

is known as domain of the matrix T .

Definition 2.1 ([1, 16]) A matrix T = (tik)i,k∈N is said to be regular iff the following con-
ditions hold:

(a) There exists M > 0 such that for every i ∈N,
∑

k |tik| ≤ M,
(b) limi→∞ tik = 0 for every k ∈N,
(c) limi→∞

∑
k tik = 1.

First, we give some background about Tribonacci numbers. The studies on Tribonacci
numbers were first initiated by a 14-year-old student Mark Feinberg in 1963. In 1963,
Mark Feinberg [15, 19] defined the sequence (tn)n∈N of Tribonacci numbers given by third
recurrence relation

tn = tn–1 + tn–2 + tn–3, n ≥ 3 with t1 = t2 = 1 and t3 = 2.
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Thus, the first few numbers of Tribonacci sequence are 1, 1, 2, 4, 7, 13, 24, 44, 81, . . . Some
basic properties of Tribonacci sequence are:

lim
k→∞

tk

tk+1
= 0.54368901 · · ·

and

i∑

k=1

tk =
ti+2 + ti – 1

2

lim
k→∞

tk+1

tk
= 1.83929 (approx).

Throughout this paper we use the lower triangular Tribonacci matrix T = (tik), defined in
[1] as follows:

tik =

⎧
⎨

⎩

2tk
ti+2+ti–1 if (1 ≤ k ≤ i),

0 otherwise.

Equivalently,

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0 · · ·
1
2

1
2 0 0 0 0 · · ·

1
4

1
4

2
4 0 0 0 · · ·

1
8

1
8

2
8

4
8 0 0 · · ·

1
15

1
15

2
15

4
15

7
15 0 · · ·

1
28

1
28

2
28

4
28

7
28

13
28 · · ·

...
...

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(2.2)

It can be easily verified that T is a regular matrix (from Definition 2.1). By using the Tri-
bonacci matrix (2.1), for any sequence ϑ = (ϑk) ∈ ω, the T– transformation of (ϑk) is de-
fined as

Ti(ϑ) =
i∑

k=1

2jk

ji+2 + ji – 1
ϑk , i ∈N. (2.3)

Definition 2.2 ([17, 20, 23]) Given a binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is said to
be a continuous t-norm if

(a) ∗ is associative and commutative,
(b) ∗ is continuous,
(c) ϑ ∗ 1 = ϑ ∀ ϑ ∈ [0, 1],
(d) ϑ ∗ y ≤ w ∗ z whenever ϑ ≤ w and y ≤ z for each ϑ , y, w, z ∈ [0, 1].

Example 2.1 For ϑ , y ∈ [0, 1], define ϑ ∗ y = ϑy or ϑ ∗ y = min{ϑ , y}, then ∗ is a continuous
t-norm.

Definition 2.3 ([17, 20, 24]) Given a binary operation, 	 : [0, 1] × [0, 1] −→ [0, 1] is said to
be a continuous t-conorm if
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(a) 	 is associative and commutative,
(b) 	 is continuous,
(c) ϑ 	 0 = ϑ ∀ ϑ ∈ [0, 1],
(d) ϑ 	 y ≤ w 	 z whenever ϑ ≤ w and y ≤ z for each ϑ , y, w, z ∈ [0, 1].

Example 2.2 Let ϑ , y ∈ [0, 1]. Define ϑ 	 y = min{ϑ + y, 1} or ϑ 	 y = max{ϑ , y}, then 	 is
continuous t-conorm.

From the above definitions, we note that if we choose 0 < ε1, ε2 < 1 for ε1 > ε2, then there
exist 0 < ε3, ε4 < 0, 1 such that ε1 ∗ ε3 ≥ ε2, ε1 ≥ ε4 	 ε2.

Further, if we choose ε5 ∈ (0, 1), then there exist ε6, ε7 ∈ (0, 1) such that ε6 ∗ ε6 ≥ ε5 and
ε7 	 ε7 ≤ ε5.

Definition 2.4 ([18, 21, 22]) Assume � to be a continuous t-norm, 	 to be a contin-
uous t-conorm, and Y to be a linear space over the neutrosophic field R or C, and
Z = {< ϑ , P(ϑ), Q(ϑ), R(ϑ) >: ϑ ∈ Y } to be a normed space such thatZ : Y × (0,∞) → [0, 1].
The four-tuple (Y ,Z ,�,	) is called a neutrosophic normed space (NNS) if the subsequent
terms hold; for all ϑ , y, z ∈ Y and j , s > 0,

(i) 0 ≤ P(ϑ , j ) ≤ 1, 0 ≤ Q(y, j ) ≤ 1, 0 ≤ R(z, j ) ≤ 1, j ∈ R+,
(ii) P(ϑ , j ) + Q(ϑ , j ) + R(ϑ , j ) ≤ 3 for j ∈ R+,

(iii) P(ϑ , j ) = 1 for j > 0 iff ϑ = 0,
(iv) P(λϑ , j ) = P(ϑ , j

|λ| ),
(v) P(ϑ , j ) � P(y, s) ≤ P(ϑ + y, j + s),

(vi) P(ϑ ,�) is a continuous nondecreasing function,
(vii) limj→∞ P(ϑ , j ) = 1,

(viii) Q(y, j ) = 0 for j > 0 iff ϑ = 0,
(ix) Q(λy,ρ) = Q(y, j

|λ| ),
(x) Q(y, j ) 	 Q(z, j ) ≥ Q(y + z, j + s),

(xi) Q(y,	) is a continuous nonincreasing function,
(xii) limj→∞ Q(ϑ , j ) = 0,

(xiii) R(ϑ , j ) = 0 for j > 0 iff ϑ = 0,
(xiv) R(λϑ , j ) = R(ϑ , j

|λ| ),
(xv) R(z, j ) 	 R(ϑ , s) ≥ R(z + ϑ , j + s),

(xvi) R(z,	) is a continuous nonincreasing function,
(xvii) limj→∞ R(z, j ) = 0,

(xviii) If j ≤ 0, then P(ϑ , j ) = 0, Q(y, j ) = 1, R(z, j ) = 1.
In such a case, Z = (P, Q, R) is called a neutrosophic norm (NN).

Example 2.3 ([18]) Let (Y ,‖ · ‖) be an NNS. Given the operation ∗ and 	 as t-norm ϑ ∗ y =
ϑ .y and t-conorm ϑ 	 y = ϑ + y – ϑy for j > ‖y‖ and j > 0

P(ϑ , j ) =
j

j + ‖ϑ‖ , Q(ϑ , j ) =
‖ϑ‖

j + ‖ϑ‖ and R(ϑ , j ) =
‖ϑ‖
j

(2.4)

for all ϑ , y ∈ Y . If we take j ≤ ‖ϑ‖, then P(ϑ , j ) = 0, Q(ϑ , j ) = 1, and R(ϑ , j ) = 1. Then
(Y ,Z ,∗,	) is an NNS where Z : Y ×R

+ → [0, 1].
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Example 2.4 Let (Y = R,‖ · ‖) be an NNS where ‖c‖ = |c| ∀c ∈ R. Given the operation ∗
and 	 as t-norm ϑ ∗ y = min{ϑ , y} and t-conorm ϑ 	 y = max{ϑ , y}. ∀ϑ , y ∈ [0, 1] and define

P(ϑ , j ) =
j

j + m‖ϑ‖ , Q(ϑ , j ) =
m‖ϑ‖

j + m‖ϑ‖ , and R(ϑ , j ) =
m‖ϑ‖

j
, (2.5)

where m > 0. Then Z = {(ϑ , j ), P(ϑ , t), Q(ϑ , t), R(ϑ , j ) : (ϑ , j ) ∈ Y ×R
+} is an NNS on Y .

Definition 2.5 Suppose that X is an NNS, the sequence b = (bi) in X is called convergent
to ξ ∈ X ⇐⇒ ∃ N ∈N, with respect to NN-Z = (P, Q, R) if for every ε > 0, j > 0

P
(
(bi) – ξ , j

)
> 1 – ε, Q

(
(bi) – ξ , j

)
< ε and R

(
(bi) – ξ , j

)
< ε (2.6)

for all i ≥ N , i.e.,

lim
i→∞ P

(
(bi) – ξ , j

)
= 1, lim

i→∞ Q
(
(bi) – ξ , j

)
= 0 and lim

i→∞ R
(
(bi) – ξ , j

)
= 0.

In such a case, we denote Z – lim bi = ξ .

Definition 2.6 ([18]) Let (Y ,Z ,∗,	) be a neutrosophic normed space. A sequence b = (bi)
is called a Cauchy sequence with respect to Z if for each ε > 0 and j > 0, ∃ η ∈N such that
P(bi – bk , j ) > 1 – ε, Q(bi – bk , j ) < ε, and R(bi – bk , j ) < ε for all i, k ≥ η.

Definition 2.7 Consider (Y ,Z ,∗,	) to be an NNS. A subset
◦

H of X is said to be neutro-
sophic bounded-(NB) if ∃, j > 0 and 0 < ε < 1 such that P(ϑ , j ) > 1 – ε and Q(ϑ , j ) < ε,
R(ϑ , j ) < ε for each ϑ ∈ ◦

H .

Definition 2.8 Let (Y ,Z ,∗,	) be an NNS. Then (Y ,Z ,∗,	) is said to be complete if every
Cauchy sequence is convergent with respect to the norms Z .

By using this T- transformation and notion of neutrosophic convergence, we define
some sequence spaces, namely L(P,Q,R)(T), L0(P,Q,R)(T), and L∞(P,Q,R)(T).

3 Main results
In this section, we introduce the following sequence spaces:

L(P,Q,R)(T)

=
{
ϑk ∈ ω :

(
Ti(ϑ)

)
is convergent

}

=
{
ϑk ∈ ω : for some β ∈ Y ,∀ε > 0,∀j ,∃n ∈N : ∀i ≥ n,

P
(
Ti(ϑ) – β , j

)
> 1 – ε, Q

(
Ti(ϑ) – β , j

)
< ε and R

(
Ti(ϑ) – β , j

)
< ε

}

=
{
ϑ = (ϑk) ∈ ω :

{
i ∈N : for some β ∈ Y ,∀ε > 0, P

(
Ti(ϑ) – β , j

) ≤ 1 – ε or

Q
(
Ti(ϑ) – β , j

) ≥ ε or R
(
Ti(ϑ) – β , j

) ≥ ε
}

is finite
}

(3.1)
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L0(P,Q,R)(T)

=
{
ϑk ∈ ω :

(
Ti(ϑ)

)
is convergent

}

=
{
ϑk ∈ ω : ∀ε > 0,∀j ,∃n ∈N : ∀i ≥ n, P

(
Ti(ϑ), j

)
> 1 – ε, Q

(
Ti(ϑ), j

)
< ε and

R
(
Ti(ϑ), j

)
< ε

}

=
{
ϑ = (ϑk) ∈ ω :

{
i ∈N : ∀ε > 0, P

(
Ti(ϑ), j

) ≤ 1 – εQ
(
Ti(ϑ), j

) ≥ ε,

or R
(
Ti(ϑ), j

) ≥ ε
}

is finite
}

(3.2)

L∞(P,Q,R)(T)

=
{
ϑk ∈ ω :

(
Ti(ϑ)

)
is convergent

}

=
{
ϑk ∈ ω : ∀ε ∈ (0, 1),∀j ,∃n ∈N : ∀i ≥ n, P

(
Ti(ϑ), j

)
> 1 – ε,

Q
(
Ti(ϑ), j

)
< ε and R

(
Ti(ϑ), j

)
< ε

}

=
{
ϑ = (ϑk) ∈ ω :

{
i ∈N : ∀ε > 0, P

(
Ti(ϑ), j

) ≤ 1 – ε, Q
(
Ti(ϑ), j

) ≥ ε,

or R
(
Ti(ϑ), j

) ≥ ε
}

is finite
}

.

(3.3)

We define the open ball and closed ball with the center at ϑ and the radius r > 0 with
respect to the parameter of neutrosophic ε ∈ (0, 1) as follows:

Bϑ (r, ε)(T)

=
{

y = (yk) ∈ ω :
{

i ∈N : P
(
Ti(ϑ) – Ti(y), r

) ≤ 1 – ε, Q
(
Ti(ϑ) – Ti(y), r

) ≥ ε,

or R
(
Ti(ϑ) – Ti(y), r

) ≥ ε
}

is finite
}

(3.4)

and

Bϑ [r, ε](T)

=
{

y = (yk) ∈ ω :
{

j ∈N : P(Tjϑ) – Tj(y), r) < 1 – ε or Q(Tjϑ) – Tj(y), r) > ε,

or R(Tjϑ) – Tj(y), r) > ε,
}

is finite
}

.

(3.5)

If (ϑn) ∈L(P,Q,R)(T), then (ϑn) converges to some β ∈ Y , denoted by ϑn
(P,Q,R)(T)−→ β .

Lemma 3.1 Consider the space L(P,Q,R)(T). Let ϑ = (ϑk) ∈ L(P,Q,R)(T). Then the following
statements are equivalent:

(a) Z(P,Q,R)(T)–lim(ϑ) = β ;
(b) For every 0 < ε < 1 and j > 0, there exists n ∈N such that for every i ≥ n

P
(
Ti(ϑ) – β , j

) ≤ 1 – ε and Q
(
Ti(ϑ) – β , j

) ≥ ε, R
(
Ti(ϑ) – β , j

) ≥ ε.

(c) For every 0 < ε < 1 and j > 0, the set

{
i ∈ N : P

(
Ti(ϑ) – β , j

)
> 1 – ε or Q

(
Ti(ϑ) – β , j

)
< ε, R

(
Ti(ϑ) – β , j

)
< ε

}

is finite.
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(d) For every j > 0, limi→∞ P(Ti(ϑ) – β , j ) = 1, and limi→∞ Q(Ti(ϑ) – β , j ) = 0,
limi→∞ R(Ti(ϑ) – β , j ) = 0.

Theorem 3.1 The inclusion relation L0(P,Q,R)(T) ⊂L(P,Q,R)(T) ⊂L∞(P,Q,R)(T) holds.

Proof It can be easily seen that L0(P,Q,R)(T) ⊂ L(P,Q,R)(T). We only show that L(P,Q,R)(T) ⊂
L∞(P,Q,R)(T). Let ϑ = (ϑk) ∈ L(P,Q,R)(T). Then there exists β ∈ Y such that Z(P,Q,R)(T)–
lim(ϑk) = β . Thus, for every 0 < ε < 1 and j > 0, the set A is finite

A =
{

i ∈N : P
(

Ti(ϑ) – β ,
j

2

)
> 1 – ε or Q

(
Ti(ϑ) – β ,

j

2

)
< ε, R

(
Ti(ϑ) – β ,

j

2

)
< ε

}
.

Let P(β , j

2 ) = p, Q(β , j

2 ) = q, and R(β , j

2 ) = r for all j > 0. Since p, q, r ∈ (0, 1) and 0 < ε < 1,
there exist s1, s2, s3 ∈ (0, 1) such that (1 – ε) ∗ p > 1 – s1, ε 	 q < s2, and ε 	 r < s3, and so for
j ∈ Y , we have

P
(
Ti(ϑ), j

)
= P

(
Ti(ϑ) – β + β , j

)

≥ P
(

Ti(ϑ) – β ,
j

2

)
∗ P

(
β ,

j

2

)

> (1 – ε) ∗ p

> 1 – s1,

Q
(
Ti(ϑ), j

)
= Q

(
Ti(ϑ) – β + β , j

)

≤Q
(

Ti(ϑ) – β ,
j

2

)
∗ Q

(
β ,

j

2

)

< ε 	 q

< s2

and

R
(
Ti(ϑ), j

)
= R

(
Ti(ϑ) – β + β , j

)

≤ R
(

Ti(ϑ) – β ,
j

2

)
∗ R

(
β ,

j

2

)

< ε 	 r

< s3.

Taking s = max{s1, s2, s3}, we have the set

{
i ∈ N,∃s ∈ (0, 1) : P

(
Ti(ϑ), t

)
> 1 – s or Q

(
Ti(ϑ) – β , j

)
< s, R

(
Ti(ϑ) – β , t

)
< s

}

�⇒ ϑ = (ϑk) ∈L∞(P,Q,R)(T) implies L(P,Q,R)(T) ⊂L∞(P,Q,R)(T). �

The converse of the inclusion relation does not hold. We present the following examples
in support of our claim.
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Example 3.1 Let (R,‖·‖) be an NNS space such that ‖ϑ‖ = supk | ϑk |. Let ϑ ∗y = min{ϑ , y}
and ϑ 	 y = max{ϑ , y}, ∀ϑ , y ∈ (0, 1). Now define norms (P, Q, R) on Y 2 × (0,∞) as follows:

P(ϑ , j ) =
j

j + ‖ϑ‖ , Q(ϑ , j ) =
‖ϑ‖

j + ‖ϑ‖ and R(ϑ , j ) =
‖ϑ‖
j

.

Then (R,Z ,∗,	) is an NNS. Consider the sequence (ϑk) = {1}. It can be easily seen that

(ϑk) ∈L(P,Q,R)(T) and ϑk
Z(P,Q,R)(T)

−→ 1, but ϑk /∈L0(P,Q,R)(T).

Example 3.2 Let (R,‖ · ‖) be the NNS and (P, Q, R) be the neutrosophic norms as defined
in the above example. Consider the sequence (ϑk) = (–1)k . Then (ϑk) ∈ L∞(P,Q,R)(T), but
(ϑk) /∈L(P,Q,R)(T).

Theorem 3.2 The spaces L(P,Q,R)(T) and L0(P,Q,R)(T) are linear spaces.

Proof We shall prove the result for L(P,Q,R)(T). The proof of linearity of the space
L0(P,Q,R)(T) follows similarly. Let ϑ = (ϑk), y = (yk) ∈L(P,Q,R)(T). Then there exist β1,β2 ∈ Y
such that (yk) and (zk) Z—converge to β1 and β2 respectively. We shall show that for any
scalars ζ1 and ζ2 the sequence ζ1ϑk + ζ2yk Z—converges to ζ1β1 + ζ2β2. For j > 0 and
0 < ε < 1, consider the following finite sets C1 and C1:

C1 =
{

i ∈N : P
(

Ti(ϑ) – β1,
j

2|ζ1|
)

≤ 1 – ε or Q
(

Ti(ϑ) – β1,
j

2|ζ1|
)

≥ ε,

R
(

Ti(ϑ) – β1,
j

2|ζ1|
)

≥ ε

}
,

C c
1 =

{
i ∈ N : P

(
Ti(ϑ) – β1,

j

2|ζ1|
)

> 1 – ε or Q
(

Ti(ϑ) – β1,
j

2|ζ1|
)

< ε,

R
(

Ti(ϑ) – β1,
j

2|ζ1|
)

< ε

}
,

C2 =
{

i ∈N : P
(

Ti(y) – β2,
j

2|ζ2|
)

≤ 1 – ε or Q
(

Ti(y) – β2,
j

2|ζ2|
)

≥ ε,

R
(

Ti(y) – β2,
j

2|ζ2|
)

≥ ε

}
,

C c
2 =

{
i ∈ N : P

(
Ti(y) – β2,

t
2|ζ2|

)
> 1 – ε or Q

(
Ti(y) – β2,

j

2|ζ2|
)

< ε,

R
(

Ti(y) – β2,
j

2|ζ2|
)

< ε

}
.

Define the set C3 = C1 ∪C2 so that C3 is finite. It follows that C c
3 �= φ. We shall show that

for each (ϑ), (y) ∈L(P,Q,R)(T),

C c
3 ⊂ {

i ∈N : P
((

ζ1Ti(ϑ) – ζ2Ti(y)
)

– (ζ1β1 – ζ2β2), j
)

> 1 – ε or

Q
((

ζ1Ti(ϑ) – ζ2Ti(y)
)

– (ζ1β1 – ζ2β2), j
)

< ε,

R
((

ζ1Ti(ϑ) – ζ2Ti(y)
)

– (ζ1β1 – ζ2β2), j
)

< ε
}

.
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Let q ∈ C c
3 . In this case,

P
(

Tq(ϑ) – β1,
j

2|ζ1|
)

> 1 – ε or Q
(

Tq(ϑ) – β1,
j

2|ζ1|
)

< ε,

R
(

Tq(ϑ) – β1,
j

2|ζ1|
)

< ε

and

P
(

Tq(y) – β2,
j

2|ζ2|
)

> 1 – ε or Q
(

Tq(y) – β2,
j

2|ζ2|
)

< ε,

R
(

Tq(y) – β2,
j

2|ζ2|
)

< ε,

P
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

≥ P
(

ζ1Tq(ϑ) – ζ1β1,
j

2

)
∗ P

(
ζ2Tq(y) – ζ2β2,

j

2

)

= P
(

Tq(ϑ) – β1,
j

2|ζ1|
)

∗ P
(

Tq(y) – β2,
j

2|ζ2|
)

> (1 – ε) ∗ (1 – ε)

= 1 – ε.

�⇒ P
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

> 1 – ε.

In a similar way,

Q
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

≤ Q
(

ζ1Tq(ϑ) – ζ1β1,
j

2

)
	 Q

(
ζ2Tq(y) – ζ2β2,

j

2

)

= Q
(

Tq(ϑ) – β1,
j

2|ζ1|
)

	 Q
(

Tq(y) – β2,
j

2|ζ2|
)

< ε 	 ε

= ε,

�⇒ Q
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

< ε,

and

R
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

≤ R
(

ζ1Tq(ϑ) – ζ1β1,
j

2

)
	 R

(
ζ2Tq(y) – ζ2β2,

j

2

)

= R
(

Tq(ϑ) – β1,
j

2|ζ1|
)

	 R
(

Tq(y) – β2,
j

2|ζ2|
)

< ε 	 ε

= ε,
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�⇒ R
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

< ε.

Therefore, we have

C c
3 ⊂ {

q ∈N : P
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

> 1 – ε,

Q
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

< ε or

R
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

< ε
}

and

{
q ∈N : P

((
ζ1Tq(ϑ) – ζ2Tq(y)

)
– (ζ1β1 – ζ2β2), j

)
> 1 – ε,

Q
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

< ε or

R
((

ζ1Tq(ϑ) – ζ2Tq(y)
)

– (ζ1β1 – ζ2β2), j
)

< ε
}

,

which implies that the sequence (ζ1ϑi + ζ2yi) Z—converges to ζ1β1 + ζ2β2. Therefore,
(ζ1ϑi + ζ2yi) ∈L(P,Q,R)(T). Hence L(P,Q,R)(T) is a linear space. �

Theorem 3.3 Every open ball with the center at ϑ and the radius r > 0 with respect to the
parameter of fuzziness 0 < ε < 1, i.e., Bϑ (r, ε)(T) is an open set in L(P,Q,R)(T).

Proof Consider the open ball with center at ϑ and radius r > 0 with the parameter of neu-
trosophic 0 < ε < 1,

Bϑ (r, ε)(T) =
{
ϑ = (ϑi) ∈ ω :

{
i ∈N : P

(
Ti(ϑ) – Ti(y), r

) ≤ 1 – ε or

Q
(
Ti(ϑ) – Ti(y), r

) ≥ ε,

R
(
Ti(ϑ) – Ti(y), r

) ≥ ε
}

is finite
}

.

Then

Bc
ϑ (r, ε)(T) =

{
ϑ = (ϑk) ∈ ω :

{
i ∈N : P

(
Ti(ϑ) – Ti(y), r

)
> 1 – ε or

Q
(
Ti(ϑ) – Ti(y), r

)
< ε,

R
(
Ti(ϑ) – Ti(y), r

)
< ε

}}
.

Let y = (yi) ∈ Bc
ϑ (r, ε)(T). Then the set

{
i ∈ N : P

(
Ti(ϑ) – Ti(y), r

)
> 1 – ε or Q

(
Ti(ϑ) – Tj(y), r

)
< ε, R

(
Ti(y) – Ti(z), r

)
< ε

}
,

P
(
Ti(ϑ) – Ti(y), r

)
> 1 – ε, Q

(
Ti(ϑ) – Ti(z), r

)
< ε and R

(
Ti(ϑ) – Ti(y), r

)
< ε,

there exists r0 ∈ (0, r) such that

P
(
Ti(ϑ) – Ti(y), r0

)
> 1 – ε, Q

(
Ti(ϑ) – Ti(y), r0

)
< ε and

R
(
Ti(ϑ) – Ti(y), r0

)
< ε.
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Put ε0 = P(Ti(ϑ) – Ti(y), r0) �⇒ ε0 > 1 – ε. Then ∃s ∈ (0, 1) such that ε0 > 1 – s > 1 – ε.
For ε0 > 1 – s, we can have ε1, ε2, ε3 ∈ (0, 1) such that ε0 ∗ ε1 > 1 – s, (1 – ε0) 	 (1 – ε2) < s,
and

(1 – ε0) 	 (1 – ε3) < s.

Let ε4 = max{ε1, ε2, ε3}
Now consider the open ball Bc

ϑ (r – r0, 1 – ε4)(T).
We shall show that Bc

ϑ (r – r0, 1 – ε4)(T) ⊂ Bc
ϑ (r, ε)(T).

Let z = (zi) ∈ Bc
z(r – r0, 1 – ε4)(T), then

{
i ∈ N : P

(
Ti(ϑ) – Ti(z), r – r0

)
> ε4 or

Q
(
Ti(ϑ) – Ti(z), r – r0

)
< 1 – ε4, R

(
Ti(ϑ) – Ti(z), r – r0

)
< 1 – ε4

}
.

Therefore,

P
(
Ti(ϑ) – Ti(z), r

)

≥ P
(
Ti(ϑ) – Ti(z), r0

) ∗ P
(
Ti(ϑ) – Ti(z), r – r0

)

≥ ε0 ∗ ε4 ≥ ε0 ∗ ε1

> (1 – s) > (1 – ε)

�⇒ {
i ∈N : P

(
Ti(ϑ) – Ti(z), r

)
> 1 – ε

}

Q
(
Ti(ϑ) – Ti(z), r

)

≤ Q
(
Ti(ϑ) – Ti(z), r0

) 	 Q
(
Ti(ϑ) – Ti(z), r – r0

)

≤ (1 – ε0) 	 (1 – ε4) ≤ (1 – ε0) 	 (1 – ε2)

≤ (s) < ε

�⇒ {
i ∈N : Q

(
Ti(ϑ) – Ti(z), r

)
< ε

}

and

R
(
Ti(ϑ) – Ti(z), r

)

≤ R
(
Ti(ϑ) – Ti(z), r0

) 	 R
(
Ti(ϑ) – Ti(z), r – r0

)

≤ (1 – ε0) 	 (1 – ε4) ≤ (1 – ε0) 	 (1 – ε3)

≤ (s) < ε

�⇒ {
i ∈N : R

(
Ti(ϑ) – Ti(z), r

)
< ε

}
.

Therefore the set

{
i ∈ N : P

(
Ti(ϑ) – Ti(z), r – r0

)
> 1 – ε or Q

(
Ti(ϑ) – Ti(z), r – r0

)
< ε,

R
(
Ti(ϑ) – Ti(z), r – r0

)
< ε

}
,
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�⇒ ϑ = (ϑi) ∈ Bc
ϑ (r, ε)(T)

�⇒ Bc
ϑ (r – r0, 1 – ε4)(T) ⊂ Bc

y(r, ε)(T). �

Remark 3.1 The spaces L(P,Q,R)(T) and L0(P,Q,R)(T) are NNS with respect to neutrosophic
norms (P, Q, R).

Now define

τ(P,Q,R)(T) =
{

U ⊂L(P,Q,R)(T) : for each ϑ = (ϑk) ∈ U there exist r > 0 and

ε ∈ (0, 1) such that Bϑ (r, ε) ⊂ U
}

.

Then τ(P,Q,R)(T) defines a topology on the sequence space L(P,Q,R)(T). The collection
defined by B = {Bϑ (r, ε) : ϑ ∈ L(P,Q,R)(T), r > 0 and ε ∈ (0, 1)} is a base for the topology
τ(P,Q,R)(T) on the space L(P,Q,R)(T).

Theorem 3.4 The topology τ(P,Q,R)(T) on the space L(P,Q,R)(T) is first countable.

Proof For each ϑ = (ϑi) ∈ L(P,Q,R)(T), consider the set B = {Bϑ ( 1
n , 1

n ) : n = 1, 2, 3, 4, . . .},
which is a countable local base at ϑ . Therefore the topology τ(P,Q,R)(T) on the space
L(P,Q,R)(T) is first countable. �

Theorem 3.5 The spaces L(P,Q,R)(T) and L0(P,Q,R)(T) are Hausdorff spaces.

Proof We shall prove the result only for L(P,Q,R)(T), and the other one follows similarly.
Let ϑ = (ϑi) and y = (yi) ∈ L(P,Q,R)(T) such that ϑ �= y. Then, for each i ∈ N and r > 0, this
implies

0 < P
(
Ti(ϑ) – Ti(y), r

)
< 1, 0 < Q

(
Ti(ϑ) – Ti(y), r

)
< 1 and

0 < Q
(
Ti(ϑ) – Ti(y), r

)
< 1.

(3.6)

Put

ε1 = P
(
Ti(ϑ) – Ti(y), r

)
, ε2 = Q

(
Ti(ϑ) – Ti(y), r

)
,

ε3 = R
(
Ti(ϑ) – Ti(y), r

)
and ε = max{ε1, 1 – ε2, 1 – ε3}.

(3.7)

Then for each ε0 > ε there exist ε4, ε5, ε6 ∈ (0, 1) such that

ε4 ∗ ε4 ≥ ε0, (1 – ε5) 	 (1 – ε5) ≤ (1 – ε0) and (1 – ε6) 	 (1 – ε6) ≤ (1 – ε0).

Again putting ε7 = max{ε4, ε5, ε6}, consider the open balls Bϑ (1 – ε7, r
2 )(T) and

By(1 – ε7, r
2 )(T) centered at ϑ and y respectively. We show that Bϑ (1 – ε7, r

2 )(T) ∩
By(1 – ε7, r

2 )(T) = φ.
If possible, let ϑ = (ϑi) ∈ Bϑ (1 – ε7, r

2 )(T) ∩ By(1 – ε7, r
2 )(T).
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Then, for the set {k ∈N}, we have

ε1 = P
(
Tk(ϑ) – Tk(y), r

)

≥ P
(

Tk(ϑ) – Tk(z),
r
2

)
∗ P

(
Tk(z) – Tk(y),

r
2

)

> ε7 ∗ ε7 ≥ ε4 ∗ ε4 ≥ ε0 > ε1,

(3.8)

ε2 = Q
(
Tk(ϑ) – Tk(y), r

)

≤ Q
(

Tk(ϑ) – Tk(z),
r
2

)
	 Q

(
Tk(z) – Tk(y),

r
2

)

< (1 – ε7) 	 (1 – ε7) ≤ (1 – ε5) 	 (1 – ε5)

< (1 – ε0) < ε2

(3.9)

and

ε3 = R
(
Tk(ϑ) – Tk(y), r

)

≤ R
(

Tk(ϑ) – Tj(z),
r
2

)
	 R

(
Tk(z) – Tk(y),

r
2

)

< (1 – ε7) 	 (1 – ε7) ≤ (1 – ε6) 	 (1 – ε6)

< (1 – ε0) < ε3.

(3.10)

From equations (3.8), (3.9), and (3.10) we have a contradiction.
Therefore, Bϑ (1 – ε7, r

2 )(T)∩By(1 – ε7, r
2 )(T) = φ. Hence the spaceL(P,Q,R)(T) is a Haus-

dorff space. �

4 On the Tribonacci sequence Tn

Definition 4.1 A sequence ϑ = (ϑn) ∈ ω is said to be Tribonacci convergent to β ∈ Y if
for every ε > 0 the set B1 is finite, where

B1 =
{

i ∈ N :
∣∣Ti(ϑ) – β

∣∣ ≥ ε
}

.

Definition 4.2 A sequence ϑ = (ϑk) ∈ ω is said to be neutrosophic Tribonacci convergent
to β ∈ Y with respect to neutrosophic norms- (P, Q, R), denoted by ϑi → β , if for every
ε ∈ (0, 1) and j > 0, the set T1 is finite, where

T1 =
{

i ∈N : P
(
Ti(ϑ) – β , j

) ≤ 1 – ε or Q
(
Ti(ϑ) – β , j

) ≥ ε, R
(
Ti(ϑ) – β , j

) ≥ ε
}

,

and we write Z(P,Q,R)(T)–lim(ϑi) = β .

Definition 4.3 A sequence ϑ = (ϑi) ∈ ω is said to be Tribonacci Cauchy if for every ε > 0
there exists k = k(ε) ∈ N such that the set B2 is finite, where

B2 =
{

i ∈ N :
∣∣Ti(ϑ) – Tk(ϑ)

∣∣ ≥ ε
}

.
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Definition 4.4 A sequence ϑ = (ϑi) ∈ ω is said to neutrosophic Tribonacci Cauchy with
respect to neutrosophic norms-(P, Q, R) if for every ε ∈ (0, 1) and j > 0 there exists k ∈ N

such that the set T2 is finite, where

T2 =
{

i ∈N : P
(
Ti(ϑ) – Tk(ϑ), j

) ≤ 1 – ε or Q
(
Ti(ϑ) – Tk(ϑ), j

) ≥ ε,

R
(
Ti(ϑ) – Tk(ϑ), j

) ≥ ε
}

.

Definition 4.5 A sequence ϑ = (ϑi) ∈ ω is said to be Tribonacci bounded if there exists
M > 0 such that the set

B3 =
{

i ∈ N :
∣∣Ti(ϑ)

∣∣ > M
}

.

Definition 4.6 A subset D of ω is said to be neutrosophic Tribonacci bounded with re-
spect to neutrosophic norms (P, Q, R) if ∀ϑ ∈ D there exist 0 < ε < 1 and j > 0 such that the
set

{
i ∈ N : P

(
Ti(ϑ), j

) ≤ 1 – ε or Q
(
Ti(ϑ), j

) ≥ ε, R
(
Ti(ϑ), j

) ≥ ε
}

. (4.1)

Theorem 4.1 If a sequence ϑ = (ϑi) ∈ ω is neutrosophic Tribonacci convergent, then the
Z(P,Q,R)(T)-limit is unique.

Proof Suppose ϑ = (ϑi) ∈ ω such that (ϑi) is neutrosophic Tribonacci convergent.
Let Z(P,Q,R)(T) lim(ϑi) = β1 and Z(P,Q,R)(T) – lim(ϑi) = β2. We show that β1 = β2. Now, for

given ε ∈ (0, 1), there exists ε1 ∈ (0, 1) such that (1 – ε1) ∗ (1 – ε1) > 1 – ε and ε1 	 ε1 < ε.
Therefore the sets C1 and C2 are finite, where

C1 =
{

i ∈N : P
(

Ti(ϑ) – β1,
j

2

)
≤ 1 – ε1 or Q

(
Ti(ϑ) – β1,

j

2

)
≥ ε1,

R
(

Ti(ϑ) – β1,
j

2

)
≥ ε1

}
,

C1 =
{

i ∈N : P
(

Ti(ϑ) – β2,
j

2

)
≤ 1 – ε1 or Q

(
Ti(ϑ) – β2,

j

2

)
≥ ε1,

R
(

Ti(ϑ) – β2,
j

2

)
≥ ε1

}
,

�⇒

C c
1 =

{
i ∈ N : P

(
Ti(ϑ) – β1,

j

2

)
> 1 – ε1 or Q

(
Ti(ϑ) – β1,

j

2

)
< ε1,

R
(

Ti(ϑ) – β1,
j

2

)
< ε1

}
,

C c
2 =

{
i ∈ N : P

(
Ti(ϑ) – β2,

j

2

)
> 1 – ε1 or Q

(
Ti(ϑ) – β2,

j

2

)
< ε1,

R
(

Ti(ϑ) – β2,
j

2

)
< ε1

}
.
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Then C c
1 ∩ C c

2 �= φ. Taking i ∈ C c
1 ∩ C c

2 , we have

P(β1 – β2, j ) ≥ P
(

Ti(ϑ) – β1,
j

2

)
∗ P

(
Ti(ϑ) – β2,

j

2

)

> (1 – ε1) ∗ (1 – ε1)

> (1 – ε),

Q(β1 – β2, j ) ≤ Q
(

Ti(ϑ) – β1,
j

2

)
	 Q

(
Ti(ϑ) – β2,

j

2

)

< ε1 	 ε1

< ε

and

R(β1 – β2, j ) ≤ R
(

Ti(ϑ) – β1,
j

2

)
	 R

(
Ti(ϑ) – β2,

j

2

)

< ε1 	 ε1

< ε.

Since ε ∈ (0, 1) is arbitrary, therefore P(β1 –β2, j ) = 1, Q(β1 –β2, j ) = 0, and R(β1 –β2, j ) =
0 for all j > 0. Hence β1 – β2 = 0. Thus Z(P,Q,R)(T)- limit is unique. �

Theorem 4.2 A sequence ϑ = (ϑi) ∈ ω is neutrosophic Tribonacci convergent with respect
to neutrosophic norms (P, Q, R) iff it is neutrosophic Tribonacci Cauchy with respect to the
same norms.

Proof Suppose that ϑ = (ϑi) ∈ ω is neutrosophic Tribonacci convergent with respect to
neutrosophic norms (P, Q, R) such that Z(P,Q,R)(T) – lim(ϑi) = β . For given ε ∈ (0, 1), there
exists ε1 ∈ (0, 1) such that (1 – ε1) ∗ (1 – ε1) > 1 – ε and ε1 	 ε1 < ε. Since Z(P,Q,R)(T) lim(ϑi) =
β , therefore for all j > 0

C =
{

i ∈N : P
(
Ti(ϑ) – β , j

) ≤ 1 – ε1 or Q
(
Ti(ϑ) – β , j

) ≥ ε1, R
(
Ti(ϑ) – β , j

) ≥ ε1
}

is finite,

which implies

C c =
{

i ∈N : P
(
Ti(ϑ) – β , j

)
> 1 – ε1 or Q

(
Ti(ϑ) – β , j

)
< ε1,

R
(
Ti(ϑ) – β , j

)
< ε1

}
.

For i ∈ C c, we have

P
(
Ti(ϑ) – β , j

)
> 1 – ε1 or Q

(
Ti(ϑ) – β , j

)
< ε1, R

(
Tj(y) – β , t

)
< ε1.

For fixed k ∈ C c, let

A =
{

i ∈N : P
(
Ti(ϑ) – Tk(ϑ), j

) ≤ 1 – ε or Q
(
Ti(ϑ) – Tk(ϑ), j

) ≥ ε,
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R
(
Ti(ϑ) – Tk(ϑ), j

) ≥ ε
}

be finite .

We show that A ⊂ C . Let i ∈ A, we have

P
(
Ti(ϑ) – Tk(ϑ), j

) ≤ 1 – ε or Q
(
Ti(ϑ) – Tk(ϑ), j

) ≥ ε,

R
(
Ti(ϑ) – Tk(ϑ), j

) ≥ ε.

We have two possible cases, firstly consider P(Ti(ϑ) – Tk(ϑ), j ) ≤ 1 – ε. Then P(Ti(ϑ) –
β , j

2 ) ≤ 1 – ε1. If possible, let P(Ti(ϑ) – β , j

2 ) > 1 – ε1. Then

1 – ε ≥ P
(
Ti(ϑ) – Tk(ϑ), j

)

≥ P
(

Ti(ϑ) – β ,
j

2

)
∗ P

(
Tk(ϑ) – β ,

j

2

)

> (1 – ε1) ∗ (1 – ε1)

> (1 – ε),

which is a contradiction. �⇒ P(Ti(ϑ) – β , j

2 ) ≤ 1 – ε1.
Similarly, consider Q(Ti(ϑ) – Tk(ϑ), j ) ≥ ε, then Q(Ti(ϑ) – β , j

2 ) ≥ ε1.
If possible, suppose Q(Ti(ϑ) – β , j

2 ) < ε1. Hence

ε ≤ Q
(
Ti(ϑ) – Tk(ϑ), j

)

≤ Q
(

Ti(ϑ) – β ,
j

2

)
	 Q

(
Tk(ϑ) – β ,

j

2

)

< ε1 	 ε1

< ε,

which is again a contradiction. �⇒ Q(Ti(ϑ) – β , j

2 ) ≥ ε1.
Similarly,

R
(
Ti(ϑ) – Tk(ϑ), j

) ≥ ε, then R
(

Ti(ϑ) – β ,
t
2

)
≥ ε1.

If possible, suppose R(Ti(ϑ) – β , j

2 ) < ε1. Hence

ε ≤ R
(
Ti(ϑ) – Tk(ϑ), j

)

≤ R
(

Ti(ϑ) – β ,
j

2

)
	 R

(
Tk(ϑ) – β ,

j

2

)

< ε1 	 ε1

< ε,

which is again a contradiction

�⇒ R
(

Ti(ϑ) – β ,
j

2

)
≥ ε1.
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Therefore, for i ∈ A, we have

P
(

Ti(ϑ) – β ,
j

2

)
≤ (1 – ε1), Q

(
Ti(ϑ) – β ,

j

2

)
≥ ε1 and

R
(

Ti(ϑ) – β ,
j

2

)
≥ ε1

�⇒ i ∈ C .

Hence, A ⊂ C . Since C is finite, so the sequence ϑ = (ϑi) is neutrosophic Tribonacci
Cauchy with respect to the norms (P, Q, R).

Conversely, suppose that the sequence ϑ = (ϑi) ∈ ω is neutrosophic Tribonacci Cauchy
with respect to the norms (P, Q, R). Let on the contrary the sequence ϑ = (ϑi) be not neu-
trosophic Tribonacci convergent. Then there exists i ∈ N such that

T1 =
{

i ∈N : P
(
Ti(ϑ) – Tk(ϑ), j

) ≤ 1 – ε or Q
(
Ti(ϑ) – Tk(ϑ), j

) ≥ ε,

R
(
Ti(ϑ) – Tk(ϑ), j

) ≥ ε
}

but

T2 =
{

i ∈N : P
(

Ti(ϑ) – β ,
j

2

)
> 1 – ε1 or Q

(
Ti(ϑ) – β ,

j

2

)
< ε1,

R
(

Tj(y) – β ,
j

2

)
< ε1

}
,

�⇒
1 – ε ≥ P

(
Ti(ϑ) – Tk(ϑ), j

)

≥ P
(

Ti(ϑ) – β ,
j

2

)
∗ P

(
Tk(ϑ) – β ,

j

2

)

> (1 – ε1) ∗ (1 – ε1)

> 1 – ε,

which is a contradiction.
Now,

ε ≤ Q
(
Ti(ϑ) – Tk(ϑ), j

)

≤ Q
(

Ti(ϑ) – β ,
j

2

)
	 Q

(
Tk(ϑ) – β ,

j

2

)

< ε1 	 ε1

< ε,

which is again a contradiction; and

ε ≤ R
(
Ti(ϑ) – Tk(ϑ), j

)
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≤ R
(

Ti(ϑ) – β ,
j

2

)
	 R

(
Tk(ϑ) – β ,

j

2

)

< ε1 	 ε1

< ε,

which is again a contradiction.
Therefore T2 ∈Z and hence ϑ = (ϑi) is neutrosophic Tribonacci convergent. �

Theorem 4.3 Every subset D of L(P,Q,R)(T) is neutrosophic Tribonacci bounded.

Proof The proof of this theorem follows from Theorem 3.1 and can be verified on similar
grounds. �

Theorem 4.4 Let NNS L(P,Q,R)(T) and τ(P,Q,R)(T) be the topology on L(P,Q,R)(T). Let (ϑn) =
(ϑn

k )∞n=1 be a sequence of points in L(P,Q,R)(T). Then ϑn −→ ϑ as n −→ ∞ iff

P
(
Ti

(
ϑn) – Ti(ϑ), j

) −→ 1, Q
(
Ti

(
ϑn) – Ti(ϑ), j

) −→ 0 and

R
(
Ti

(
ϑn) – Ti(ϑ), j

) −→ 0 as i −→ ∞.

Proof Let ϑn −→ ϑ as n −→ ∞. Fix r > 0. Then, for 0 < ε < 1, there exists k ∈ N such that
(ϑn) ∈ Bϑ (r, ε)(T) for all n ≥ k. Then the set A is finite, where

A =
{

i ∈N : P
(
Ti

(
ϑn) – Ti(ϑ), r

) ≤ 1 – ε or Q
(
Ti

(
ϑn) – Ti(ϑ), r

) ≥ ε,

R
(
Ti

(
ϑn) – Ti(ϑ), r

) ≥ ε
}

,

which is equivalent to

Ac =
{

i ∈N : P
(
Ti

(
ϑn) – Ti(ϑ), r

)
> 1 – ε or Q

(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε,

R
(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε

}
.

For {i ∈N} ⊆ Ac,

P
(
Ti

(
ϑn) – Ti(ϑ), r

)
> 1 – ε

�⇒ 1 – P
(
Ti

(
ϑn) – Ti(ϑ), r

)
> ε, Q

(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε and

R
(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε.

Therefore, for n −→ ∞,

�⇒ 1 – P
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0, Q
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0 and

R
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0,

�⇒ P
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 1, Q
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0 and

R
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0 as n −→ ∞.
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Conversely, suppose that for each i > 0, P(Ti(ϑn)–Ti(ϑ), r) −→ 1, Q(Ti(ϑn)–Ti(ϑ), r) −→
0, and R(Ti(ϑn)–Ti(ϑ), r) −→ 0 as n −→ ∞. Then for each ε ∈ (0, 1) there exists k ∈N such
that

�⇒ 1 – P
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0, Q
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0 and

R
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0

for all n ≥ k,

P
(
Ti

(
ϑn) – Ti(ϑ), r

)
> 1 – ε �⇒ 1 – P

(
Ti

(
ϑn) – Ti(ϑ), r

)
> ε,

Q
(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε and

R
(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε for all n ≥ k.

Consider that the neutrosophic-Z generated by the set {t ∈N : t < k} implies the collec-
tion of sets generated by the set {i ∈N : i ≥ k}.

Thus

{
i ∈ N : P

(
Ti

(
ϑn) – Ti(ϑ), r

)
> 1 – ε or Q

(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε,

R
(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε

}

�⇒ (
ϑn) ∈ Bϑ (r, ε)(T) for all n ≥ k.

Hence ϑn −→ ϑ as n −→ ∞. �

Theorem 4.5 Every closed ball with the center at ϑ and the radius r > 0 with respect to
the parameter of fuzziness 0 < ε < 1, i.e., Bϑ [r, ε](T) is a closed set in L(P,Q,R)(T).

Proof Let ϑ = (ϑk) ∈ ω be such that ϑ ∈ Bϑ [r, ε](T). Then there exists a sequence (ϑn) =
(ϑn

k ) ∈ Bϑ [r, ε](T) such that ϑn −→ ϑ as n −→ ∞. This implies the set

X =
{

i ∈N : P
(
Ti

(
ϑn) – Ti(ϑ), r

) ≥ 1 – ε or Q
(
Ti

(
ϑn) – Ti(ϑ), r

) ≤ ε,

P
(
Ti

(
ϑn) – Ti(ϑ), r

) ≤ ε
}

.

Since ϑn −→ ϑ as n −→ ∞, by Theorem 4.4,

P
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 1, Q
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0 and

R
(
Ti

(
ϑn) – Ti(ϑ), r

) −→ 0 for all t > 0 as j −→ ∞.

Hence for i ∈ X

P
(
Ti(ϑ) – Ti(y), j + r

) ≥ lim
i→∞ P

(
Ti

(
ϑn) – Ti(ϑ), j

) ∗ P
(
Ti

(
ϑn) – Ti(ϑ), r

)

≥ 1 ∗ (1 – ε)

= 1 – ε,
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Q
(
Ti(ϑ) – Ti(y), j + r

) ≤ lim
i→∞ Q

(
Ti

(
ϑn) – Ti(ϑ), j

) 	 Q
(
Ti

(
ϑn) – Ti(ϑ), r

)

≤ 0 	 ε

= ε

and

R
(
Ti(ϑ) – Ti(y), j + r

) ≤ lim
i→∞ R

(
Ti

(
ϑn) – Ti(ϑ), j

) 	 R
(
Ti

(
ϑn) – Ti(ϑ), r

)

≤ 0 	 ε

= ε.

In particular, for k ∈N, take j = 1
k . Then

P
(
Ti(ϑ) – Ti(y), r

)
= lim

k→∞
P
(

Ti(ϑ) – Ti(y), r +
1
k

)
≥ 1 – ε,

Q
(
Ti(ϑ) – Ti(y), r

)
= lim

k→∞
Q

(
Ti(ϑ) – Ti(y), r +

1
k

)
≤ ε

and

R
(
Ti(ϑ) – Ti(y), r

)
= lim

k→∞
R
(

Ti(ϑ) – Ti(y), r +
1
k

)
≤ ε

�⇒ {
i ∈N : P

(
Ti(ϑ) – Ti(y), r

) ≥ 1 – ε or Q
(
Ti(ϑ) – Ti(y), r

) ≤ ε,

R
(
Ti(ϑ) – Ti(y), r

) ≤ ε
}

.

�⇒ y ∈ Bϑ [r, ε](T).

Therefore Bϑ [r, ε](T) is a closed set. �

Theorem 4.6 Let ϑ = (ϑk) ∈ L(P,Q,R)(T). Then, for some β ∈ Y , ϑk → β if and only if for
every ε ∈ (0, 1) and j > 0 there exist positive integers N = N(ϑ , ε, j ) such that

{
N ∈N : P

(
TN (ϑ) – β ,

j

2

)
> 1 – ε or Q

(
TN (ϑ) – β ,

j

2

)
< ε, R

(
TN (ϑ) – β ,

j

2

)
< ε

}
.

Proof Suppose ϑk → β for some β ∈ Y . For given ε ∈ (0, 1), there exists r ∈ (0, 1) such that
(1 – ε) ∗ (1 – ε) > 1 – r and ε 	 ε < r. Since ϑk → β , for all j > 0,

S =
{

i ∈N : P
(

Ti(ϑ) – β ,
j

2

)
≤ 1 – ε or Q

(
Ti(ϑ) – β ,

j

2

)
≥ ε,

R
(

Ti(ϑ) – β ,
j

2

)
≥ ε

}
,

which implies that

Sc =
{

i ∈N : P
(

Ti(ϑ) – β ,
j

2

)
> 1 – ε or Q

(
Ti(ϑ) – β ,

j

2

)
< ε, R

(
Ti(ϑ) – β ,

j

2

)
< ε

}
.
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Conversely, let us choose N ∈ Sc. Then

P
(

TN (ϑ) – β ,
j

2

)
> 1 – ε or Q

(
TN (ϑ) – β ,

j

2

)
< ε, R

(
TN (ϑ) – β ,

j

2

)
< ε.

We show that there exists a positive integer N = N(ϑ , ε, j ) such that

{
k ∈N : P

(
Tk(ϑ) – TN (ϑ), j

) ≤ 1 – r or Q
(
Tk(ϑ) – TN (ϑ), j

) ≥ r,

R
(
Tk(ϑ) – TN (ϑ), j

) ≥ r
}

.

So, for ϑ = (ϑk) ∈L(P,Q,R)(T), define

C =
{

k ∈N : P
(
Tk(ϑ) – TN (ϑ), j

) ≤ 1 – r or Q
(
Tk(ϑ) – TN (ϑ), j

) ≥ r,

R
(
Tk(ϑ) – TN (ϑ), j

) ≥ r
}

.

We shall show that C ⊆ Y . Let on the contrary C � Y , i.e., there exists m ∈ C such that
m /∈ Y . Then

P
(
Tm(ϑ) – TN (ϑ), j

) ≤ 1 – r or P
(

Tm(ϑ) – β ,
j

2

)
> 1 – ε.

In particular,

P
(

TN (ϑ) – β ,
j

2

)
> 1 – ε.

Therefore we have

1 – r ≥ P
(
Tm(ϑ) – TN (ϑ), j

)

≥ P
(

Tm(ϑ) – β ,
j

2

)
∗ P

(
TN (ϑ) – β ,

j

2

)

≥ (1 – ε) ∗ (1 – ε)

> 1 – r,

which is a contradiction. Similarly,

Q
(
Tm(ϑ) – TN (ϑ), j

) ≥ r or Q
(

Tm(ϑ) – β ,
j

2

)
< ε.

In particular,

Q
(

TN (ϑ) – β ,
j

2

)
< ε.

Therefore we have

r ≤ Q
(
Tm(ϑ) – TN (ϑ), j

)
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≤ Q
(

Tm(ϑ) – β ,
j

2

)
	 Q

(
TN (ϑ) – β ,

j

2

)

≤ ε 	 ε

< r.

Similarly, in the other way,

R
(
Tm(ϑ) – TN (ϑ), j

) ≥ r or R
(

Tm(ϑ) – β ,
j

2

)
< ε.

In particular,

R
(

TN (ϑ) – β ,
j

2

)
< ε,

r ≤ R
(
Tm(ϑ) – TN (ϑ), j

)

≤ R
(

Tm(ϑ) – β ,
j

2

)
	 R

(
TN (ϑ) – β ,

j

2

)

≤ ε 	 ε

< r,

which is again a contradiction.
Hence C ⊆ Y since Y ∈Z implies C ∈Z . �

Definition 4.7 Consider D ⊆ L(P,Q,R)(T). Then D is compact if every open cover of D by
the open set of τ(P,Q,R)(T) has a finite subcover.

Theorem 4.7 Every finite subset D of L(P,Q,R)(T) is compact.

Proof Let D = {ϑ1,ϑ2,ϑ3, . . . ,ϑn} be the finite subset of L(P,Q,R)(T). For r > 0 and 0 < ε < 1,
let us assume that {Bϑ (r, ε)(T) : ϑ ∈ D} is an open cover of D. Then

D ⊆ ⋃
ϑ∈D Bϑ (r, ε)(T).

Now, for all ϑi ∈ D, i = 1, 2, 3, . . . n, we have ϑi ∈ ⋃
ϑi∈D Bϑi (r, ε)(T). That implies ϑi ∈

Bϑi (r, ε)(T) for some i ∈ {1, 2, 3, . . . , n}. Then {Bϑi (r, ε)(T) : i = 1, 2, 3, . . . , n} is a finite sub-
cover of D.

Therefore D is compact. �

Theorem 4.8 Let D ⊆L(P,Q,R)(T). Then D is compact iff every sequence in D has a conver-
gent subsequence.

Proof Suppose that D is a compact subset of L(P,Q,R)(T). Let (ϑn
k ) = (ϑn)∞n=1 be a sequence

in D. For given 0 < ε < 1 and r > 0, let {Bϑ ( r
3 , ε)(T) : ϑ = (ϑk) ∈ D} be an open cover of S.

This implies (ϑn) ∈ ⋃
ϑ∈D Bϑ ( r

3 , ε)(T). Then there exists some ϑ = (ϑk) ∈ D such that
(ϑn) ∈ Bϑ ( r

3 , ε)(T). Therefore the set

Y1 =
{

i ∈N : P
(

Ti
(
ϑn) – Ti(ϑ),

r
3

)
> 1 – ε or Q

(
Ti

(
ϑn) – Ti(ϑ),

r
3

)
< ε,
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R
(

Ti
(
ϑn) – Ti(ϑ),

r
3

)
< ε

}
.

Since D is compact, there exists a finite subcover {Bϑi (
r
3 , ε)(T) : ϑi ∈ D and i = 1, 2, 3, . . . .m}

of D such that D ⊆ ⋃m
i=1 Bϑi (

r
3 , ε)(T).

Let (ϑnp ) be a subsequence of (ϑn). Then (ϑnp ) ∈ ⋃m
i=1 Bϑi (

r
3 , ε)(T) implies (ϑnp ) ∈

Bϑi (
r
3 , ε)(T) for some ϑi ∈ D. Therefore the set

Y2 =
{

i ∈N : P
(

Ti
(
ϑnp

)
– Ti(ϑi),

r
3

)
> 1 – ε or Q

(
Ti

(
ϑnp

)
– Ti(ϑi),

r
3

)
< ε,

R
(

Ti
(
ϑnp

)
– Ti(ϑi),

r
3

)
< ε

}
.

Now, for k ∈ Y1 ∩ Y2,

P
(
Ti

(
ϑnp

)
– Ti(ϑ), r

)

≥ P
(

Ti
(
ϑnp

)
– Ti(ϑi),

r
3

)

∗ P
(

Ti
(
ϑn) – Ti(ϑi),

r
3

)

∗ P
(

Ti
(
ϑn) – Ti(ϑ),

r
3

)

> (1 – ε) ∗ (1 – ε) ∗ (1 – ε)

= (1 – ε),

�⇒ P
(
Ti

(
ϑnp

)
– Ti(y), r

)
> 1 – ε,

Q
(
Ti

(
ϑnp

)
– Ti(ϑ), r

)

≤ Q
(

Ti
(
ϑnp

)
– Ti(ϑi),

r
3

)

	 Q
(

Ti
(
ϑn) – Ti(ϑi),

r
3

)

	 Q
(

Ti
(
ϑn) – Ti(ϑ),

r
3

)

< ε 	 ε 	 ε

= ε,

and

R
(
Ti

(
ϑnp

)
– Ti(ϑ), r

)

≤ R
(

Ti
(
ϑnp

)
– Ti(ϑi),

r
3

)

	 R
(

Ti
(
ϑn) – Ti(ϑi),

r
3

)

	 R
(

Ti
(
ϑn) – Ti(ϑ),

r
3

)
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< ε 	 ε 	 ε

= ε.

Take ε = 1
p . Then

lim
p→∞ P

(
Ti

(
ϑnp

)
– Ti(ϑ), r

)
= lim

p→∞ 1 –
1
p

= 1,

lim
p→∞ Q

(
Tk

(
ϑnp

)
– Tk(ϑ), r

)
= lim

p→∞
1
p

= 0 and

lim
p→∞ R

(
Tk

(
ϑnp

)
– Tk(ϑ), r

)
= lim

p→∞
1
p

= 0.

Hence, by Theorem (4.4), ϑnp → ϑ , as p → ∞.
Conversely, suppose that (ϑnp ) is a subsequence of the sequence (ϑn) in D such that

(ϑnp ) → ϑ in D. Let on the contrary D be not a compact subset of L(P,Q,R)(T).
Suppose that {Bϑ (r, ε)(T) : ϑ ∈ D} is an open cover of D �⇒ D ⊆ ⋃

ϑ∈d Bϑ (r, ε)(T).
Therefore the set

{
i ∈ N : P

(
Ti

(
ϑn) – Ti(ϑ), r

)
> 1 – ε or Q

(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε,

R
(
Ti

(
ϑn) – Ti(ϑ), r

)
< ε

}
.

Since D is not compact, there exists a finite subcover {Bϑi (r, ε)(T) : ϑi ∈ D, i = 1, 2, 3, . . . ,
m} such that D �

⋃
ϑi∈D Bϑi (r, ε)(T), which implies that the set

{
i ∈ N : P

(
Ti

(
ϑnp

)
– Ti(ϑi), r

)
> 1 – ε or Q

(
Ti

(
ϑnp

)
– Ti(ϑi), r

)
< ε,

R
(
Ti

(
ϑnp

)
– Ti(ϑi), r

)
< ε

}

�⇒ {
i ∈N : P

(
Ti

(
ϑnp

)
– Ti(ϑ), r

)
> 1 – ε or Q

(
Ti

(
ϑnp

)
– Ti(ϑ), r

)
< ε,

R
(
Ti

(
ϑnp

)
– Ti(ϑi), r

)
< ε

}

�⇒ For any 0 < ε < 1 and r > 0,
(
ϑnp

)
/∈ Bϑ (r, ε)

�⇒ ϑnp � ϑ , which is a contradiction.

Hence D is compact. �

Theorem 4.9 Let D be the compact subset of L(P,Q,R)(T) such that ϑ = (ϑk) /∈ D. Then there
exist two open sets U and V in L(P,Q,R)(T) such that D ⊆ V ,ϑ ∈ U , and U ∩ V = φ.

Proof Let D be a compact subset of L(P,Q,R)(T) and ϑ /∈ D. Then, for any s ∈ D, we have
ϑ �= s. Since L(P,Q,R)(T) is a Hausdorff space, then for some r > 0 and 0 < ε < 1 there exist
two open balls U = Bϑ (r, ε)(T) and V = Bs(r, ε)(T) such that ϑ ∈ U , s ∈ V and U ∩ V = φ.

Consider the open cover Vs = {Bs(r, ε)(T) : s ∈ D} of D and D is compact.
Therefore there exists a finite subcover Vsi = {Bsi (r, ε)(T) : si ∈ D and i = 1, 2, 3, . . . , n}

such that D ⊆ ⋃n
i=1 Vsi . Taking V =

⋂n
i=1 Vsi , we have ϑ /∈ D.

Hence U and V are open sets such that D ⊆ V and U ∩ V = φ. �
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Theorem 4.10 Consider the NNS L(P,Q,R)(T). Let r > 0 and ε1, ε2 ∈ (0, 1) such that (1 –
ε1) ∗ (1 – ε1) ≥ (1 – ε2) and ε1 	 ε1 ≤ ε2. Then, for any ϑ = (ϑk) ∈L(P,Q,R)(T),Bϑ ( r

2 , ε1)(T) ⊆
Bϑ (r, ε2)(T).

Proof Let � = (�k) ∈ Bϑ ( r
2 , ε1)(T) and B�( r

2 , ε1)(T) be an open ball with the center at � and
the radius ε1. Hence B�( r

2 , ε1)(T) ∩ Bϑ ( r
2 , ε1)(T) �= φ.

Suppose z = (zk) ∈ B�( r
2 , ε1)(T) ∩ Bϑ ( r

2 , ε1)(T). Then the sets

Y1 =
{

i ∈N : P
(

Ti(�) – Ti(z),
r
2

)
> 1 – ε1 or Q

(
Ti(�) – Ti(z),

r
2

)
< ε1,

R
(

Ti(�) – Ti(z),
r
2

)
< ε1

}

Y2 =
{

i ∈N : P
(

Ti(ϑ) – Ti(z),
r
2

)
> 1 – ε1 or Q

(
Ti(ϑ) – Ti(z),

r
2

)
< ε1,

R
(

Ti(ϑ) – Ti(z),
r
2

)
< ε1

}

Consider k ∈ Y1 ∩ Y2. Then

P
(
Tk(ϑ) – Tk(�), r

) ≥ P
(

Tk(ϑ) – Tk(z),
r
2

)
∗ P

(
Tk(�) – Tk(z),

r
2

)

> (1 – ε1) ∗ (1 – ε1)

≥ (1 – ε2)

Q
(
Tk(ϑ) – Tk(�), r

) ≤ Q
(

Tk(ϑ) – Tk(z),
r
2

)
	 Q

(
Tk(�) – Tk(z),

r
2

)

< ε1 	 ε1

≤ ε2

and

R
(
Tk(ϑ) – Tk(�), r

) ≤ R
(

Tk(ϑ) – Tk(z),
r
2

)
	 R

(
Tk(�) – Tk(z),

r
2

)

< ε1 	 ε1

≤ ε2.

Therefore the set

{
i ∈ N : P

(
Ti(ϑ) – Ti(�), r

)
> 1 – ε2 or Q

(
Ti(ϑ) – Ti(�), r

)
< ε2, R

(
Ti(ϑ) – Ti(�), r

)
< ε2

}
.

�⇒ � = (�k) ∈ Bϑ (r, ε2)(T).

Hence Bϑ ( r
2 , ε1)(T) ⊆ Bϑ (r, ε2)(T). �

Theorem 4.11 Let ϑ = (ϑk) ∈ ω. If there exists a sequence y = (yk) ∈ L(P,Q,R)(T) such that
Ti(ϑ) = Ti(y) for almost all i relative to neutrosophic-Z , then ϑ ∈L(P,Q,R)(T).
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Proof Suppose Ti(ϑ) = Ti(y) for almost all i relative to Z . Then {i ∈ N : Ti(ϑ) �= Ti(y)} ∈
Z �⇒ {i ∈N : Ti(ϑ) = Ti(y)}. Therefore, for all j > 0,

P
(

Ti(ϑ) – Ti(y),
j

2

)
= 1 and Q

(
Ti(ϑ) – T(y),

j

2

)
= 0,

R
(

Ti(ϑ) – Ti(y),
j

2

)
= 0.

Since (yk) ∈L(P,Q,R)(T), let lim(zk) = β . Then, for every ε ∈ (0, 1) and j > 0,

Y1 =
{

i ∈N : P
(

Ti(y) – β ,
j

2

)
> 1 – ε or Q

(
Ti(y) – β ,

j

2

)
< ε, R

(
Ti(y) – β ,

j

2

)
< ε

}
.

Consider the set

Y2 =
{

i ∈N : P
(
Ti(ϑ) – β , j

)
> 1 – ε or Q

(
Ti(ϑ) – β , j

)
< ε, R

(
Ti(ϑ) – β , j

)
< ε

}
.

We show that Y1 ⊂ Y2. So for j ∈ Y1 we have

P
(
Ti(ϑ) – β , j

) ≥ P
(

Ti(ϑ) – Ti(y),
j

2

)
∗ P

(
Ti(y) – β ,

j

2

)

> 1 ∗ (1 – ε)

= 1 – ε,

Q
(
Ti(ϑ) – β , j

) ≤ P
(

Ti(ϑ) – Ti(y),
j

2

)
	 Q

(
Ti(y) – β ,

j

2

)

< 0 	 ε

= ε,

and

R
(
Ti(ϑ) – β , j

) ≤ R
(

Ti(ϑ) – Ti(y),
j

2

)
	 R

(
Ti(y) – β ,

j

2

)

< 0 	 ε

= ε

�⇒ i ∈ Y2 and hence Y1 ⊂ Y2.
Hence ϑ = (ϑk) ∈L(P,Q,R)(T). �

5 Conclusion
Tribonacci numbers have been studied by several authors in the past who investigated
Tribonacci identities, recurrence relations, and generalized Tribonacci numbers. How-
ever, in this paper, we focus on different directions by introducing a Tribonacci sequence
space with the aid of a neutrosophic sequence space. We expect that our results might be
a reference for further studies in this field. We have defined the Tribonacci matrix from
neutrosophic convergence of sequence spaces and examine some topological and alge-
braic properties.
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